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Identifying the connectome of adult-generated neurons is essen-
tial for understanding how the preexisting circuitry is refined by
neurogenesis. Changes in the pattern of connectivity are likely to
control the differentiation process of newly generated neurons
and exert an important influence on their unique capacity to
contribute to information processing. Using a monosynaptic rabies
virus-based tracing technique, we studied the evolving presynap-
tic connectivity of adult-generated neurons in the dentate gyrus
(DG) of the hippocampus and olfactory bulb (OB) during the first
weeks of their life. In both neurogenic zones, adult-generated
neurons first receive local connections from multiple types of
GABAergic interneurons before long-range projections become
established, such as those originating from cortical areas. In-
terestingly, despite fundamental similarities in the overall pattern
of evolution of presynaptic connectivity, there were notable
differences with regard to the development of cortical projections:
although DG granule neuron input originating from the entorhinal
cortex could be traced starting only from 3 to 5 wk on, newly
generated neurons in the OB received input from the anterior
olfactory nucleus and piriform cortex already by the second week.
This early glutamatergic input onto newly generated interneurons
in the OB was matched in time by the equally early innervations of
DG granule neurons by glutamatergic mossy cells. The develop-
ment of connectivity revealed by our study may suggest common
principles for incorporating newly generated neurons into a pre-
existing circuit.
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In most mammals, the dentate gyrus (DG) of the hippocampus
and the olfactory bulb (OB) are remodeled throughout life

by the incorporation of new neurons, with accruing evidence
pointing toward unique roles of these neurons in information
processing (1–4). Crucial for a better understanding of the
contribution of adult-generated neurons to circuit function is the
identification of their connectome and how it develops during
the process of integration. Optogenetics-based techniques have
been successfully used to prove that several weeks following their
birth, newborn neurons establish functional contacts with distinct
types of postsynaptic partners (5, 6). Along the same vein, pre-
vious studies have demonstrated that newborn neurons receive
different types of synaptic input at early stages of their functional
integration compared with later ones. For example, during the
first weeks of life, adult-born DG granule neurons are thought
to receive almost exclusively GABAergic input and only later
become targets for glutamatergic synapses as well (7). Although
synaptogenesis in adult-born neurons has been suggested to
follow a distinct pattern of maturation compared with postnatal-
generated neurons, the final connectivity of these two pop-

ulations of neurons is generally thought to be very similar (8).
However, little is known about the precise identity of the syn-
aptic partners at different stages of maturation, both in the DG
and OB. Moreover, studying the time line of connectivity of
adult-generated neurons is likely to unveil fundamental princi-
ples that need to be met for successful incorporation of new neu-
rons into a preexisting neural circuit in the context of brain repair.
Revealing the connectivity of these neurons is a major chal-

lenge requiring unbiased techniques for systematically tracing the
pre- and postsynaptic partners. A key breakthrough in mapping
neuronal connectivity has been the development of a pseudo-
typed rabies virus (RABV)-based method for monosynaptically
restricted tracing of connections between postsynaptic neurons
and their first-order presynaptic partners (9). This method is
based on targeting primary RABV infection to “starter” cells
ectopically expressing TVA, an avian receptor for the envelope
protein EnvA used for pseudotyping the RABV (10). Providing
these starter cells with the RABV glycoprotein (G) allows for
the subsequent retrograde transsynaptic virus transfer to pre-
synaptic partners. By means of single-cell electroporation, adeno-
associated virus-mediated transduction or Cre-mediated recom-
bination in transgenic mice, previous strategies have proved the
efficient expression of TVA and G in restricted populations of
starter cells in vivo (11, 12). The delivery of RABV to and sub-
sequent transfer from these starter cells located in a host of
neuroanatomical regions, such as the cerebral cortex and the
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spinal cord, allowed for successfully mapping the connections
established by specific sets of short- and long-range presynaptic
partners (13, 14). Most recently, two different retrovirus-based
approaches were used to restrict primary RABV infection to
adult-generated neurons in the DG, disclosing both local and
long-range connections (1, 15). However, these studies did not
investigate the connectivity at the early phase of integration [i.e.,
before DG granule neurons receive input from the entorhinal
cortex (EC)].
Adult neural stem cells (aNSCs) in the subgranular zone

(SGZ) of the DG generate intermediate progenitors that ulti-
mately give rise to glutamatergic granule neurons (16). Similarly,
the subependymal zone (SEZ) harbors aNSCs, which give rise to
neuroblasts that migrate tangentially along the rostral migratory
stream (RMS) to the OB. There, the neuroblasts migrate radially
and differentiate into various types of interneurons populating
both the granule cell layer (GCL) and the glomerular layer (17,
18). We therefore adapted the RABV-based monosynaptic
tracing technique to target adult-generated neurons for primary
RABV infection. To this end, we directed the expression of both
TVA and G via retroviral vectors selectively to newborn neurons
in the DG and the RMS/OB and subsequently transduced these
withRABVencoding a reporter gene, to identify their presynaptic
connections from early to late stages of maturation. Using this
technique we were able to unveil similarities and differences in the

evolution of innervations of newly generated neurons in both
neurogenic regions, suggesting adherence to a common logic that
governs incorporation into preexisting circuits of the adult brain.

Results
RABV-Based Tracing of Local Presynaptic Partners in the DG. To
render adult-generated neurons susceptible to primary infection
by the EnvA-pseudotyped RABV and capable of retrograde
transfer to the immediate presynaptic partners, we designed a
polycistronic retroviral vector encoding G, TVA, and the fluo-
rescence reporter DsRedExpress2 to visualize transduced cells
(Fig. 1A). Fig. 1B depicts our general strategy for monosynaptic
tracing of presynaptic partners of adult-generated neurons in vivo.
Stereotactic delivery of G and TVA-encoding retrovirus and

RABV (Fig. 1C) resulted in the appearance of double reporter-
positive granule neurons, indicating they had undergone double
transduction (Fig. 1D). Patch-clamp recording of RABV-infected
adult-generated neurons showed no overt differences in their
electrical properties compared with those transduced with ret-
rovirus alone (Fig. S1). We also observed neurons expressing
GFP only, indicating transsynaptic spread of RABV from the
double-transduced newborn granule neurons (Fig. 1D). Volun-
tary exercise is known to increase cell proliferation, survival, and
synaptogenesis of newborn neurons in the DG (19, 20). Although
we observed an increase in retroviral transduction efficiency
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in animals subjected to voluntary wheel running, as reported
previously (19), the number of primary RABV-infected starter cells
was only moderately changed. Nonetheless, we observed a signifi-
cant increase in the transsynaptic spread of RABV in running mice
compared with nonrunners (Fig. 1 D and E). Thus, we focused our
analyses on the presynaptic connectivity of adult-generated DG
granule neurons of running mice. Importantly, upon RABV in-
jection without prior retroviral transduction or following trans-
duction with a control retrovirus encoding DsRedExpress only, no
GFP+ neurons were observed in the DG, indicating that RABV
infection was strictly dependent on TVA expression (Fig. 1D).
One concern is that already small amounts of TVA could

suffice to render cells susceptible to RABV infection (21). Al-
though retroviral vectors can only stably integrate into the ge-
nome of dividing cells, a nonintegrating viral infection can still
result in transgene expression, a phenomenon called pseudo-
transduction (22), which may also allow nonproliferating cells to
be susceptible to primary RABV infection. To test this possi-
bility, we injected a TVA-only expressing retrovirus into the DG
followed by RABV injection (Fig. S2 A and B). We observed
double-transduced newborn granule neurons and a small pro-
portion of GFP-only positive cells, even when RABV was
injected 5 wk postretrovirus injection (Fig. S2 C–E). Notably,
these GFP-only positive cells were restricted exclusively to the
immediate vicinity of the injection site (Fig. S2C) and we never
observed neurons labeled further away without retroviral de-
livery of G (n = 10 animals analyzed). Moreover, the proportion
of GFP-only positive neurons under these experimental con-
ditions was much lower in comparison with that obtained when
a retrovirus encoding TVA and G was used (Fig. S2 D and E).
These data suggest that a small proportion of mature neurons
may indeed be pseudotransduced, causing them to express low
but sufficient quantities of TVA, rendering them susceptible to
RABV infection but unable to transfer RABV because of in-
sufficient levels of G expression.

To eliminate the confounding effects of pseudotransduction, we
took advantage of a mouse line expressing the TVA receptor
under the control of the human glial fibrillary acidic protein
(hGFAP) promoter (23, 24). In these mice, TVA is expressed in
cells with an active hGFAP promoter, which also includes aNSCs
residing in the SGZ of the DG that subsequently give rise to new
granule neurons. We hypothesized that TVA protein expression
may persist long enough to allow RABV infection in the progeny
of aNSCs (Fig. 2 A and B), as previously reported (25). Indeed,
stereotactic injection of RABV without retrovirus encodingG into
the DG of hGFAP-TVA mice resulted in transduction of radial
glia-like and horizontally oriented GFAP+ cells in the SGZ (Fig. 2
C–F) and a small proportion of neurons expressing the immature
neuronal marker doublecortin (Dcx) (Fig. 2 E and F). Impor-
tantly, no neurons other than granule neurons were labeled in this
paradigm. In contrast, when a retrovirus encoding G was injected
into the SGZ 5 d before RABV injection, a small number of GFP-
only positive neurons were detected in the SGZ and hilus (Fig.
2G). Thus, the use of hGFAP-TVA mice provides an alternative
approach to target adult-generated neurons for RABV infection.

Temporal Evolution of the Presynaptic Connectivity of Adult-Born DG
Granule Neurons. After thus validating the specificity and defining
the respective limitations of the different strategies to target TVA
(in addition to G) to adult-generated neurons as the starter cell
population, we next proceeded to examine the temporal evolution
of their presynaptic connectivity. For the first 2 wk following birth
of adult-born granule neurons, we used the hGFAP-TVA mice,
but for later time points analyses were performed on C57BL/6
mice using retroviral delivery of TVA (Fig. 3 A and G).
At the earliest time points analyzed in hGFAP-TVA mice (10 d

following retroviral birth dating), we observed exclusively local
neurons, ∼70% of which were situated within the SGZ and GCL
and the remainder within the hilus (Fig. 3 B and C). These data
are consistent with the notion that GABAergic interneurons are
among the first to form synapses onto adult-generated granule
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horizontal glia (i) and radial glia (ii). Enlargements show single and merged channels of the boxed areas, with arrowheads pointing to the colocalizing immu-
noreactive signal. (Scale bars, 20 μm.) (E) Example depicting Dcx+ newborn neurons targeted by RABV. Enlargement of the boxed area (i) shows the colocalization
between GFP and Dcx (arrowheads). (Scale bars, 20 μm.) (F) Quantification of the identity of RABV-targeted cells in hGFAP-TVA mice at 2 and 12 dpi (n = 3 mice).
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neurons (7, 26). Interestingly, this distribution of RABV-traced
neurons changed within the following 5 d with the appearance
of neurons in the molecular layer (ML) and the first long-range
projection neurons residing in the medial septum (MS) and the
nucleus of the diagonal band of Broca (NDB) (Fig. 3 C, E, and
F). Additionally, among the GFP-labeled cells in the hilus al-
ready from the second week on, we also observed mossy cells, the
local excitatory input to granule neurons in the DG (27). These
cells were readily distinguishable by the characteristic thorny
excrescences on their somata and proximal dendrites (Fig. 3 C
and D). The same populations of local interneurons and mossy
cells could also be traced at later time points in C57BL/6 mice
(using retroviral TVA delivery). On the basis of their location
within the DG and their morphology, neurochemical properties
(Fig. 3 I and J) and electrophysiological properties (Fig. 3K), the
majority of the neurons can be classified as local GABAergic
interneurons (28), including parvalbumin-positive basket cells
(Fig. 3J), somatostatin-positive hilar perforant path (HIPP) cells,
hilar commissural-associational pathway (HICAP) cells, and
interneurons residing in the ML as neurogliaform cells/Ivy cells,

or other molecular perforant path (MOPP) cells (28, 29)
(Fig. S3). Intriguingly, the first long-range inputs onto newborn
DG granule neurons arising from the MS/NDB were found to be
cholinergic (Fig. 4 C and E). Finally, after 3 wk we could trace
neurons located in the EC (Fig. 4 D and E) and these increased
up to fivefold in number during the following 2 wk (Fig. 4 H and
I). Surprisingly, we also observed GFP+ neurons located in the
subiculum, a cortical structure adjacent to the hippocampus
proper (Fig. 4 D and E), a projection that has not been described
previously. Overall, our analysis revealed that besides the num-
ber of traced EC neurons, that of other presynaptic neurons also
increased over time, with the exception of neurons in the MS/
NDB (Fig. 4G–I). Fig. 4J summarizes the progressive emergence
of presynaptic partners of adult-generated neurons in the DG
starting from 5 d until 7 wk after their generation. Taken together,
our data strongly support the notion that adult-born granule neu-
rons receive first input from the local circuitry, followed by modu-
latory cholinergic (MS/NDB) and glutamatergic (mossy cell)
synaptic input, before finally being incorporated into the classic
hippocampal trisynaptic circuit upon innervation by the EC.
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voltage responses following current injections. Several
examples of presynaptic neurons differing in their IV
traces and firing pattern are shown. (Scale bar, 20 μm.)
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Temporal and Spatial Evolution of the Presynaptic Connectivity of
Adult-Born Olfactory Interneurons. Next we assessed whether the
approach of retrovirus-based targeting of adult-generated neurons
and transcomplementation with G for transsynaptic spread of
RABV can also be adapted to the olfactory system comprised of the
adult SEZ, the RMS, and the OB. We used two injection para-
digms: In the first paradigm, the G- and TVA-encoding retrovirus
was injected into the SEZ followed 4 d later by RABV injection into
the RMS, to target retrovirus-transduced neuroblasts en passant
while migrating toward the OB (Fig. 5A). In the second paradigm,
RABV was delivered directly to the OB 28 or 56 d after retrovirus
transduction, aiming at RABV infection of adult-generated neurons

following their integration in the OB (Fig. 5A). In both paradigms
pseudotransduction is not of concern because of the large distance
between the sites for retrovirus and RABV injection.
By 11 d following retroviral birth dating, the majority of the

newborn neurons were already found in the OB (Figs. 5 B and C
and 6B). RABV tracing resulted in the appearance of double-
transduced granule cells in the GCL (Fig. 5 A-C). At that stage
few RABV-traced presynaptic neurons were detected and they
appeared strictly confined to the GCL. The number of local
RABV-traced interneurons increased dramatically during the
course of the next 7 d, being comprised of Blanes cells (within
the GCL) and other short-axon cells (all layers of the OB), as
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Fig. 4. RABV-mediated tracing of long-range connectivity. (A) Injection schemes (1–3) used in the adult hippocampus of C56BL6 mice. (B) Overview depicting
the anatomical location of RABV-traced mossy cell (Inset shows enlarged image). (Scale bar, 20 μm.) (C) RABV-traced neurons in the MS and NDB. (Scale bar,
50 μm.) (D) Examples of RABV-traced neurons in the subiculum and the EC. [Scale bars, 50 μm (Subiculum) and 1 mm (EC).] (E) High magnification view of
RABV-traced neurons in MS/NDB, EC, and subiculum. (Insets) Colocalization of choline acetyltransferase (ChAT) with GFP in MS/NDB and the presence of
spines on neurons in the subiculum. (Scale bars, 20 μm.) (F) Three-dimensional reconstruction of the anatomical locations of RABV-traced long-distance
projection neurons; (Insets) An entire brain view of the reconstructed anatomical regions. (G) Ratio of RABV-traced local interneurons versus double-
transduced neurons following injection paradigms 2–3. (n = 4–6 mice per experimental condition). (H) Ratio of different types of presynaptic neurons versus
double-transduced neurons (n = 4–6 mice per experimental condition; *P < 0.05). (I) Quantification of the identity of RABV-traced neurons obtained following
injection paradigms 2–3 (n = 4–6 mice). (J) Summary of the identity and location of RABV-labeled presynaptic neurons appearing during the course of
maturation of adult-born DG neurons in hGFAP-TVA and C57BL/6 mice.

Deshpande et al. PNAS Early Edition | 5 of 10

N
EU

RO
SC

IE
N
CE

PN
A
S
PL

U
S



assessed by morphology and location (30) (Fig. 5 D–F). From
this stage and thereafter the number of local presynaptic neurons
only increased slightly (Figs. 5 G and H, and 6J).
At 18 d following retroviral birth dating, the first RABV-traced

neurons could be observed outside of the OB, namely within the
anterior olfactory nucleus (AON) and the piriform cortex (Fig. 6
A–F), which are known to innervate granule cells via axodendritic
synapses (31), and their number increased markedly in both areas
up to 9 wk following retroviral birth dating (Fig. 6J). Conspicuously,
RABV-traced neurons in the piriform cortex comprised different
types of neurons, including superficial (Fig. 6E) and deep pyra-

midal cells (Fig. 6F) and, surprisingly, also some spineless neurons
in layer III that may be the so-called smooth multipolar cells, be-
lieved to be GABAergic (Fig. 6G). These results show that, soon
after their arrival in the OB, newborn neurons become targets for
corticofugal control by the olfactory cortex (Fig. 6 J and K).
To our surprise, we did not observe RABV-labeled mitral cells

even after extended periods followingRABV injection.As discussed
below, the lack of RABV-tracing of mitral cells may be because of
the particular type of reciprocal synapse between the OB principal
neurons and OB granule or periglomerular cells, indicating an im-
portant limitation of the RABV-based tracing method.
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Fig. 5. RABV-mediated tracing of local presynaptic
partners of adult-generated neurons in the OB. (A)
Scheme of sequential virus delivery in two different
injection paradigms (1 and 2). Injection of retrovi-
rus into the SEZ, followed by RABV infection of
migrating neuroblasts in the RMS (3 and 4). In-
jection of retrovirus into the SEZ, followed by RABV
infection in the OB. (B) Double-transduced new-
born granule cells at different stages of maturation
obtained following injection schemes 1, 2, and 3.
(Scale bar, 30 μm.) (C) Overview of RABV-labeled
neurons in the OB following injection scheme 2.
(Scale bar, 200 μm.) (D) Example of a double-trans-
duced granule cell and RABV-traced superficial short
axon cells (SACs) following RABV injection in the
RMS. (Insets) Enlarged images of single and merged
channels. (Scale bars, 50 μm.) (E) Example of a RABV-
traced Blanes cell in the GCL. Arrowheads point to
the emerging axon. (Scale bar, 50 μm.) (F) Example
of a RABV-traced superficial SAC in the EPL. (Scale
bar, 50 μm.) (G) Overview of double-transduced
(yellow arrowheads) and RABV-traced local neurons
following RABV injection into the OB. A 3× digital
zoom of the boxed area shows double-transduced
and RABV-only transduced neurons (white arrow-
heads). (Scale bars, 50 μm.) (H) RABV-traced deep SAC
following RABV injection in the OB. Note the double-
transduced cell (yellow arrowhead; Insets show sin-
gle and merged channels); red arrowheads point to
the ascending axon of the SAC. Boxed area (i) shows
the cell body, with the emerging axon indicated
by the arrowheads; area (ii) shows part of the axonal
arborisation in the EPL. (Scale bars, 20 μm.)
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Even more surprisingly, at the earliest stages analyzed, we
observed RABV-traced neurons in close proximity of the SEZ
and the RMS, revealing a dense axonal arborization within these
two areas (Fig. 6I); these were labeled only upon RABV injec-
tion into the RMS. This finding suggests that migratory neuro-
blasts are transiently contacted by some mature neurons located
in immediate vicinity of the SEZ/RMS. Thus, like in the DG,
newborn neurons in the olfactory system first receive input from
local GABAergic neurons before being innervated by long-range
projection neurons located in the cortex (Fig. 6J). However, the

appearance of this cortical input occurs earlier when compared
with the DG. Taking these data together—although with some
notable limitations—RABV-tracing allows for unveiling the
temporal evolution of the presynaptic connectivity of adult-
generated neurons both in the hippocampus and olfactory bulb.

Discussion
We dissected the temporal evolution of the presynaptic con-
nectome of adult-generated neurons in the two neurogenic zones
of the forebrain, the DG and OB. To unravel the first-order
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presynaptic partners of these neurons, we made use of a versatile
retrovirus-based technique for selectively targeting adult-gener-
ated neurons for primary RABV infection and subsequent ret-
rograde RABV transfer. Studying the presynaptic connectivity of
newly generated neurons at different stages following their birth
revealed increasingly diverse populations of presynaptic part-
ners, suggestive of their stepwise incorporation into functional
neural circuits.
Consistent with previous electrophysiological studies (26, 32),

newborn neurons in the adult DG become first innervated by
interneurons in the SGZ and the hilus, and presynaptic con-
nections from interneurons residing in the ML arrive slightly
later, perhaps reflecting the maturation of the dendritic tree
within the ML. Interestingly, newborn neurons receive input
from hilar mossy cells very early on, thus being the first source of
glutamatergic input to newborn granule neurons. Intriguingly,
even before innervation by the EC, newborn neurons become
innervated by modulatory cholinergic neurons in the MS/NDB.
The rather late, but then very steeply increasing, innervation by
the EC starting at 3 wk completes the integration of adult-generated
neurons into the classic hippocampal circuitry. Moreover, we also
observed a noncanonical innervation by the subiculum. As our
analyses of the temporal evolution of presynaptic connectivity
were confined to running mice, it cannot be excluded that such
a pattern reflects the increase in hippocampal network activity as
a result of physical activity. In fact, running mice exhibited an in-
crease in presynaptic connectivity compared with sedentary mice,
consistent with previous findings (20), suggesting that physical
activity can alter the time course of integration.
On the other hand, newborn neurons in the OB become first

innervated by a wide spectrum of local interneurons residing in
the GCL (deep short-axon and Blanes cells), followed by inter-
neurons (superficial short-axon cells) in the external plexiform
layer (EPL). Rather early on newborn neurons in the OB also
receive presumably glutamatergic input from neurons in the
AON and piriform cortex. This corticofugal innervation is likely to
exert a modulatory influence on newborn neurons’ activity. Un-
fortunately, RABV-based tracing of monosynaptic connections did
not allow for revealing the onset of input provided by mitral cells,
thus leaving open at what stage newborn neurons are recruited into
the reciprocal communication with the OB’s principal cells.
Nevertheless, our results suggest that, despite the considerable

differences in their respective local environment and cellular
phenotype, the stepwise incorporation of adult-generated neu-
rons into preexisting brain circuits follows remarkably similar
principles in both neurogenic regions.
In line with the important role of the transmitter GABA for the

initial stages of differentiation and maturation of newborn gran-
ule neurons (26), we found that their earliest presynaptic partners
comprise local interneurons located in the SGZ-GCL, (e.g.,
parvalbumin-positive basket cells) (26), and within the hilus (e.g.,
HIPP cells) (28), suggesting that within the temporal resolution of
our method, the very early innervation is not restricted to one
single type of DG interneuron. Interestingly, innervations by
interneurons whose somata and axonal arborization are located
in the ML (e.g., so-called MOPP cells) appear to lag behind,
which may reflect the time required for differentiation of the
granule neuron dendrite within the ML. Occasionally, we also
observed RABV-traced neurons classified as Ivy/neurogliaform
cells, characterized by their compact dendritic tree and dense
axonal arborization (29). Somewhat surprisingly, we detected
labeling of hilar mossy cells starting from 5 to 10 d after the
generation of newborn neurons, suggesting that these experience
their first glutamatergic synaptic input from this type of hilar
neuron. In addition, a recent study has suggested that early-stage
newborn granule neurons receive massive but transient gluta-
matergic input from mature granule neurons (15). Although we
also could detect some RABV-traced mature granule neurons, in

our study they represented a minority. Furthermore, it cannot be
excluded that these were traced as a consequence of pseudo-
transduction (i.e., direct infection by RABV following minute
expression of TVA without retroviral integration) (Fig. S2C).
Unfortunately, this issue could not be adequately resolved by the
use of hGFAP-TVA mice, as a very small proportion of mature
granule neurons express sufficient TVA receptor for primary in-
fection. Remarkably, the ratio of synaptic input appeared to
triple from the first to the second week of newborn neurons’ life,
alongside the emergence of mossy cells and the first MS/NDB
inputs. During this stage, granule neurons also experience a
switch of their GABAA-receptor reversal potential, which ulti-
mately converts the initially excitatory (depolarizing) action of
GABA into an inhibitory one (26). Intriguingly, cholinergic
innervations of newborn neurons arising from basal forebrain
regions of the MS/NDB are likely to participate, via nicotinic
receptor activation, in this developmental switch (33).
The striking increase in the number of presynaptic inputs ob-

served by the end of the second week, the majority of which are still
GABAergic in nature (>70%), immediately precede the formation
of spines onto dendrites (i.e., presumable formation of excitatory
synapses) (34, 35) and the functional maturation of axonal termi-
nals of young granule neurons (6), two morphological correlates of
successful neuronal integration. Given that at this stage the switch
in GABAA-receptor reversal potential is believed to have already
taken place, our data may therefore indicate that by the moment
young granule neurons become active players of the hippocampal
network, inhibitory GABAergic inputs greatly outnumber excit-
atory glutamatergic ones. Such ratio of inhibitory versus excitatory
inputs at this stage of their functional incorporation, may reflect
a developmental condition of maintaining the highly excitable new
neurons (4) under strong inhibition, and could thereby contribute
to the selection of the forming excitatory synapses.
During the course of their maturation, we observed that adult-

generated DG granule neurons receive input from the subiculum,
an intrahippocampal connection previously not well characterized.
Using an anterograde neuronal tracer it was previously demon-
strated that fibers originating in the presubiculum and para-
subiculum of the subicular complex send a minor projection to the
ML of the DG (36). The subiculum has been implicated in spatial
navigation, memory processing, and stress response (37), functions
in which newborn neurons play an important role (1, 2, 38, 39). As
with the connections from the subiculum and well in agreement
with previous morphological and electrophysiological studies (35,
40), labeling of neurons in the EC was observed only at later time
points, with 3 wk after neurogenesis being the terminus post quem
for a steep increase in synapse formation, very similar to the dra-
matic increase in the number of traced EC neurons observed by
Vivar et al. (15). Such step-wise development of innervation may
ensure that the functional incorporation of newborn DG granule
neurons into the classic hippocampal trisynaptic circuit takes place
only when they have reached functional maturity on the cellular
level and have been already incorporated into the local circuit.
While in the DG only one type of neuron is generated, in the

OB newborn neurons comprise a plethora of different types
of interneurons located in different portions of the GCL and
glomerular layer. This fact complicates assigning a specific pop-
ulation of presynaptic neurons to its postsynaptic newborn neuron
population. In this study we either applied the RABV to the
RMS, which would target newborn granule and periglomerular
cells at the same time, or directly to the OB, where RABV in-
fection depends primarily on the injection depth, in this case ad-
justed for the GCL. Given that most of the double-infected cells
were granule cells, which is in agreement with the fact that the rate
of granule cell generation is higher than that of periglomerular cells
(41), it is probably safe to assume that the majority of presynaptic
neuron populations identified here indeed form synapses onto
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granule cells. To achieve a greater degree of specificity, approaches
using cell type specific promoters may be required.
As in the DG, both local and long-range connections onto

adult-generated neurons in the OB could be revealed; however,
the method seems not to cover the full spectrum of presynaptic
neurons, as indicated by the conspicuous absence of labeling of
mitral or tufted cells using either of the two RABV injection
paradigms employed in this study. A previous report using
electroporation of TVA and G into early postnatal progenitors in
the SEZ and subsequent RABV transduction in the OB resulted
in the labeling of mitral cells (42). A potential explanation for
this discrepancy may be a much slower maturation of synapses
between mitral cells and adult-generated neurons, which in fact
have been suggested to be preceded by centrifugal projections
(31). Consistent with this finding, we observed labeled neurons in
the olfactory cortex (AON and piriform cortex), known to form
axo-dendritic synapses onto the basolateral dendrites of granule
cells, already by the second week after retroviral birth-dating.
Perhaps more importantly, lack of mitral and tufted cell labeling
may be a direct consequence of the type of synapse rather than
merely a result of the pace of synapse maturation. Although
mitral cell axon collaterals form some axo-dendritic synapses
onto OB granule cells (41), a majority of the synapses between
these are reciprocal dendro-dendritic synapses. Whether mitral
cell dendrites possess the machinery for efficient retrograde
transport of RABV and whether this type of synapse is thus
permissive for virus-transfer is currently unknown. Furthermore,
whether and when mitral and tufted cells establish axo-dendritic
synapses onto adult-generated neurons has not been revealed.
In contrast to the absence of labeled mitral cells, other local
presynaptic partners of newborn neurons were observed. Con-
sistently labeled among these were the inhibitory deep and su-
perficial short-axon cells, including Blanes cells, which display
profuse axonal arborizations within the OB and are known to
modulate granule cell activity through GABA (30, 43). Given
that newborn neurons in the OB receive synaptic input before
they show output activity, it can be speculated that short-axon
cells may contribute to the proper functional integration of
adult-born granule cells. Intriguingly, we also observed a transi-
tory labeling of neurons located in or adjacent to the SEZ, which
showed profuse axonal arborization covering the SEZ itself and the
initial part of the RMS. Curiously, these neurons were detectable
exclusively following RABV injection in the RMS and only during
the first 2 wk after the birth of adult-born neurons. Because at this
stage some of the starter population of cells was still found along
the RMS or entering the OB, it is tempting to speculate that these
presynaptic neurons form transient synapses with migrating new-
born neurons, possibly supplying neurotransmitters during, and
thereby affecting their journey to the OB (44, 45).
Retrovirus-based targeting of newborn neurons for RABV in-

fection described herein can be used to map neuronal circuits
remodeled by new neurons endogenously generated in the adult
neurogenic areas (present study and ref. 15), as well as to study the
incorporation of new neurons following transplantation (46) or
even local reprogramming (47). Synaptic inputs are widely be-
lieved to play a key role in shaping the maturation and functional
integration process of newly generated neurons (48), which are
characterized by enhanced excitability and plasticity (49), allowing
for their preferential recruitment into functional networks (50).
Finally, this RABV-based approach is potentially suitable for the
manipulation of those connections selectively impinging onto
adult-generated neurons, thus permitting us to dissect the contri-
bution of specific populations of presynaptic partners to the pro-
posed unique role of young neurons in information processing.

Materials and Methods
Retrovirus Vector Construction. The retroviral construct used in this study was
derived from aMoloneyMurine Leukemia Virus-based retroviral vector in which

gene expression is driven by the chicken β-actin (CAG) promoter (40). The control
retrovirus was constructed by subcloning DsRedExpress2 from pIRES2DsRedEx-
press2 (Clontech) into the CAG retroviral vector using BamHI and NotI re-
striction enzymes. For RABV-mediated transsynaptic tracing, a retroviral vector
encoding the transgenes: the chicken TVA receptor, the RABV glycoprotein (G)
from the CVS-11 strain of rabies virus, and a DsRedExpress2 reporter was con-
structed. DsRedExpress2 was excised from the plasmid pIRES2DsedExpress2
(Clontech) and replaced with the PCR-amplified cDNA for TVA800 (GPI-an-
chored form of TVA) to generate pIRES2-TVA using BstXI and NotI restriction
enzymes. Primers were designed for the combined amplification of the 2A
sequence, encoding the self-cleaving 2A peptide from the virus Thosea asigna
and the cDNA for RABV G (2A-G) with SalI and SmaI linkers. The 2A-G amplicon
was cloned into pIRES2-TVA with these restriction enzymes. DsRedExpress2
without a translational stop codon was amplified by PCR from pIR-
ES2DsRedExpress2 and cloned in-frame into p2A-G-IRES2-TVA using EcoRI and
SalI. The entire DsRedExpress2-2A-G-IRES2-TVA cassette was subcloned using
SfiI/NotI into the CAG retroviral vector (40) through the shuttle vector (pBKS-) to
generate the polycistronic retroviral construct, CAG-DsRedExpress2-2A-G-IRES2-
TVA. To generate CAG-G-IRES-DsRed, the RABV G was cloned into the CAG
retroviral vector using SfiI/PmeI restriction enzymes through the shuttle vector
pcDNA3.1. For the retroviral vector with TVA only (lacking G), the DsRedEx-
press2 reporter from pIRES2DsRedExpress2 was replaced with the PCR-ampli-
fied cDNA for TVA800 to generate pIRES2-TVA using BstXI and NotI restriction
enzymes. The DsRedExpress2 from pIRES2DsedExpress2 was PCR amplified with
EcoRI and SalI primers and cloned into pIRES2-TVA to generate pDsRedExp2-
IRES2-TVA. The DsRedExp2-IRES2-TVA construct was then subcloned using SfiI/
NotI into the CAG retroviral vector through the shuttle vector (pBKS-) to gen-
erate the control retroviral construct, CAG-DsRedExpress2-IRES2-TVA.

Retrovirus Production. Retroviruses pseudotyped for the Vesicular Stomatitis
Virus glycoprotein were produced as previously described (51, 52). Briefly, 75 μg
of retroviral plasmid was used to transfect the helper-free HEK293gpg cell line
using Lipofectamine 2000T. Virus was harvested at 2, 4, and 6 d posttransfection
and concentrated by ultracentrifugation for in vivo injections and in vitro
transduction. Titers used for experiments were typically in the range of 5–9 × 107.

Mice and Stereotactic Injections. Mice. Eight- to 10-wk-old C57BL/6 mice and
transgenic mice expressing TVA under the human GFAP promoter (hGFAP-
TVA) were used for injections. Animals were housed in groups of 2–4 and had
unlimited access to running wheels from 7 to 10 d before retroviral injection.
For nonrunners, animals were housed in cages without running wheels in
groups of 2–4.
Virus injections. Mice were anesthetized using ketamine (100 mg/kg;
CP-Pharma) and xylazine (5 mg/kg; Rompun; Bayer) and placed in a stereotactic
apparatus. A small craniotomy was performed and ∼0.5–1 μL of retrovirus or
RABV was gradually injected at specific coordinates using a finely pulled
capillary connected to a pulse generator and a vacuum pump. The skin in-
cision was closed carefully after retroviral injection to minimize inflam-
mation to facilitate the subsequent RABV injection. The following stereotactic
coordinates were used relative to Bregma: for DG, caudal 2.0, lateral 1.6 and
ventral 1.9–2.1; for SEZ, rostral 0.7, lateral 1.2 and ventral 1.6–2.0; for RMS,
rostral 2.5, lateral 0.8 and ventral 3.2–3.0; for OB, rostral 4.5, lateral 0.8 and
ventral 1.0–0.5. All animal procedures were performed in accordance to the
Policies on the Use of Animals and Humans in Neuroscience Research, revised
and approved by the Society of Neuroscience and the state of Bavaria under
license no. 55.2-1-54-2531-144/07.

Histology and Immunostainings. Mice were deeply anesthetized using ket-
amine and xylazine and transcardially perfused with PBS for 5 min followed
by ∼150 mL of 4% (wt/vol) paraformaldehyde for 25 min. The brains were
extracted and postfixed for 1 h in 4% (wt/vol) paraformaldehyde at 4 °C.
Sagittal or coronal sections at a thickness of 50–100 μm were cut at the
vibratome. Sections were incubated overnight at 4 °C with primary antibodies
diluted in blocking buffer [0.5% Triton-X-100 and 2% BSA (wt/vol) in PBS]. See
SI Materials and Methods.

Electrophysiology. Preparation of brain slices. Five to 6 wk after retrovirus in-
jection, C57BL/6 mice were deeply anesthetized with isoflurane, decapitated,
and the brain was quickly removed into a chilled artificial cerebrospinal flu-
id (ASCF). Sagittal brain slices containing the hippocampus (300-μm thick) were
prepared by using a vibratome (Microm HM650V; Microm International) and
maintained at 28 °C for 1 h after cutting, followed by additional 1 h at room
temperature. For recordings, slices were transferred into a recording chamber
mounted on an upright microscope (Axioskop FS; Zeiss) equipped with a dif-
ferential interference contrast optical device (DIC), infrared filter, and fluo-
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rescence filter sets (Zeiss filter set 38, 495/525 nm; Zeiss filter set 20HE, 560/
607 nm). An infrared-sensitive CCD Hamamatsu camera (ORCA-R2, Hama-
matsu Photonics) was used for video-imaging during experiments.
Electrophysiological recordings and data analysis. Recordings were performed as
previously described (53). Slices were constantly perfused at the rate of
1.5–2 mL/min with ACSF (125 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 2
mM CaCl2, 2 mM MgCl2, 25 mM NaHCO3, and 25 mM D-glucose; pH 7.4)
maintained at 28 °C and saturated with 95% O2 and 5%CO2. Whole-cell
recordings were performed using microelectrodes (5–8 MΩ) obtained
from borosilicate glass capillaries (Clark Electromedical Instruments) filled
with an internal solution having the following composition: 135 mM po-
tassium gluconate, 4 mM KCl, 2 mM NaCl, 0.2 mM EGTA, 10 mM Hepes, 4
mM Mg-ATP, 0.5 mM Na-GTP, and 10 mM phosphocreatine (pH 7.3, os-
molarity 290 mOsm). Current-clamp recordings (ELC-03XS amplifier; NPI)
were filtered at 10 kHz, digitized at a rate of 2–5 kHz using an analog/
digital-converter (PCI-6024E; National Instruments) and acquired using the
program CellWorks (NPI). Cells were selected for subsequent analysis
depending on their fluorescence emission (eGFP+ or DsRed+) and location
in the hippocampal formation. After recording, visual confirmation of the

identity of the recorded cell was achieved by controlling the fluorescent
signal in the pipette tip. Off-line data analysis was performed with Igor
Pro-6 software (WaveMetrics).
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