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Abstract

This paper is concerned with the uniqueness, existence, partial smoothing effect, comparison principle 
and long-time behavior of solutions to the initial-boundary value problem for a unidirectional diffusion 
equation. The unidirectional evolution often appears in Damage Mechanics due to the strong irreversibility 
of crack propagation or damage evolution. The existence of solutions is proved in an L2-framework by 
employing a backward Euler scheme and by introducing a new method of a priori estimates based on a 
reduction of discretized equations to variational inequalities of obstacle type and by developing a regularity 
theory for such obstacle problems. The novel discretization argument will be also applied to prove the 
comparison principle as well as to investigate the long-time behavior of solutions.
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1. Introduction and main results

1.1. Introduction

Dynamics of various phase transition phenomena are described by phase-field approaches, 
where a phase (or order) parameter is introduced to specify the state of phase and their dynam-
ics are often described in terms of gradient flows of appropriate free energy functionals (e.g., 
Cahn–Hilliard and Allen–Cahn equations). Phase-field approaches are also applied to Damage 
Mechanics. On the other hand, by reflecting a significant feature of damage phenomena (e.g., 
crack propagation and damage accumulation), evolution of damage is constrained to be unidi-
rectional. Indeed, crack propagation is an irreversible phenomena, and particularly, cracks in 
a specimen or the damage of a material (e.g., microcracks which break or weaken bonds of 
microstructures) never autonomously disappear nor decrease. Therefore evolution of phase pa-
rameters (e.g. damage variable) are usually supposed to be unidirectional, i.e., nondecreasing 
or nonincreasing (see, e.g., [20,28,36,38,39,46,57,56,35,13,14]). Such unidirectional evolution 
processes are often described by gradient systems (in PDE forms) involving the positive-part 
function, s �→ (s)+ := s ∨ 0 = max{s, 0} for s ∈ R.

In order to find out mathematical features of such gradient systems with unidirectional con-
straint, in this paper, we shall treat, as a simplest case, the evolution of u = u(x, t) governed by 
the following fully nonlinear PDE,

∂tu = (
�u + f

)
+, for x ∈ �, t > 0, (1)

where � is a bounded Lipschitz domain of Rn with n ∈ N, ∂tu = ∂u/∂t , � stands for the 
n-dimensional Laplacian and f = f (x, t) is a given function. More precisely, the main pur-
pose of this paper is to prove the uniqueness, existence, partial smoothing effect and comparison 
principle of strong solutions u = u(x, t) of the initial-boundary value problem for (1) and to 
reveal the asymptotic behavior of u = u(x, t) as t → ∞.
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Solutions of (1) exhibit unidirectional nature, more precisely, the non-decrease of u = u(x, t)
in t , since the right-hand side of (1) is non-negative due to the presence of the positive part func-
tion. Such unidirectional evolutions appear in various fields of natural sciences and engineering 
fields. Here let us briefly discuss a couple of complete models which arise from Damage Me-
chanics and involve the unidirectional constraint, although it may be beyond the scope of the 
present paper. In [57] (see also [56]), Takaishi and Kimura proposed the following phase field 
model of crack propagation which contains a unidirectional evolution equation of diffusion type:

α1wt = μdiv
(
(1 − u)2∇w

)
in � × (0,∞), (2)

α2ut =
(

εdiv(γ (x)∇u) − γ (x)

ε
u + μ|∇w|2(1 − u)

)
+

in � × (0,∞), (3)

where w = w(x, t), u = u(x, t), μ > 0, γ (x), and ε > 0 denote a scalar anti-plane displace-
ment of a two dimensional elastic plate � ⊂R

2, a damage variable, a shear modulus, a fracture 
toughness, and a regularization parameter, respectively, and α1 ≥ 0, α2 > 0 are given constants. 
More precisely, in view of numerical analysis, they introduced a phase parameter (or damage 
variable) u = u(x, t) ∈ [0, 1] describing the crack configuration (e.g., u ≈ 1 and u ≈ 0 mean “to-
tally cracked” and “not cracked” states, respectively). Since crack propagation is a unidirectional 
phenomenon and u(x, t) is thereby supposed to be nondecreasing, the evolution of the damage 
variable u is often described by means of an evolution equation with the positive-part function 
such as (3). Several numerical computations for the crack propagation model stated above are 
shown in [57].

The mathematical model (2) and (3) is derived as a gradient flow of the following energy:

Fε(w,u) = μ

2

ˆ

�

(1 − u)2|∇z|2 dx + 1

2

ˆ

�

γ (x)

(
ε|∇u|2 + u2

ε

)
dx.

This is a kind of Ambrosio–Tortorelli regularization [6,7] of the so-called Francfort–Marigo 
energy, which describes a quasi-static evolution of brittle fractures in elastic bodies based on 
Griffith’s criterion (see [25] for more details). This type of regularized energy is also considered 
in the context of the minimizing movement model for crack propagation [28] and the conver-
gence of the regularized minimizing movement to a quasi-static brittle fracture model as ε → 0
is proved there. The constant α1 in (2) is often chosen as α1 = 0, which corresponds to the 
quasi-static crack propagation. We refer the readers to [36,57] for the case α1 > 0 (see also [20]
for a minimizing movement version). Recently, rate-independence of evolution of u has been 
also taken into account (see [38–40] and references therein). To the best of authors’ knowledge, 
existence of solutions to the full system (2), (3) above has not yet been fully pursued, although 
some modified models have already been well studied in several directions (see, e.g., [15,16,50]). 
Equation (1) can be regarded as a simplified one of (3), and the theory which will be established 
in the present paper may shed new light on studies on the solvability for more complicated equa-
tions including (2), (3) with the aid of fixed point arguments. In such a point of view, it is also 
meaningful to consider (1) under assumptions for f as weak as possible.

In mathematical points of view, (1) is classified as a fully nonlinear PDE, which is not fit for 
energy methods in general; however, by employing a (multi-valued) inverse function of the pos-
itive part function ( · )+, (1) can be formulated as a sort of doubly nonlinear evolution equations,
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∂tu + α(∂tu) − �u � f a.e. in � × (0,∞), (4)

where α is a (multi-valued) maximal monotone function in R given by α(0) = (−∞, 0] and 
α(s) = {0} for any s > 0 with the domain D(α) = [0, ∞) (see Section 3 below for more details). 
Equation (4) is fitter for energy methods and monotone techniques. On the other hand, in view 
of the L2-theory of evolution equations, two operators v �→ α(v(·)) and v �→ −�v (defined 
for v ∈ L2(�)) are unbounded in L2(�), and hence, it is more delicate to establish a priori 
estimates for proving the existence of strong solutions, as compared with standard equations 
without unidirectional constraints, e.g., the classical and nonlinear diffusion equations.

The nonlinear PDE (4) may fall within the frame of abstract doubly nonlinear evolution equa-
tions in a Hilbert space H of the form

∂�(∂tu(t)) + ∂	(u(t)) � f (t) in H, 0 < t < T, (5)

where ∂� and ∂	 denote the subdifferential operator of functionals � : H → (−∞, ∞] and 
	 : H → (−∞, ∞], respectively. In a thermodynamic approach to continuum mechanics, � and 
	 are often referred to as a dissipation functional and an energy functional, respectively. To 
reduce (4) into the form (5), we set u(t) := u(·, t) and particularly choose

H = L2(�), �(v) = 1

2

ˆ

�

|v|2 dx + I[ · ≥0](v), 	(v) = 1

2

ˆ

�

|∇v|2 dx for v ∈ H,

where I[ · ≥0] is the indicator function over the set {v ∈ L2(�) : v ≥ 0 a.e. in �}. Then we note 
that both subdifferentials ∂� and ∂	 are unbounded in H . Let us briefly review the previous 
studies on abstract doubly nonlinear evolution equations such as (5). Barbu [12] proved the 
existence of solutions for (5) with two unbounded operators ∂� and ∂	 by using the elliptic-in-
time regularization and by imposing the differentiability (in t ) of f . This result was generalized 
by Arai [8], Senba [54] and so on. In these papers, the term ∂�(∂tu(t)) is estimated by dif-
ferentiating the equation and by testing it with ∂�(∂tu(t)). Therefore the differentiability of 
f and regularity of initial data (more precisely, f ∈ W 1,1(0, T ; H) and u0 ∈ D(∂	) in [8]) 
are essentially required, and moreover, some strong monotonicity condition (i.e., the so-called 
∂�-monotonicity) is also imposed on ∂	. Similar methods of establishing a priori estimates are 
also used in individual studies on irreversible phase transition models (see, e.g., [17]). On the 
other hand, Colli and Visintin established an alternative approach to (5) in [23], where ∂� is 
supposed to be bounded and coercive with linear growth instead of assuming the regularity as-
sumption on f and the ∂�-monotonicity of ∂	 (see also [22]). Their framework would be more 
flexible in view of applications to nonlinear PDEs and has been extensively applied to various 
types of doubly nonlinear problems. Moreover, their framework has been generalized in various 
directions, e.g., perturbation problems, long-time behaviors (see, e.g., [1,49,48], [51, Sect. 11], 
[55,53,47,52,2–5]). However, due to the unboundedness of ∂�, (4) seems to be beyond the scope 
of the latter approach. On the other hand, the former approach due to Barbu and Arai is appli-
cable to (4), provided that f ∈ W 1,1(0, T ; L2(�)) and u0 ∈ D(∂	) ⊂ H 2(�). Aso et al. [9,10]
also treated an irreversible phase transition system in a different fashion (see also [26]); how-
ever, the regularity conditions f ∈ W 1,2(0, T ; H) and u0 ∈ D(∂	) are also assumed there. As 
for (1) with f ≡ 0, one can also find some result in [37]. Moreover, in [29,30], some abstract 
framework is developed based on the so-called Minimizing Movement and it is also applicable. 
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We further refer the reader to a recent paper [45], where a waiting time effect is studied for the 
one-dimensional equation on the real line.

In this paper, we present a novel approach to (1) (or equivalently (4)) by introducing a refor-
mulation of discretized equations for (1) by means of elliptic variational inequalities of obstacle 
type. Moreover, by developing a regularity theory of such elliptic obstacle problems, we shall 
establish new a priori estimates for (1) (or (4)) and prove “partial” smoothing effect of solutions 
without assuming the differentiability (in t ) of f . Such a relaxation of the regularity assumption 
on f may bring some advantage to develop a perturbation theory (towards, e.g., a crack propaga-
tion model in [57]). We also stress that, to our knowledge, no smoothing effect has been proved 
so far for doubly nonlinear evolution equations of type (5). Moreover, the novel discretization ar-
gument will be also applied to investigate the long-time behavior of solutions as well as to prove 
a comparison theorem. In particular, we shall provide uniform (in t ) estimates for solutions by 
employing the method of a priori estimates developed in the existence part. Furthermore, some 
variational inequality of obstacle type will play a crucial role in asymptotic analysis; indeed, it 
will turn out that every solution will converge to the unique solution z = z(x) of a variational 
inequality of obstacle type involving the initial data as an obstacle function from below under 
suitable assumptions. Here it is worth mentioning that the limit z of the solution u = u(x, t) de-
pends on its initial data u0; indeed, one can construct different limits of solutions for different 
initial data and they may be accumulating. On the other hand, the ω-limit set of each solution is 
a singleton.

1.2. Problem and main results

Let � be a bounded Lipschitz domain in Rn with n ∈ N. Let � be the boundary of � and let 
�D and �N be (relatively) open subsets of � such that

Hn−1(� \ (�D ∪ �N)) = 0, �D ∩ �N = ∅,

where Hn−1 stands for the (n − 1)-dimensional Hausdorff measure in Rn. One of these two 
subsets may be empty. In such a case, the other set coincides with the whole of �. Let ν denote the 
outward-pointing unit normal vector on �. Main results of the present paper are concerned with 
the following initial-boundary value problem for a unidirectional evolution equation of diffusion 
type,

∂tu = (
�u + f

)
+ in Q := � × (0,∞), (6)

u = 0 on �D × (0,∞), (7)

∂νu = 0 on �N × (0,∞), (8)

u|t=0 = u0 in �, (9)

where ∂t = ∂/∂t , f = f (x, t) and u0 = u0(x) are given functions of class L2
loc([0, ∞); L2(�))

and L2(�), respectively, and ∂νu := ∇u · ν denotes the normal derivative of u. Moreover, (·)+
stands for the positive part function, i.e., (s)+ := s ∨ 0 for s ∈ R. If �D (resp., �N) is empty, the 
corresponding boundary condition (7) (resp., (8)) is ignored.
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Remark 1.1. By change of variable, another unidirectional diffusion equation,

∂tu = −(
�u + f

)
− in Q, (10)

where (s)− := (−s) ∧ 0 ≥ 0 for s ∈ R, is reduced to (6). Indeed, set v := −u and g := −f . Then 
(10) is transformed to

−∂tv = −( − �v − g
)
− = −(

�v + g
)
+,

whence v solves (6) with f replaced by g.

Remark 1.2. In this paper we focus on homogeneous boundary conditions, since we study (1)
as a simplified equation of (3), which is an evolution equation for phase parameter, and then, 
the homogeneous Neumann and Dirichlet conditions seem appropriate from a physical point of 
view. From a mathematical point of view, of course, one can extend the results of the paper for 
inhomogeneous ones, provided inhomogeneous boundary data can be absorbed by the external 
force f (x, t) and initial data u0(x). For instance, replace (7) by u = ρ on �D × (0, ∞) with a 
datum ρ : ∂� → R which can be extended to a function ρ̄ in H 2(�) satisfying ∂νρ = 0 on �N . 
Then set ũ := u − ρ̄, ũ0 := u0 − ρ̄ and f̃ := f + �ρ̄ and reduce the problem to a homogeneous 
boundary problem (6)–(9) with u, f and u0 replaced by ũ, f̃ and ũ0, respectively. Otherwise, 
we may need to modify the regularity theory to be developed in §2, which is not straightforward.

Let us start with defining strong solutions of (6)–(9). To this end, we set up notation. Let 
γ0 ∈ B(H 1(�), H 1/2(�)) denote the trace operator defined on H 1(�) (throughout the paper, 
we may omit γ0 if no confusion can arise). Here and henceforth, B(U, W) stands for set of all 
bounded linear operators from U to W . Moreover, define

V := {v ∈ H 1(�) : γ0v = 0 Hn−1-a.e. on �D},
X := {v ∈ H 2(�) : γ0(∇v) · ν = 0 Hn−1-a.e. on �N},

equipped with the induced norms and inner products, i.e., ‖ · ‖V = ‖ · ‖H 1(�) and (·, ·)V =
(·, ·)H 1(�) for V ; ‖ · ‖X = ‖ · ‖H 2(�) and (·, ·)X = (·, ·)H 2(�) for X. Then V and X are closed sub-
spaces of H 1(�) and H 2(�), respectively; hence, they are Hilbert spaces. We denote by 〈·, ·〉V
the duality pairing between V and its dual space V ′. If either �D or �N is empty, the correspond-
ing boundary condition specified in the definition of V or X above is ignored. Furthermore, we 
assume throughout the paper that C(�) ∩ V is dense in V .

Remark 1.3. The density of C(�) ∩ V in V can be checked for smooth domains as well as for 
Lipschitz domains with �D satisfying appropriate conditions (see [43, Lemma 5.3] and refer-
ences therein). On the other hand, it will be used only in the proof of Theorem 2.4 for the case 
where the obstacle function ψ is not sufficiently smooth (see Remark 2.7). Hence, if u0 lies on 
H 2(�), the density is not necessary for the main results stated in this subsection.

We are concerned with strong solutions of (6)–(9) defined by

Definition 1.4 (Strong solution). For T > 0, a function u ∈ C([0, T ]; L2(�)) is called a strong 
solution of (6)–(9) on [0, T ], if the following three conditions are satisfied:
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(i) u ∈ W 1,2(0, T ; L2(�)) ∩ L2(0, T ; X ∩ V ),
(ii) the equation ∂tu = (�u + f )+ holds a.e. in QT := � × (0, T ),

(iii) the initial condition u|t=0 = u0 holds a.e. in �.

A function u ∈ C([0, ∞); L2(�)) is called a strong solution of (6)–(9) on [0, ∞), if for any 
T > 0, the restriction of u onto [0, T ] is a strong solution of (6)–(9) on [0, T ].

Remark 1.5. One can further derive that u ∈ C([0, T ]; V ) from (i) by employing a chain-rule 
for convex functionals. See Lemma 3.4 below for more details.

We are now in position to state main results, whose proofs will be given in later sections. We 
begin with the uniqueness of solutions.

Theorem 1.6 (Uniqueness). Let T > 0, u0 ∈ V and f ∈ L2(QT ). Then the strong solution of 
(6)–(9) on [0, T ] is unique.

To state our existence result, we shall introduce some assumptions for the domain � and the 
boundary �D, �N. For λ ∈R, we define a mapping Aλ ∈ B(V, V ′) by

〈Aλu,v〉V =
ˆ

�

(∇u · ∇v + λuv) dx for u,v ∈ V, (11)

that is, Aλ = −� + λ in a weak formulation. It is well known that Aλ ∈ Isom(V , V ′) holds if 
λ > 0 (here Isom(V , V ′) means the set of all bijective operators in B(V, V ′)). Hence one can 
define u = A−1

λ g for g ∈ L2(�) as the unique solution u of the elliptic problem in a weak form,

ˆ

�

(∇u · ∇v + λuv) dx =
ˆ

�

gv dx for all v ∈ V,

(i.e., Aλu = g in V ′). Then we assume that

A−1
1 g ∈ H 2(�) for all g ∈ L2(�). (12)

Condition (12) is often called an elliptic regularity condition and deeply related to the geometry 
of the domain and boundary conditions. Indeed, it holds true for smooth domains with a single 
boundary condition (i.e., �N = ∅ or �D = ∅). However, it is more delicate to consider the validity 
of (12) for situations with nonsmooth domains or mixed boundary conditions. On the other hand, 
in order to take account of physical backgrounds of crack growth models and their numerical 
simulations, the regularity of the boundary may be at most Lipschitz continuous, and mixed 
boundary conditions seem to be natural as well. We shall give conditions equivalent to (12) in 
Proposition 2.8 below.

Remark 1.7. Let us exhibit a couple of examples of �, �D and �N for which the condition (12)
is satisfied.
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(i) If �D ∩ �N = ∅ and � is of class C1,1, then (12) is satisfied (see Theorem 2.2.2.3 and 
Theorem 2.2.2.5 of [33]).

(ii) Let � be convex. If �D = � or �D = ∅, then (12) is satisfied (see Theorem 3.2.1.2 and 
Theorem 3.2.1.3 of [33]).

(iii) If n = 1 or if � is a rectangle in R2 and �D is a union of some of four edges of �, then 
(12) is satisfied. Indeed, since the weak solution u = A−1

1 g can be extended to an open 
neighborhood of � by reflection, it follows that u = A−1

1 g ∈ H 2(�).

Our existence result reads,

Theorem 1.8 (Existence). We suppose that the condition (12) holds true. Let T > 0, u0 ∈ V and 
f ∈ L2(QT ) be given and suppose that

A0u0 ∈ M(�) and (A0u0)+ ∈ L2(�), (13)

where M(�) denotes the set of signed Radon measures (see also Notation in §1.3). In addition, 
assume that there exists f ∗ ∈ L2(�) satisfying

f (x, t) ≤ f ∗(x) a.e. in QT . (14)

Then there exists a strong solution u = u(x, t) to the problem (6)–(9) on [0, T ].

Remark 1.9 (Assumption (13)).

(i) To be precise, the first half of (13) means that there exists μ ∈M(�) such that

〈A0u0,w〉V =
ˆ

�

w dμ for all w ∈ V ∩ C(�).

The second half of (13) means that the positive part μ+ of μ is absolutely continuous (with 
respect to Lebesgue measure) with an L2(�) density function. On the other hand, the nega-
tive part μ− of μ may have a singular part. According to Theorem 1.8, such a singularity of 
the negative part disappears by the evolution of solutions. In such a point of view, a smooth-
ing effect partially occurs.

(ii) If u0 ∈ V ∩H 2(�) and (∂νu0)+ = 0 Hn−1-a.e. on �N , then (13) holds. Indeed, A0u0 can be 
identified with μ ∈M(�) defined by

ˆ

�

w dμ = −
ˆ

�

w�u0 dx +
ˆ

�N

(∂νu0)w dHn−1 for all w ∈ C(�).

Hence μ+ is characterized by

ˆ
w dμ+ =

ˆ
w(�u0)− dx +

ˆ
(∂νu0)+w dHn−1
� � �N
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for all w ∈ C(�) satisfying w ≥ 0. Thus for u0 ∈ V ∩ H 2(�), (13) is equivalent to 
(∂νu0)+|�N

= 0 (namely, the singular part of μ+ vanishes). Moreover, the density function 
of μ+ is (�u0)−.

Remark 1.10 (Assumptions on f ). Condition (14) is weaker than f ∈ L∞(QT ) or f ∈
W 1,1(0, T ; L2(�)) (cf. [8]). Indeed, if f ∈ W 1,1(0, T ; L2(�)), then f ∗(x) := f (x, 0) +´ T

0 |∂tf (x, t)| dt belongs to L2(�) and satisfies (14). On the other hand, (14) is stronger than 
f+ := f ∨ 0 ∈ L∞(0, T ; L2(�)). In fact, (14) yields f+ ∈ L∞(0, T ; L2(�)). However, even if 
f+ ∈ L∞(0, T ; L2(�)), (14) might not hold true. One may easily find a counterexample, e.g., 
f (x, t) = |x − t |−α , � = (0, 1), T = 1 and 0 < α < 1/2.

The following theorem is concerned with a comparison principle for strong solutions of 
(6)–(9):

Theorem 1.11 (Comparison principle). Let T > 0 and suppose that (12) is satisfied. For each 
i = 1, 2, let ui

0 ∈ X ∩ V and f i ∈ L2(QT ) be such that there exists f ∗ ∈ L2(�) satisfying

f 1(x, t) ∨ f 2(x, t) ≤ f ∗(x) a.e. in QT .

For i = 1, 2, let ui = ui(x, t) be the unique strong solution of (6)–(9) with u0 = ui
0 and f = f i

on [0, T ]. If u1
0 ≤ u2

0 a.e. in � and f 1 ≤ f 2 a.e. in QT , then u1 ≤ u2 a.e. in QT .

The comparison theorem stated above will be used to identify the limit of each solution u =
u(x, t) as t → ∞.

Theorem 1.12 (Convergence of solutions as t → ∞). Let u0 ∈ X∩V and assume that (12) holds 
and that

(H1) Hn−1(�D) > 0 ;
(H2) there exists a function f∞ ∈ L2(�) such that f − f∞ belongs to L2(0, ∞; L2(�));
(H3) f ∈ L∞(0, ∞; L2(�)), and (14) is satisfied.

Then the unique solution u = u(x, t) of (6)–(9) on [0, ∞) converges to a function z = z(x) ∈
X ∩ V strongly in V as t → ∞. Moreover, the limit z satisfies

z ≥ u0 and − �z ≥ f∞ a.e. in �.

In addition, if f (x, t) ≤ f∞(x) for a.e. (x, t) ∈ Q, then the limit z coincides with the unique 
solution z̄ ∈ X ∩ V of the following variational inequality:

(VI)(u0, f∞)

⎧⎪⎪⎨
⎪⎪⎩

z̄ ∈ K0(u0) := {v ∈ V : v ≥ u0 a.e. in �},ˆ

�

∇ z̄ · ∇(v − z̄)dx ≥
ˆ

�

f∞(v − z̄)dx for all v ∈ K0(u0).
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Remark 1.13. Assumption (H1) is essentially required to ensure the convergence of the solu-
tion u = u(x, t) as t → ∞. Indeed, suppose that �D = ∅ (i.e., �N = �) and set u0(x) ≡ 1 and 
f (x, t) ≡ 1. The unique strong solution of (6)–(9) is given by

u(x, t) = 1 + t for (x, t) ∈ Q,

and then, u(x, t) is divergent to ∞ at each x ∈ � as t → ∞.

1.3. Outline of the paper and notation

In this subsection, we shall explain an idea of proving existence of solution and also give an 
outline of the present paper. In order to prove Theorem 1.8, we shall exploit a backward-Euler 
scheme for (4),

uk − uk−1

τk

+ α

(
uk − uk−1

τk

)
− �uk � fk in L2(�), uk ∈ X ∩ V (15)

for k = 1, . . . , m through a minimization problem of the functional

Jk(v) := 1

2τk

ˆ

�

|v|2 dx + 1

2

ˆ

�

|∇v|2 dx −
〈
uk−1

τk

+ fk, v

〉
V

for v ∈ V

subject to a constraint

v ∈ Kk
0 := {v ∈ V : v ≥ uk−1 a.e. in �}.

Here we stress that the discretized equation (15) is posed in L2(�), and it is a stronger form 
of the Euler–Lagrange equation for Jk , which is posed in V ∗. Indeed, we shall prove existence 
of an L2 solution (or strong solution) for (4), which also solves (1) by pointwise equivalence 
between two equations. Therefore we shall construct solutions to (15) in the strong form rather 
than the weak one. However, to this end, we need to verify further regularity of uk for (15), e.g., 
uk ∈ H 2(�), which is a classical fact for linear uniform elliptic problems but not obvious for 
(15) with such severe nonlinearity. Moreover, (4) (or (15)) involves two unbounded operators in 
L2(�), that is, α and the Laplacian. In order to construct L2 solutions, we need to control one 
of them. Indeed, it is possible if one carries out an energy technique by differentiating equation 
in time. However, we shall here avoid this strategy in order to relax the assumption on f . To 
overcome such difficulties, we shall rewrite the equation (15) as an elliptic variational inequality 
of obstacle type,

uk − uk−1

τk

− �uk ≤ fk, uk ≥ uk−1 in �,

(
uk − uk−1

τk

− �uk − fk

)
(uk − uk−1) = 0 in �,

through the minimization problem and develop a regularity theory for solutions of the obsta-
cle problem. It is already done in Lp spaces for p > n/2 (see, e.g., [37], [34]), however, to the 
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authors’ knowledge, there is no literature with an explicit description for p ≤ n/2, which is essen-
tially required in our analysis. Furthermore, we shall also derive the so-called Lewy–Stampacchia 
inequality, which corresponds to elliptic estimates for linear uniform elliptic equations, and it en-
ables us to control unbounded operators. The discretization scheme proposed here along with the 
regularity theory also play an important role to prove a comparison principle, which is more 
difficult to prove directly for (1) and (4), and to investigate long-time behaviors of solutions, in 
particular, revealing convergence of solutions and limiting equation.

The organization of the rest of the paper is as follows. Section 2 is devoted to developing the 
regularity theory as well as a comparison theorem for variational inequalities of obstacle type. In 
Section 3, we discuss a rigorous reduction of (1) to the evolution equation (4) of doubly nonlinear 
type in L2(�) and prove the uniqueness of solutions for the initial-boundary value problem. In 
Section 4, we carry out the backward-Euler time-discretization (15) of (4) and construct a strong 
solution of (1) by establishing a new a priori estimate based on the regularity theory developed in 
Section 2. A comparison theorem for (1) is also proved. The long-time behavior of solutions will 
be investigated in Section 5. In the last section, we shall discuss other equivalent formulations of 
solutions for (1).

Notation. For each normed space N , we denote by N ′ the dual space of N with duality pairing 
〈g, v〉N := N ′ 〈g, v〉N = g(v) for v ∈ N and g ∈ N ′. For Banach spaces U and W , the set of all 
bounded linear operators from U to W is denoted by B(U, W). Moreover, the set of all linear 
topological isomorphisms from U to W is denoted by Isom(U, W), that is, A ∈ Isom(U, V )

means that A is bijective from U to W , A ∈ B(U, W) and A−1 ∈ B(W, U). Furthermore, Hk

stands for the k-dimensional Hausdorff measure in Rn for k = 1, 2, . . . , n. We also write a ∨ b =
max{a, b} and a ∧ b = min{a, b} for a, b ∈ R. Moreover, (a)+ := a ∨ 0 and (a)− := (−a) ∨ 0
for a ∈ R. Hereafter, C denotes a non-negative constant independent of the elements of the 
corresponding space and set and may vary from line to line.

For any bounded domain � ⊂R
n, M(�) denotes the set of signed Radon measures (i.e., finite 

Borel measures) on �. We recall that M(�) is identified with the dual space C(�)′ of C(�) :=
{f : � → R : f is continuous} with the norm ‖f ‖C(�) := supx∈� |f (x)|. More precisely, by 

Riesz’s representation theorem, for every ξ ∈ C(�)′ there exists a unique μ ∈M(�) such that

〈ξ, f 〉C(�) =
ˆ

�

f dμ for f ∈ C(�).

By the Hahn–Jordan decomposition, every μ ∈M(�) is uniquely decomposed into two positive 
Radon measures denoted by μ± ∈ M(�) such that μ+ and μ− are mutually singular (or singu-
lar, orthogonal, that is, there exist two Borel sets A, B ⊂ � such that A ∩B = ∅, A ∪B = � and 
μ+(A) = μ−(B) = 0) and μ = μ+ − μ−. Furthermore, for 1 ≤ p ≤ ∞, any g ∈ Lp(�) can be 
identified with the absolutely continuous (with respect to Lebesgue measure) μg ∈ M(�) given 
by

μg(B) =
ˆ

B

g dx for Borel sets B ⊂ �

(hence g is a density function of μg), which can be also identified with ξg ∈ C(�)′ in the follow-
ing sense:
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〈ξg, f 〉C(�) =
ˆ

�

f dμg =
ˆ

�

fg dx for f ∈ C(�).

For μ ∈ M(�) and g ∈ Lp(�), we write μ + g instead of μ + μg ∈ M(�), if no confusion 
may arise. Hence Lp(�) ⊂ M(�) � C(�)′. Conversely, for μ ∈ M(�), we write μ ∈ Lp(�), 
provided that μ is absolutely continuous (with respect to Lebesgue measure) with a density 
function g ∈ Lp(�), i.e., μ(B) = ´

B
g dx for Borel sets B ⊂ �.

2. Regularity theory for variational inequalities of obstacle type

In this section, based on the approach of Gustafsson [34], we revisit a regularity theory for 
variational inequalities of obstacle type. In classical literature on variational inequalities of obsta-
cle type, the W 2,p(�)-regularity of solutions is often obtained by using a penalization technique 
(see, e.g., [37, Chap. 4], [27]). On the other hand, Gustafsson [34] gave a simpler alternative proof 
by introducing an auxiliary variational inequality and by proving the coincidence of solutions for 
both problems. Let us also remark that, in previous results, it is assumed that W 2,p(�) ⊂ C(�)

(namely, p > n/2) in order to utilize the classical maximum principle for linear elliptic equations.
We shall establish a W 2,p(�)-regularity result for variational inequalities of obstacle type 

equipped with a mixed boundary condition by properly modifying the argument of Gustafs-
son [34]. It is noteworthy that we do not assume that W 2,p(�) ⊂ C(�), i.e., p > n/2, as we 
employ Stampacchia’s truncation technique instead of the classical maximum principle. Indeed, 
we essentially need to apply the theory for p = 2, and moreover, it is also meaningful as an 
independent interest to explicitly describe a regularity theory in any Lp framework.

2.1. Main results of this section

For σ ≥ 0, let A := Aσ ∈ B(V, V ′) be defined as in (11) (or (16) below). Define a symmetric 
bilinear form a(·, ·) : V × V →R associated with A by

a(u, v) := 〈Au,v〉V =
ˆ

�

(∇u · ∇v + σuv) dx for u,v ∈ V. (16)

Throughout this section, we assume that

σ > 0 if Hn−1(�D) = 0, (17)

which also means that Hn−1(�D) > 0 if σ = 0. Under the condition (17), (by the Poincaré in-
equality for the case that σ = 0), a(·, ·) turns out to be coercive on V ×V . Hence A is invertible, 
and A−1 belongs to B(V ′, V ). Let f ∈ V ′ and ψ ∈ V and define a closed convex subset K0 of 
V by

K0 := {v ∈ V : v ≥ ψ a.e. in �}. (18)

We also define a functional J on V by
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J (v) := 1

2
a(v, v) − 〈f, v〉V for v ∈ V. (19)

In this section, we shall discuss regularity of minimizers for the problem,

Minimize J (v) subject to v ∈ K0. (20)

As we shall show in §2.2, problem (20) is equivalent to the following variational inequality,

u ∈ K0, a(u, v − u) ≥ 〈f, v − u〉V for all v ∈ K0 (21)

(see Theorems 2.3 and 2.4, which also provide other formulations equivalent to (20) and (21)). 
To this end, we sequentially introduce a couple of assumptions with some related remarks below.

(I): Let p ∈R satisfy

1 < p < ∞, p ≥ 2n

n + 2
. (22)

Since the Hölder conjugate q := p/(p − 1) of p satisfies q ≤ 2∗ := 2n/(n − 2) if n ≥ 3, 
and � is a Lipschitz domain, by Sobolev’s embedding theorem, the continuous embed-
dings V ↪→ Lq(�) and Lp(�) ∼= (Lq(�))′ ↪→ V ′ hold true. We also note that W 2,p(�) is 
continuously embedded in H 1(�) by (22).

(II): As for f and ψ , we suppose that

f ∈ Lp(�), ψ ∈ V. (23)

In addition, let us also assume that

Aψ ∈M(�) and (Aψ)+ ∈ Lp(�). (24)

Then Aψ − f is identified with some μ ∈M(�) such that

〈Aψ − f,ϕ〉V =
ˆ

�

ϕ dμ =
ˆ

�

ϕ dμ+ −
ˆ

�

ϕ dμ− =
ˆ

�

ϕ(Aψ − f )+ dx −
ˆ

�

ϕ dμ− (25)

for all ϕ ∈ V ∩ C(�). Here, by Lemma A.1 in Appendix, μ+ is absolutely continuous 
(with respect to Lebesgue measure) and has an Lp(�) density function (simply denoted by 
(Aψ − f )+). See also Remark A.3 for concrete examples of ψ satisfying (24).

(III): Let us also introduce the following assumption:

A−1
1 g ∈ W 2,p(�) for all g ∈ Lp(�), (26)

(here we note that (12) is a special case of (26) with p = 2). Condition (26) can be regarded 
as an elliptic regularity of weak solutions for the elliptic boundary value problem,

−�u + u = f in �, u = 0 on �D, ∂νu = 0 on �N,
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and it holds true in many cases, e.g., smooth domains with �N = ∅ or �D = ∅ (see, 
e.g., [32]). However, the validity of (26) is more delicate, if � is not smooth or mixed 
boundary conditions are imposed. So we here explicitly assume it.

To take account of boundary conditions, we define a subspace of W 2,p(�) by

Xp := {v ∈ W 2,p(�) : γ0(∇v) · ν = 0 Hn−1-a.e. on �N}.

We are now in position to state main result of this section. The following theorem will be used 
for proving Theorem 1.8 in Section 4.

Theorem 2.1 (Regularity of solutions for variational inequalities of obstacle type). Assume that 
(17), (22), (23), (24) and (26) are satisfied. Problem (20) (equivalently, (21)) admits a unique 
solution u ∈ V . Moreover, it holds that

u ∈ Xp ∩ K0, f ≤ Au ≤ f ∨ f̂ a.e. in �. (27)

Here the inequality above is the so-called Lewy–Stampacchia inequality (see [42]).

We next give a comparison theorem for variational inequalities of obstacle type.

Theorem 2.2 (Comparison principle for variational inequalities of obstacle type). We suppose 
that (17) and (22) are satisfied. For i = 1, 2, let (fi, ψi) satisfy (23) and (24) and set Ki

0 := {v ∈
V : v ≥ ψi a.e. in �}. Let ui ∈ V be the unique solution of the variational inequality:

ui ∈ Ki
0, a(ui, v − ui) ≥ 〈fi, v − ui〉V for all v ∈ Ki

0 (28)

for i = 1, 2. If f1 ≤ f2 and ψ1 ≤ ψ2 a.e. in �, then u1 ≤ u2 a.e. in �.

This theorem will be used to prove Theorem 1.11, a comparison theorem for the evolutionary 
problem (6), with the aid of a discretization argument.

2.2. Proof of Theorem 2.1

Let us further set up notation. Define

K1 := {v ∈ V : Av ≥ f in V ′}.

Here the inequality Av ≥ f in V ′ means that 〈Av − f, ϕ〉V ≥ 0 for all ϕ ∈ V satisfying ϕ ≥ 0
a.e. in �. Moreover, define Ĵ : V → R by

Ĵ (v) := 1

2
a(v, v) − 〈f̂ , v〉V for v ∈ V,

where f̂ := Aψ ∈ V ′. In what follows, we shall give several equivalent forms to (20) and (21), 
and they will provide additional information of solutions to (20) and (21).
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Proposition 2.3. Suppose (17) and let f ∈ V ′ and ψ ∈ V . Then the following five conditions for 
u ∈ V are equivalent to each other:

(a) u ∈ K0, J (u) ≤ J (v) for all v ∈ K0,
(b) u ∈ K0, a(u, v − u) ≥ 〈f, v − u〉V for all v ∈ K0,
(c) u ∈ K0 ∩ K1, 〈Au − f, u − ψ〉V = 0,
(d) u ∈ K1, a(u, v − u) ≥ 〈f̂ , v − u〉V for all v ∈ K1,
(e) u ∈ K1, Ĵ (u) ≤ Ĵ (v) for all v ∈ K1.

Moreover, there exists a unique element u ∈ V satisfying all the conditions.

Proof. Since J is a coercive, continuous, strictly convex functional on the closed convex set K0, 
J admits a unique minimizer u over K0. Hence u satisfies (a).

We shall prove the equivalence of the conditions (a)–(e). It is well known (see, e.g., [37]) that 
(a) ⇔ (b) and (d) ⇔ (e). So, let us here start with showing that (b) ⇒ (c). The condition (b) is 
equivalently rewritten by

u ∈ K0, 〈Au − f, v − u〉V ≥ 0 for all v ∈ K0. (29)

For any ϕ ∈ V with ϕ ≥ 0 a.e. in �, substituting v = u + ϕ ∈ K0 to (29), we have 
〈Au − f,ϕ〉V ≥ 0, which yields that u ∈ K1. On the other hand, substitute v = ψ ∈ K0 and 
v = 2u − ψ ∈ K0 to (29). Then one can obtain 〈Au − f, u − ψ〉V = 0. Hence (c) holds.

To prove the inverse relation, (c) ⇒ (b), let u satisfy (c). For any v ∈ K0, we see that

a(u, v − u) − 〈f, v − u〉V = 〈Au − f, v − ψ〉V − 〈Au − f,u − ψ〉V .

Since the first term of the right-hand side is nonnegative (by u ∈ K1 and v ∈ K0) and the second 
term vanishes (by the equation of (c)), the condition (b) follows.

We shall prove the equivalence between (c) and (d) in a similar fashion to the above. Firstly, 
suppose that u satisfies (c). For any v ∈ K1, one finds that

a(u, v − u) − 〈f̂ , v − u〉V = 〈Av − Au,u〉V − 〈Av − Au,ψ〉V
= 〈Av − f,u − ψ〉V − 〈Au − f,u − ψ〉V .

Here we used the fact that 〈Aw, z〉V = 〈Az, w〉V for all w, z ∈ V . Noting that the right-hand side 
is non-negative by (c) and the fact that u ∈ K0 and v ∈ K1, one can get (d). To check the inverse 
relation, we also rewrite (d) as

u ∈ K1, 〈Av − Au,u − ψ〉V ≥ 0 for all v ∈ K1. (30)

For any ϕ ∈ L2(�) with ϕ ≥ 0 a.e. in �, substituting v = u + A−1ϕ ∈ K1 to (30), we have 
(ϕ, u − ψ)L2(�) ≥ 0, which along with the arbitrariness of ϕ ≥ 0 implies u ∈ K0. Moreover, let 
us also substitute v = A−1f ∈ K1 and v = 2u − A−1f ∈ K1 in (30). Then we obtain 〈Au −
f, u − ψ〉V = 0, whence (c) follows. Consequently, all the conditions (a)–(e) are equivalent. �
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Moreover, under (23) and (24), introduce a closed (in V ) convex set K2 given by

K2 := {v ∈ V : f ≤ Av ≤ f ∨ f̂ in V ′} ⊂ K1.

Here note that (f̂ − f )+ ∈ Lp(�) (by (23), (24) and Lemma A.2) and that f ∨ f̂ := (f̂ −
f )+ +f ∈ Lp(�). Then by the Hahn–Banach theorem and Riesz’s representation theorem, there 
uniquely exists gv ∈ Lp(�) such that

〈Av,w〉V =
ˆ

�

gvw dx for all w ∈ V ∩ Lq(�).

Hence we simply write

Av ∈ Lp(�) for all v ∈ K2. (31)

The following theorem is a key of proving Theorem 2.1.

Theorem 2.4. Suppose that (17), (22), (23) and (24) are satisfied. Then each of the following 
conditions (f)–(h) is equivalent to the conditions (a)–(e) of Proposition 2.3:

(f) u ∈ K2, Ĵ (u) ≤ Ĵ (v) for all v ∈ K2,
(g) u ∈ K2, a(u, v − u) ≥ 〈f̂ , v − u〉V for all v ∈ K2,
(h) u ∈ K0 ∩ K2, (Au − f )(u − ψ) = 0 a.e. in �.

To prove Theorem 2.4, we first prove a couple of lemmas, which will be also used in later 
sections.

Lemma 2.5. Let w ∈ H 1(�) and set w+(x) := (w(x))+ for x ∈ �. Then w+ ∈ H 1(�) and 
γ0(w+) = (γ0w)+ Hn−1-a.e. on �.

Proof. Set �+ := {x ∈ � : w(x) > 0} and recall Theorem A.1. of [37] to observe that w+ ∈
H 1(�) and

w+ =
{

w a.e. in �+,

0 a.e. in � \ �+,
∇w+ =

{
∇w a.e. in �+,

0 a.e. in � \ �+.
(32)

Set W := C(�) ∩ H 1(�). Since W is dense in H 1(�), there exists a sequence {wn} in W such 
that wn → w strongly in H 1(�) as n → ∞. Noting that

‖(wn)+ − w+‖L2(�) ≤ ‖wn − w‖L2(�) → 0 as n → ∞, (33)

we observe that (wn)+ → w+ strongly in L2(�). Applying (32) to wn, we also have

‖(wn)+‖2
H 1(�)

= ‖(wn)+‖2
L2(�)

+ ‖∇(wn)+‖2
L2(�)

≤ ‖wn‖2
L2(�)

+ ‖∇wn‖2
L2(�)

= ‖wn‖2
H 1(�)

.
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Since {wn} is bounded in H 1(�), so is {(wn)+}. Hence, one can extract a (non-relabeled) subse-
quence of {n} such that (wn)+ → w+ weakly in H 1(�) Again from (32), we have

‖(wn)+‖2
H 1(�)

= ‖(wn)+‖2
L2(�)

+ (∇(wn)+, ∇wn)L2(�)

→ ‖w+‖2
L2(�)

+ (∇w+, ∇w)L2(�) = ‖w+‖2
H 1(�)

,

which together with the uniform convexity of H 1(�) also implies that (wn)+ → w+ strongly 
in H 1(�). Since γ0 ∈ B(H 1(�), H 1/2(�)), we particularly deduce that γ0wn → γ0w and 
γ0(wn)+ → γ0w+ strongly in L2(�). As in (33), one can verify that (γ0wn)+ → (γ0w)+ strongly 
in L2(�). On the other hand, since wn ∈ C(�), it is clear that

γ0(wn)+ = (γ0wn)+ Hn−1-a.e. on �. (34)

Passing to the limit as n → ∞ in (34), we conclude that γ0w+ = (γ0w)+ Hn−1-a.e. on �. �
Lemma 2.6. If v1, v2 ∈ V , then v1 ∨ v2 ∈ V and v1 ∧ v2 ∈ V .

Proof. Applying Lemma 2.5 to w = ±(v1 − v2), we find that (v1 − v2)+ and (v2 − v1)+ belong 
to V . Hence we obtain v1 ∨ v2 ∈ V and v1 ∧ v2 ∈ V , since v1 ∨ v2 = v2 + (v1 − v2)+ and 
v1 ∧ v2 = v2 − (v2 − v1)+. �

Let us move on to a proof of Theorem 2.4.

Proof of Theorem 2.4. It is obvious that (f) ⇔ (g). As in Proposition 2.3, one can uniquely 
choose u ∈ K2 which satisfies (f) and (g). Next, we shall prove the equivalence between (a)–(e) 
and (f), (g). Let u1 be the unique element of V satisfying (a)–(e) and let u2 be the unique element 
of V satisfying (f) and (g). We claim that u1 = u2. Indeed, note that Au2 ∈ Lp(�) by u2 ∈ K2
(see (31)). Set w := u2 − ψ ∈ V . Since u2 satisfies (g), it follows that

0 ≤ a(u2, v − u2) − 〈f̂ , v − u2〉V = 〈Au2 − Aψ,v − u2〉V
= 〈Av − Au2,w〉V for all v ∈ K2. (35)

We set a measurable set

N := {x ∈ � : w(x) < 0}.

Moreover, define g ∈ Lp(�) (see (31)) by

g(x) :=
{ (

f ∨ f̂
)

(x) if x ∈ N,

Au2(x) if x ∈ � \ N.

Then by definition one can observe that A−1g ∈ K2. Hence substituting v = A−1g to (35), we 
have
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0 ≤ 〈g − Au2,w〉V =
ˆ

N

(
(f ∨ f̂ ) − Au2

)
w dx.

Since (f ∨ f̂ ) − Au2 ≥ 0 and w < 0 a.e. in N , one can derive the relation Au2 = f ∨ f̂ a.e. 
in N . Hence

〈Au2 − f ∨ f̂ ,w−〉V =
ˆ

�

(Au2 − f ∨ f̂ )w− dx =
ˆ

N

(Au2 − f ∨ f̂ )w− dx = 0, (36)

which will be used later.
Recalling that

w− ∈ V, w− =
{

−w in N,

0 in � \ N,
∇w− =

{
−∇w a.e. in N,

0 a.e. in � \ N

(by Lemma 2.6 and Theorem A.1. of [37]), we observe that

0 ≤ a(w−,w−) = −a(w,w−) = 〈Aw,−w−〉V = 〈Au2 − f̂ ,−w−〉V
= 〈Au2 − f ∨ f̂ ,−w−〉V + 〈f ∨ f̂ − f̂ ,−w−〉V (36)= 〈f ∨ f̂ − f̂ ,−w−〉V =: I. (37)

We claim that I ≤ 0. Indeed, taking a smooth approximation wε− ∈ V ∩ C(�) such that wε− ≥ 0
and wε− → w− weakly in V as ε → 0 (by density assumption), we find that

〈f ∨ f̂ − f̂ ,−wε−〉V = 〈(f̂ − f )+ + f − f̂ ,−wε−〉V (25)= −
ˆ

�

wε− dμ− ≤ 0.

Thus letting ε → 0, we obtain I ≤ 0, and hence, we deduce by (37) that a(w−, w−) = 0, which 
along with the coercivity of a(·, ·) implies that w− = 0 (i.e., w ≥ 0) a.e. in �. Therefore u2
belongs to K0.

Substitute v = A−1f ∈ K2 to the condition (35). Then we obtain

〈Au2 − f,u2 − ψ〉V ≤ 0. (38)

Moreover, noting that Au2 − f ≥ 0 (by u2 ∈ K2) and u2 − ψ ≥ 0 (by u2 ∈ K0), we derive 
〈Au2 − f, u2 − ψ〉V = 0 by (38). Hence, u = u2 satisfies the condition (c). By uniqueness, we 
obtain u1 = u2. Thus we have proved that all the conditions (a)–(g) are equivalent.

Finally, we note that (h) immediately implies (c), since K2 ⊂ K1. Conversely, let u satisfy (c). 
Then u belongs to K2 by (f), and hence, Au ∈ Lp(�) (see (31)) and

0 = 〈Au − f,u − ψ〉V =
ˆ

�

(Au − f )(u − ψ)dx.

Thus we obtain (Au − f )(u − ψ) = 0 a.e. in �, since Au ≥ f and u ≥ ψ a.e. in �. Therefore 
(h) holds. �
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Remark 2.7. In the proof of Theorem 2.4, we used the density of C(�) ∩ V in V only for 
choosing an approximate sequence wε− of w−. If f̂ = Aψ lies on Lp(�), one can derive the 
same conclusion (i.e., I ≤ 0) without taking an approximate sequence. Hence the density is not 
necessary for the case.

Thanks to Theorem 2.4, for each solution u of the variational inequality (21) of obstacle type, 
we have obtained an additional information, u ∈ K2. In order to prove Theorem 2.1, we shall 
more explicitly clarify the feature of the additional information. To this end, let us start with 
giving equivalent conditions to the assumption (26).

Proposition 2.8. Under the assumption (22), for λ > 0, the operator Aλ|Xp∩V restricted onto 
Xp ∩ V is injective and bounded linear from Xp ∩ V into Lp(�), and it coincides with the 
operator −� + λ, where � means the Laplace operator from D(�) = Xp ∩ V into Lp(�), that 
is, the Laplacian equipped with the Dirichlet and Neumann boundary conditions on �D and �N, 
respectively, in a strong form.

Moreover, the following conditions for � and �D, �N are equivalent to each other:

(i) there exists λ > 0 such that A−1
λ g ∈ W 2,p(�) for all g ∈ Lp(�);

(ii) for any λ > 0, it holds that A−1
λ g ∈ W 2,p(�) for all g ∈ Lp(�);

(iii) there exists λ > 0 such that A−1
λ g ∈ Xp for all g ∈ Lp(�), and (−� + λ) ∈ Isom(Xp ∩

V, Lp(�));
(iv) for any λ > 0, it holds that A−1

λ g ∈ Xp for all g ∈ Lp(�), and (−� + λ) ∈ Isom(Xp ∩
V, Lp(�)).

Proof. Denote Bλ := Aλ|Xp∩V for λ > 0. Then, for u ∈ Xp ∩V , we observe by Green’s formula, 
which is valid for Lipschitz domains, that

〈Bλu,v〉V =
ˆ

�

(∇u · ∇v + λuv) dx =
ˆ

�

(−�u + λu)v dx for all v ∈ V ∩ W 1,q (�),

which implies that Bλu = −�u + λu and Bλ ∈ B(Xp ∩ V, Lp(�)), since V ∩ W 1,q (�) is dense 
in Lq(�). Thus we obtain Bλ = (−� + λ). Moreover, Bλ is injective, since so is Aλ.

As for the equivalence of (i)–(iv), we shall show (ii) ⇒ (i) ⇒ (iii) ⇒ (iv) ⇒ (ii). It is clear 
that (ii) ⇒ (i) (and also (iv) ⇒ (iii)). We show (i) ⇒ (iii). Assume (i), let g ∈ Lp(�) and set 
u := A−1

λ g ∈ W 2,p(�) ∩ V . For all v ∈ V ∩ W 1,q (�), we have

ˆ

�

gv dx = 〈Aλu,v〉V =
ˆ

�

(∇u · ∇v + λuv) dx =
ˆ

�N

(∂νu)v dHn−1 +
ˆ

�

(−�u + λu)v dx,

which implies that u ∈ Xp and −�u(x) + λu(x) = g(x) for a.e. x ∈ �. Hence u = B−1
λ g. 

Therefore, Bλ is surjective from Xp ∩ V into Lp(�). By the open mapping theorem, we ob-
tain (−� + λ) = Bλ ∈ Isom(Xp ∩ V, Lp(�)).

We next show (iii) ⇒ (iv). Under the condition (iii), it holds that Bλ ∈ Isom(Xp ∩V, Lp(�)), 
in particular, Bλ : Xp ∩ V → Lp(�) is a Fredholm operator of index zero (see, e.g., [19]). For 
arbitrary μ > 0, we find that Bμ = Bλ + (μ − λ) is a Fredholm operator of index zero from 
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Xp ∩V to Lp(�) as well, since Xp ∩V is compactly embedded in Lp(�). Since Bμ is injective 
(i.e., dim ker(Bμ) = 0), we infer that Bμ is surjective, and hence Bμ also belongs to Isom(Xp ∩
V, Lp(�)). Furthermore, for any g ∈ Lp(�) and μ > 0, the element u = (−� +μ)−1g = B−1

μ g

belongs to Xp ∩ V . Hence Bμu = g, i.e., Aμu = g, which implies A−1
μ g = u ∈ Xp . Thus (iv) 

follows.
It is obvious that (iv) implies (ii) by the definition of Xp. Thus we have shown that all the 

conditions (i)–(iv) are equivalent to each other. �
Then we can prove

Proposition 2.9. Assume that (17), (22), (23), (24) and (26) holds. Then

K2 ⊂ Xp ∩ V ⊂ W 2,p(�).

Proof. Let v ∈ K2. Then Av ∈ Lp(�) (see (31)). In case σ > 0, the conclusion follows from 
Proposition 2.8 immediately. In case σ = 0 (then Hn−1(�D) > 0 by (17)), B0 = A0|Xp∩V can be 
regarded as a sum of the Fredholm operator B1 : Xp ∩ V → Lp(�) and a compact operator −I :
Xp ∩ V → Lp(�) ; u �→ −u, and hence, B0 has the same index as B1. Since the index of B1 is 
zero and B0 is injective, namely, dim KerB0 = 0 (by (17)), we deduce that B0 : Xp ∩V → Lp(�)

is surjective. Hence there exists ū ∈ Xp ∩ V such that B0ū = Av ∈ Lp(�). By (17) and B0ū =
A0ū = Aū, we conclude that v = ū ∈ Xp ∩ V ⊂ W 2,p(�). Thus K2 ⊂ Xp ∩ V ⊂ W 2,p(�). �
Remark 2.10. Under (26), the assumptions for ψ in (23) along with Aψ ∈ Lp(�) is equivalent 
to ψ ∈ Xp ∩ V . Indeed, let ψ ∈ V satisfy Aψ ∈ Lp(�). Then as in the proof of Proposition 2.9, 
one can check that ψ ∈ W 2,p(�). Moreover, by Green’s formula, we find that

ˆ

�

(Aψ)v dx = 〈Aψ,v〉V =
ˆ

�

∇ψ · ∇v dx + σ

ˆ

�

ψv dx

=
ˆ

�

(−�ψ + σψ)v dx +
ˆ

�N

(∂νψ)v dHn−1

for all v ∈ V ∩ W 1,q (�). Thus by the arbitrariness of v, we obtain ∂νψ = 0 Hn−1-a.e. on �N, 
whence follows ψ ∈ Xp .

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Existence and uniqueness of solutions are due to Proposition 2.3. By 
Theorem 2.4, the unique element u ∈ V satisfying (a)–(h) belongs to K2. Hence, by Proposi-
tion 2.9, one has u ∈ Xp ∩ V . Thus the inequalities of (27) follow from the definition of K2. �
2.3. Proof of Theorem 2.2

To prove Theorem 2.2, we prove the following lemma needed later.
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Lemma 2.11. We suppose that (17), (22), (23) and (24) are satisfied. Let u ∈ V be the unique 
solution of (a)–(h). Then it holds that u ≤ w a.e. in � for all w ∈ K0 ∩ K1 satisfying Aw ∈
Lp(�).

Proof. We set N := {x ∈ � : w(x) < u(x)} and v := u ∧ w. Since w ∈ K0, by Lemma 2.6 and 
(32), v satisfies

v ∈ K0, v =
{

u a.e. in � \ N,

w a.e. in N,
∇v =

{
∇u a.e. in � \ N,

∇w a.e. in N.

Substituting v into the variational inequality (b) of Proposition 2.3, we have

0 ≤ 〈Au − f, v − u〉V =
ˆ

N

(Au − f )(w − u)dx.

Since Au − f ≥ 0 and w − u < 0 a.e. in N , it follows that Au = f a.e. in N . Here we note that

v − u ∈ V, v − u =
{

0 a.e. in � \ N,

w − u < 0 a.e. in N,
∇(v − u) =

{
0 a.e. in � \ N,

∇(w − u) a.e. in N.

From the fact that u − v = (u − w)+ and Aw ∈ Lp(�), we obtain

0 ≤ a(u − v,u − v) = a(u − w,u − v) = 〈A(u − w),u − v〉V
=
ˆ

N

(Au − Aw)(u − w)dx =
ˆ

N

(f − Aw)(u − w)dx.

Since Aw ≥ f (by w ∈ K1) and u > w a.e. in N , we conclude that a(u − v, u − v) = 0, whence 
u = v (hence u ≤ w) a.e. in �. �

The lemma above will also play a crucial role for identifying the limit of each solution 
u = u(x, t) for (6)–(9) as t → ∞ in the proof of Theorem 1.12. We are now ready to prove 
Theorem 2.2.

Proof of Theorem 2.2. By assumption, we find that K2
0 ⊂ K1

0 and K2
1 ⊂ K1

1 , where Kj

1 := {v ∈
V : Av ≥ fj in V ′} for j = 1, 2. Moreover, u2 belongs to both K1

0 and K1
1 , and Au2 ∈ Lp(�)

as well. By Lemma 2.11, we conclude that u1 ≤ u2 a.e. in �. �
3. Reduction to an evolution equation and the uniqueness of solution

In this section, we first reduce the problem (6)–(9) to the Cauchy problem for a nonlinear 
evolution equation in L2(�) with the aid of convex analysis. Then we shall prove Theorem 1.6
on the uniqueness of solution.

Let us begin with reformulating (1) as a parabolic inclusion with a multivalued nonlinear 
operator acting on the time derivative of u(x, t). Let α :R → 2R be given by
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α(s) =
{

{0} if s > 0,

(−∞,0] if s = 0
(39)

with the domain D(α) = [0, ∞). Then s + α(s) is the (multi-valued) inverse mapping of the 
function (s)+, and it can be also represented by

α(s) = ∂I[ · ≥0](s) for s ≥ 0,

where I[ · ≥0] denotes the indicator function over the set [s ≥ 0] := {s ∈ R : s ≥ 0} and ∂ means 
the subdifferential in the sense of convex analysis (see, e.g., [18] and also (41) below with 
H =R). Then (6) can be reformulated as a doubly nonlinear-type PDE,

∂tu + α(∂tu) � �u + f in Q. (40)

We next reduce the PDE (40) to an evolution equation. To this end, define a functional φ :
L2(�) → [0, ∞] by

φ(v) :=
{

1
2

´
�

|∇v|2 dx if v ∈ V,

+∞ if v ∈ L2(�) \ V

with the effective domain D(φ) := {v ∈ L2(�) : φ(v) < +∞} = V . Then we observe that:

Lemma 3.1. The functional φ is convex and lower semicontinuous in L2(�). In particular, if 
(12) is satisfied, then the subdifferential operator ∂φ of φ (in L2(�)) is characterized as

D(∂φ) = X ∩ V, ∂φ(v) = −�v for v ∈ X ∩ V,

where � stands for the Laplace operator from D(�) = X ∩ V into L2(�) as in Proposition 2.8.

Here let us recall the definition of the subdifferential operator ∂ϕ : H → H of a proper, lower 
semicontinuous and convex functional ϕ defined on a Hilbert space H ,

∂ϕ(u) := {ξ ∈ H : ϕ(v) − ϕ(u) ≥ (ξ, v − u)H for all v ∈ D(ϕ)} for u ∈ D(ϕ), (41)

where (·, ·)H stands for the inner product in H and D(ϕ) := {w ∈ H : ϕ(w) < +∞}, with do-
main D(∂ϕ) := {w ∈ D(ϕ) : ∂ϕ(w) �= ∅}. It is well known that ∂ϕ is a (possibly multivalued) 
maximal monotone operator in H (see, e.g., [18] for more details).

Proof of Lemma 3.1. We note that the restriction φ0 := φ|V of φ onto V is Fréchet differen-
tiable and the derivative φ′

0 of φ0 satisfies

〈φ′
0(u), z〉V =

ˆ

�

∇u · ∇z dx for all z ∈ V. (42)

Now, let u ∈ D(∂φ) and ξ ∈ ∂φ(u) ⊂ L2(�). From the definition of subdifferentials, we find that 
∂φ(u) ⊂ ∂φ0(u) = {φ′ (u)} for all u ∈ D(∂φ) ⊂ D(φ) = V . Here ∂V φ0 : V → V ′ stands for the 
0



G. Akagi, M. Kimura / J. Differential Equations 266 (2019) 1–43 23
subdifferential operator of the functional φ0 and it coincides with the gradient operator φ′
0 : V →

V ′ of φ0. Hence ξ = φ′
0(u), i.e., ∂φ(u) = {φ′

0(u)} and φ′
0(u) ∈ L2(�); here and henceforth, we 

simply write ∂φ(u) = φ′
0(u). It follows that

A1u = u + φ′
0(u) = u + ξ ∈ L2(�).

Moreover, by (12) along with Proposition 2.8, we deduce that u = A−1
1 (u + ξ) ∈ X ∩ V and that 

u +ξ = A1u = −�u +u. Therefore we deduce that ∂φ(u) = φ′
0(u) = −�u and D(∂φ) ⊂ X∩V . 

On the other hand, it is clear that X ∩ V ⊂ D(∂φ), and hence, D(∂φ) = X ∩ V . �
Therefore the initial-boundary value problem for (40) equipped with (7)–(9) can be rewritten 

as the Cauchy problem for an evolution equation in L2(�) of u(t) := u(·, t),

∂tu(t) + ∂I[ · ≥0](∂tu(t)) + ∂φ(u(t)) � f (t) in L2(�), 0 < t < T, u(0) = u0, (43)

where f (t) := f (·, t) and ∂I[ · ≥0] denotes the subdifferential operator in L2(�) of the functional 
I[ · ≥0] : L2(�) → [0, ∞] defined by

I[ · ≥0](v) =
{

0 if v ≥ 0 a.e. in �,

∞ otherwise
for v ∈ L2(�).

We note that ∂I[ · ≥0](v) = α(v(·)) for v ∈ L2(�), where α(·) is a multivalued function given by 
(39), and D(∂I[ · ≥0]) = {v ∈ L2(�) : v ≥ 0 a.e. in �} (see, e.g., [18]).

Here and henceforth, for simplicity, we use the same notation I[ · ≥0] for the indicator function 
over [0, +∞) defined on R as well as for that over the set {v ∈ L2(�) : v ≥ 0 a.e. in �} defined 
on L2(�), unless any confusion may arise. Moreover, the subdifferential operators of the both 
indicator functions are also denoted by ∂I[ · ≥0].

Strong solutions of (43) are defined as follows:

Definition 3.2 (Strong solution of (43)). For given f ∈ L2(QT ) and u0 ∈ L2(�), a function 
u ∈ C([0, T ]; L2(�)) is called a strong solution of (43) on [0, T ], if the following conditions are 
satisfied:

• u ∈ W 1,2(0, T ; L2(�)) ∩ L2(0, T ; X ∩ V );
• It holds that

∂tu(t) + ∂I[ · ≥0](∂tu(t)) + ∂φ(u(t)) � f (t) in L2(�) for a.e. t ∈ (0, T ); (44)

• u(0) = u0,

where the functionals I[ · ≥0] and φ on L2(�) are defined as above.

Proposition 3.3 (Equivalence of solutions). The notion of strong solutions for (43) is equivalent 
to that for (6)–(9) defined by Definition 1.4.
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Proof. Since α(s) is the inverse mapping of s �→ (s)+, one observes that (1) is equivalent to 
(40) at each (x, t) ∈ Q. Moreover, due to Lemma 3.1, for each strong solution u of (43), u(x, t)
satisfies (40) a.e. in � × (0, T ). Conversely, let u be a strong solution of (6)–(9) in the sense of 
Definition 1.4. Then from the regularity condition (ii) of Definition 1.4, the right-hand-side of 
the inclusion

α(∂tu) � �u + f − ∂tu

belongs to L2(�) for a.e. t ∈ (0, T ). Moreover, recalling that

∂I[ · ≥0](v) = {ξ(·) ∈ L2(�) : ξ(x) ∈ α(v(x)) for a.e. x ∈ �}

(see above), the evolution equation (44) holds in L2(�) for a.e. t ∈ (0, T ). �
We next provide a chain-rule for the function t �→ φ(u(t)), which is derived from a standard 

theory on subdifferential calculus and which will be used frequently to derive energy estimates 
in later sections.

Lemma 3.4. We suppose that u ∈ W 1,2(0, T ; L2(�)) ∩ L2(0, T ; X ∩ V ). Then we have:

(i) the function

t �→ φ(u(t)) = 1

2

ˆ

�

|∇u(t, x)|2 dx

belongs to W 1,1(0, T );
(ii) for a.e. t ∈ (0, T ), it holds that

1

2

d

dt

ˆ

�

|∇u|2 dx = d

dt
φ(u(t)) = (∂φ(u(t)), ∂tu(t))L2(�) = −

ˆ

�

∂tu�udx,

where (·, ·)L2(�) denotes the inner product of L2(�);
(iii) u ∈ C([0, T ]; V ).

Proof. Thanks to Lemma 3.3 of [18], the assertions (i) and (ii) follow immediately. Concerning 
(iii), since u belongs to L∞(0, T ; V ) and C([0, T ]; L2(�)), by exploiting Lemma 8.1 of [44], 
one finds that u is continuous on [0, T ] with respect to the weak topology of V . On the other 
hand, t �→ ‖u(t)‖V is continuous on [0, T ] by (i). Therefore from the uniform convexity of ‖ ·‖V , 
we deduce that t �→ u(t) is continuous on [0, T ] with respect to the strong topology of V . �

Before proceeding to a proof of Theorem 1.6, let us note that

|a+ − b+|2 ≤ |a+ − b+||a − b| = (a+ − b+)(a − b) for all a, b ∈R, (45)

since the function s �→ s+ = s ∨ 0 is nondecreasing and non-expansive, that is, |a+ − b+| ≤
|a − b|. Now, we are ready to prove Theorem 1.6.
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Proof of Theorem 1.6. For each i = 1, 2, let ui be a strong solution of (6)–(9) with u0 =
u0,i ∈ V and f = fi ∈ L2(0, T ; L2(�)) and set u = u1 − u2. Then due to Lemma 3.4, we have

1

2

d

dt

ˆ

�

|∇u|2 dx = −
ˆ

�

∂tu�udx

= −
ˆ

�

[
(�u1 + f1)+ − (�u2 + f2)+

]

× [(�u1 + f1) − (�u2 + f2) − f1 + f2] dx

(45)≤ −1

2

ˆ

�

|(�u1 + f1)+ − (�u2 + f2)+|2 dx

+ 1

2

ˆ

�

|f1 − f2|2 dx for a.e. t ∈ (0, T ),

which implies that

ˆ

�

|∂tu1 − ∂tu2|2 dx + d

dt

ˆ

�

|∇u1 − ∇u2|2 dx ≤
ˆ

�

|f1 − f2|2 dx for a.e. t ∈ (0, T ).

Integrate both sides with respect to t to obtain

T̂

0

‖∂tu1(t) − ∂tu2(t)‖2
L2(�)

dt + sup
t∈[0,T ]

‖∇u1(t) − ∇u2(t)‖2
L2(�)

≤ 2

⎛
⎝‖∇u0,1 − ∇u0,2‖2

L2(�)
+

T̂

0

‖f1(t) − f2(t)‖2
L2(�)

dt

⎞
⎠ . (46)

In particular, if u0,1 = u0,2 and f1 = f2, then u1 coincides with u2 a.e. in QT . Consequently, the 
solution of (6)–(9) is unique. �
Corollary 3.5 (Continuous dependence of solutions on data). For each T > 0 and i = 1, 2, let ui

be the strong solution of (6)–(9) on [0, T ] with u0 = u0,i ∈ V and f = fi ∈ L2(QT ). Then (46)
holds true.

4. Existence of solutions and comparison principle

In this section, we shall prove Theorem 1.8 on the existence of solutions for (6)–(9). Let T > 0
be fixed. We denote by τ a division {t0, t1, . . . , tm} of the interval [0, T ] given by

0 = t0 < t1 < . . . < tm = T , τk := tk − tk−1 for k = 1, . . . ,m, |τ | := max τk.

k=1,...,m
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We shall construct uk ∈ X ∩ V (for k = 1, 2, . . . , m), which is an approximation of u(tk) for a 
solution u of (1) by the backward-Euler scheme

uk − uk−1

τk

= (�uk + fk)+ a.e. in �, (47)

where fk ∈ L2(�) is given by

fk := 1

τk

tkˆ

tk−1

f (·, s)ds.

For given u0 ∈ V , we shall inductively define uk ∈ V for k = 1, 2, . . . , m as a (global) minimizer 
of the functional

Jk(v) := 1

2τk

ˆ

�

|v|2 dx + 1

2

ˆ

�

|∇v|2 dx −
〈
uk−1

τk

+ fk, v

〉
V

for v ∈ V (48)

subject to

v ∈ Kk
0 := {v ∈ V : v ≥ uk−1 a.e. in �}. (49)

Remark 4.1 (Derivation of the discretized problems). The minimization problems with con-
straints stated above can be also derived from a discretization of the evolution equation (43), 
which is equivalent to (6) (see Section 3). A natural time-discretization of (43) may be given as

uk − uk−1

τk

+ ∂V I[ · ≥0]
(

uk − uk−1

τk

)
− �uk � fk in V ′ (50)

(here ∂V stands for the subdifferential of the functional I[ · ≥0] restricted onto V ), which is an 
Euler–Lagrange equation for the functional

Ek(v) := 1

2τk

ˆ

�

|v|2 dx + I[ · ≥0]
(

v − uk−1

τk

)
+ 1

2

ˆ

�

|∇v|2 dx −
〈
uk−1

τk

+ fk, v

〉
V

for v ∈ V.

Indeed, since Ek is coercive, lower semicontinuous and convex in V , Ek admits a global mini-
mizer uk over V , and moreover, uk solves (50) in V ′. Here we note that the minimization of Ek

over V is equivalent to that of Jk over Kk
0 from the fact that

I[ · ≥0]
(

v − uk−1

τk

)
= I[ · ≥uk−1](v) :=

{
0 if v ≥ uk−1 a.e. in �,

∞ otherwise
for v ∈ L2(�).

Applying the regularity theory established in Section 2, one can actually obtain the unique 
minimizer uk of Jk over Kk

0 for each k. More precisely, we obtain the following theorem, where 
we set
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gk := uk − uk−1

τk

− �uk − fk. (51)

Lemma 4.2 (Existence and regularity of minimizers). Suppose that (12) is satisfied and that

u0 ∈ V, A0u0 ∈ M(�), (A0u0)+ ∈ L2(�). (52)

For each k = 1, 2, . . . , m, there exists a unique element uk ∈ Kk
0 which minimizes (48) subject to 

(49). Moreover, for each k = 1, 2, . . . , m, the minimizer uk belongs to X and fulfills (47), that is,

uk − uk−1 ≥ 0 a.e. in �, (53)

gk ≥ 0 a.e. in �, (54)

〈gk,uk − uk−1〉V = 0. (55)

Furthermore, one has

〈gk, v − uk〉V ≥ 0 for all v ∈ Kk
0 , (56)

〈gk + fk − A0uk−1, v − uk〉V ≥ 0 for all v ∈ Kk
1 , (57)

where the set Kk
1 is given by

Kk
1 :=

{
v ∈ V : v − uk−1

τk

+ A0v − fk ≥ 0 in V ′
}

.

Moreover, it holds that

0 ≤ gk ≤ (A0uk−1 − fk)+ a.e. in � for each k = 1, . . . ,m. (58)

Proof. Denote by � the Laplace operator from X ∩ V into L2(�) (see Section 3). Then A0w =
−�w for w ∈ X ∩ V , since ∂νw = 0 on �N . Here and henceforth, if no confusion may arise, we 
also simply write −�u0 instead of A0u0 ∈ V ′, although u0 may not belong to X. Let us start 
with k = 1. Set σ = 1/τk > 0 (i.e., Au := Aσ u = u/τk − �u), f = fk + uk−1/τk ∈ L2(�) and 
ψ = uk−1. Here by (52) and Lemma A.1, we find that (Au0 − f )+ = (A0u0 − f1)+ ∈ L2(�). 
Then f and ψ satisfy (23) and (24) by (52). One can write Kk

0 = K0 and Jk(v) = J (v) for v ∈ V

with K0 and J (v) defined by (18) and (19) along with (16). Hence, one can apply Proposition 2.3
and Theorem 2.4 to the minimization problem of Jk over Kk

0 . Then the minimizer uk ∈ Kk
0 of Jk

over Kk
0 uniquely exists, and furthermore, (54)–(57) follow immediately from the fact uk ∈ Kk

1 , 
(b), (c) and (d) of Proposition 2.3, respectively. Moreover, by virtue of (12) and Theorem 2.1, one 
can deduce that uk ∈ X. Repeating the argument above for k = 2, 3, . . . , m, we can inductively 
obtain uk ∈ Kk

0 ∩ X satisfying (54)–(57) for each k = 2, 3, . . . , m.
Finally, by Theorem 2.1, we can assure that

fk + uk−1 ≤ uk − �uk ≤
(

fk + uk−1
)

∨
(

uk−1 − �uk−1

)
for a.e. x ∈ �,
τk τk τk τk
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which is equivalent to (58). Here we also remark that the right-hand-side above belongs to L2(�)

by (52) and Lemma A.1. �
Proof of Theorem 1.8. Let us define the piecewise linear interpolant uτ ∈ W 1,∞(0, T ; V ) ∩
W 1,∞(τ1, T ; X) of {uk} and the piecewise constant interpolants ūτ ∈ L∞(0, T ; X ∩ V ) and 
f̄τ ∈ L∞(0, T ; L2(�)) of {uk} and {fk}, respectively, by

uτ (t) := uk−1 + t − tk−1

τk

(uk − uk−1) for t ∈ [tk−1, tk] and k = 1, . . . ,m,

ūτ (t) := uk, f̄τ (t) := fk for t ∈ (tk−1, tk] and k = 1, . . . ,m.

By summing up (55) for k = 1, . . . , � with an arbitrary natural number � ≤ m, we have

�∑
k=1

τk

∥∥∥∥uk − uk−1

τk

∥∥∥∥
2

L2(�)

+ 1

2

ˆ

�

|∇u�|2 dx − 1

2

ˆ

�

|∇u0|2 dx

≤
�∑

k=1

τk

(
fk,

uk − uk−1

τk

)
L2(�)

≤ 1

2

�∑
k=1

τk‖fk‖2
L2(�)

+ 1

2

�∑
k=1

τk

∥∥∥∥uk − uk−1

τk

∥∥∥∥
2

L2(�)

,

(59)

which implies

tˆ

0

‖∂tuτ (s)‖2
L2(�)

ds + ‖∇ūτ (t)‖2
L2(�)

≤ ‖∇u0‖2
L2(�)

+
T̂

0

∥∥f̄τ (s)
∥∥2

L2(�)
ds for all t ∈ [0, T ].

Hence, we obtain

‖∂tuτ‖2
L2(0,T ;L2(�))

+ sup
t∈[0,T ]

‖∇ūτ (t)‖2
L2(�)

+ sup
t∈[0,T ]

‖∇uτ (t)‖2
L2(�)

≤ C
(
‖∇u0‖2

L2(�)
+ ∥∥f̄τ

∥∥2
L2(0,T ;L2(�))

)
. (60)

Now, let us take a limit as m → ∞ such that |τ | → 0 and note that

f̄τ → f strongly in L2(0, T ;L2(�)). (61)

In particular, {f̄τ } is bounded in L2(0, T ; L2(�)). Indeed, one can verify that

‖f̄τ‖L2(0,T ;L2(�)) ≤ ‖f ‖L2(0,T ;L2(�)).

From the uniform estimate (60), one can take a function u ∈ W 1,2(0, T ; L2(�)) ∩ L∞(0, T ; V )

(in particular, u ∈ C([0, T ]; L2(�)) as well) such that, up to a (non-relabeled) subsequence,
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uτ → u weakly in W 1,2(0, T ;L2(�)), (62)

weakly star in L∞(0, T ;V ), (63)

strongly in C([0, T ];L2(�)), (64)

ūτ → u weakly star in L∞(0, T ;V ), (65)

uτ (T ) → u(T ) weakly in V. (66)

Here, the weak and weak star convergence of uτ and ūτ immediately follow from the uniform 
estimate (60). Moreover, we also note that uτ and ūτ possess a common limit function. Indeed, 
by a simple calculation, we observe that

‖uτ (t) − ūτ (t)‖L2(�) =
∣∣∣∣ tk − t

τk

∣∣∣∣‖uk − uk−1‖L2(�)

≤
∥∥∥∥uk − uk−1

τk

∥∥∥∥
L2(�)

τk

(59)≤ C|τ |1/2 for all t ∈ (tk−1, tk], k = 1,2, . . . ,m,

which yields that

sup
t∈[0,T ]

‖uτ (t) − ūτ (t)‖L2(�) ≤ C|τ |1/2 → 0.

Thus uτ and ūτ (weakly) converge to a common limit function. Furthermore, since V is com-
pactly embedded in L2(�), due to Ascoli’s compactness lemma along with (60), we obtain the 
strong convergence (64). Since uτ (T ) = um is bounded in V by (59), one can also derive (66)
from (64). We further observe that u(0) = u0.

We next estimate �ūτ in L2(0, T ; L2(�)) by using (58) and the assumption (14). We first 
rewrite (58) as

−uk − uk−1

τk

+ fk ≤ −�uk ≤
(

−uk − uk−1

τk

+ fk

)
∨

(
−uk − uk−1

τk

− �uk−1

)
a.e. in �

(67)

for k = 2, 3, . . . , m. Since (uk − uk−1)/τk ≥ 0 a.e. in � by uk ∈ Kk
0 , we observe by (14) that

(The right-hand side of (67)) ≤ fk ∨ (−�uk−1) ≤ f ∗ ∨ (−�uk−1) a.e. in �,

which also iteratively implies that

−�uk ≤ f ∗ ∨ (−�uk−1)

≤ f ∗ ∨ (
f ∗ ∨ (−�uk−2)

)
= f ∗ ∨ (−�uk−2) ≤ · · · ≤ f ∗ ∨ (−�u1) a.e. in �

for k = 2, 3, . . . , m. Here by Lemma A.1 we find that
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f ∗ ∨ (−�u1)
(58)≤ f ∗ ∨

{
(−�u0 − f1)+ − u1 − u0

τ1
+ f1

}

≤ f ∗ ∨ {(−�u0 − f1)+ + f1}
≤ f ∗ ∨ {(−�u0)+ + (−f1)+ + f1}
= f ∗ ∨ {(−�u0)+ + (f1)+}
≤ (−�u0)+ + (f ∗)+.

Thus we obtain

−uk − uk−1

τk

+ fk ≤ −�uk ≤ (−�u0)+ + (f ∗)+ a.e. in �,

which together with (52) yields that

‖�uk‖2
L2(�)

≤ 2

(
‖(−�u0)+‖2

L2(�)
+ ‖f ∗‖2

L2(�)
+

∥∥∥∥uk − uk−1

τk

∥∥∥∥
2

L2(�)

+ ‖fk‖2
L2(�)

)

for k = 1, 2, . . . , m. Hence we deduce that

T̂

0

‖�ūτ (t)‖2
L2(�)

dt ≤ CT
(
‖f ∗‖2

L2(�)
+ 1

)

+ C

T̂

0

‖∂tuτ (t)‖2
L2(�)

dt + C

T̂

0

∥∥f̄τ (t)
∥∥2

L2(�)
dt ≤ C (68)

by using (60) and (61).
Exploiting Proposition 2.8 with (12), we see that (I − �) ∈ Isom(X ∩ V, L2(�)), which 

together with (68) gives

T̂

0

‖ūτ (t)‖2
X dt ≤ C

T̂

0

(
‖�ūτ (t)‖2

L2(�)
+ ‖ūτ (t)‖2

L2(�)

)
dt ≤ C.

Therefore we have, up to a (non-relabeled)subsequence,

ūτ → u weakly in L2(0, T ;X),

�ūτ → �u weakly in L2(0, T ;L2(�)),

which particularly implies u(t) ∈ D(�) = X ∩ V for a.e. t ∈ (0, T ). Therefore the piecewise 
constant interpolant ḡτ of {gk} defined by

ḡτ (t) := gk
(51)= uk − uk−1 − �uk − fk for t ∈ (tk−1, tk]
τk
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converges to

∂tu − �u − f =: g (69)

weakly in L2(0, T ; L2(�)).
It remains to prove that u solves (6) for a.e. (x, t) ∈ QT . To this end, we recall the evolution 

equation (43) equivalent to (6). Then it suffices to check that

∂tu ≥ 0 a.e. in QT and − g(t) ∈ ∂I[ · ≥0](∂tu(t)) for a.e. t ∈ (0, T ).

To this end, we employ the so-called Minty’s trick for maximal monotone operators, since 
∂I[ · ≥0] is maximal monotone in L2(�).

Proposition 4.3 (Demiclosedness of maximal monotone operators (see, e.g., [18,21,11])). Let 
A : H → H be a (possibly multivalued) maximal monotone operator defined on a Hilbert space 
H equipped with a inner product (·, ·)H . Let [un, ξn] be in the graph of A such that un → u

weakly in H and ξn → ξ weakly in H . Suppose that

lim sup
n→+∞

(ξn, un)H ≤ (ξ, u)H .

Then [u, ξ ] belongs to the graph of A, and moreover, it holds that

lim
n→+∞(ξn, un)H = (ξ, u)H .

Note that (uk − uk−1)/τk ≥ 0 a.e. in �. For an arbitrary w ∈ D(I[ · ≥0]) = {v ∈ L2(�) :
v ≥ 0 a.e. in �}, substitute v = wτk + uk−1 ∈ Kk

0 to (56). Then we see that

0
(56)≥ 〈−gk, v − uk〉V = τk

(
−gk, w − uk − uk−1

τk

)
L2(�)

,

which together with the arbitrariness of w ∈ D(I[ · ≥0]) and the definition of I[ · ≥0] implies that

−gk ∈ ∂I[ · ≥0]
(

uk − uk−1

τk

)
, i.e., − ḡτ (t) ∈ ∂I[ · ≥0] (∂tuτ (t)) .

Moreover, for k = 1, 2, . . . , m, we find by (51) that

(
−gk,

uk − uk−1

τk

)
L2(�)

≤ −
∥∥∥∥uk − uk−1

τk

∥∥∥∥
2

L2(�)

− φ(uk) − φ(uk−1)

τk

+
(

fk,
uk − uk−1

τk

)
L2(�)

,

which leads us to get
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T̂

0

(−ḡτ (t), ∂tuτ (t))L2(�) dt ≤ −
T̂

0

‖∂tuτ (t)‖2
L2(�)

dt − φ(uτ (T )) + φ(u0)

+
T̂

0

(
f̄τ (t), ∂tuτ (t)

)
L2(�)

dt.

Taking a limsup as |τ | → 0 in both sides, exploiting the weak lower semicontinuity of norms and 
the functional φ(·), and recalling Lemma 3.4, we conclude that

lim sup
|τ |→0

T̂

0

(−ḡτ (t), ∂tuτ (t))L2(�) dt ≤ −
T̂

0

‖∂tu(t)‖2
L2(�)

dt − φ(u(T )) + φ(u0)

+
T̂

0

(f (t), ∂tu(t))L2(�) dt

=
T̂

0

(−∂tu(t) + �u(t) + f (t), ∂tu(t))L2(�) dt

(69)=
T̂

0

(−g(t), ∂tu(t))L2(�) dt. (70)

Consequently, by virtue of the (weak) closedness of maximal monotone operators (see Propo-
sition 4.3 above), it follows that ∂tu(t) ∈ D(∂I[ · ≥0]), i.e., ∂tu(t) ≥ 0 a.e. in �, and −g(t) ∈
∂I[ · ≥0](∂tu(t)) for a.e. t ∈ (0, T ). Therefore u solves (43), and hence, u is a strong solution of 
(6)–(9). Thus Theorem 1.8 has been proved. �
Remark 4.4. To prove that u is a strong solution of (6)–(9), it is possible to show the conditions 
(V1)–(V6) of Theorem 6.1, instead of the last argument of the proof of Theorem 1.8. Actually, 
(V2) and (V3) directly follow from (53) and (54) by taking limit of |τ | → 0, respectively. The 
condition (V4) follows from the estimate (70), since the left-hand side of (70) is zero and the 
right-hand side is non-positive.

Due to Theorem 1.6, the limit of {uτ } and {ūτ } is unique, whence they converge along the full 
sequence.

Corollary 4.5. Sequences {uτ } and {ūτ } converge to the unique solution u of (6)–(9) as 
|τ | → 0+.

We next prove Theorem 1.11.

Proof of Theorem 1.11. Let u1 and u2 be strong solutions of (6)–(9) with u0 = ui
0 and f = f i

for i = 1, 2, respectively. By the uniqueness of solutions (see Theorem 1.6) and the construction 
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of solutions discussed so far, one can take discretized solutions {ui
k} for i = 1, 2 such that the 

piecewise linear interpolant ui
τ of {ui

k} converges to ui strongly in C([0, T ]; L2(�)) as |τ | → 0, 
and they solve the variational inequalities

⎧⎪⎨
⎪⎩

ui
k ∈ K0(u

i
k−1) := {v ∈ V : v ≥ ui

k−1 a.e. in �},
ak(u

i
k, v − ui

k) ≥
ˆ

�

(
f i

k + ui
k−1/τk

)
(v − ui

k)dx for all v ∈ K0(u
i
k−1),

where ak(·, ·) stands for the bilinear form given by

ak(u, v) =
ˆ

�

∇u · ∇v dx + 1

τk

ˆ

�

uv dx for u,v ∈ V.

By iteratively applying the comparison theorem for elliptic variational inequalities (see Theo-
rem 2.2), from the fact that f 1 ≤ f 2 a.e. in QT and u1

0 ≤ u2
0 a.e. in �, one can deduce that

u1
k ≤ u2

k a.e. in QT for all k = 1,2, . . . ,m,

which also implies u1
τ (t) ≤ u2

τ (t) a.e. in � for all t ∈ (0, T ). Then passing to the limit as |τ | → 0, 
we conclude that u1 ≤ u2 a.e. in QT . �
5. Long-time behavior of solutions

This section is devoted to proving Theorem 1.12. Let us begin with deriving a uniform esti-
mate for u(t) for t ≥ 0. To do so, recall the construction of the unique solution u = u(x, t) of 
(6)–(9) performed in the proof of Theorem 1.8 and particularly note that

uk ≥ uk−1 and gk := uk − uk−1

τk

− �uk − fk ≥ 0 a.e. in �. (71)

It follows that

hk := gk + fk = uk − uk−1

τk

− �uk ≥ −�uk a.e. in �. (72)

We also recall the estimate (58), which gives

fk ≤ hk ≤ (−�uk−1) ∨ fk a.e. in �. (73)

Therefore by (H3) we find that

fk

(73)≤ hk

(73)≤ (−�uk−1) ∨ fk

(72)≤ hk−1 ∨ f ∗

≤ (hk−2 ∨ f ∗) ∨ f ∗

= hk−2 ∨ f ∗ ≤ · · · ≤ h1 ∨ f ∗ (73)≤ (−�u0) ∨ f ∗ a.e. in �,
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which together with the assumption that u0 ∈ X ∩ V gives

‖hk‖L2(�) ≤ ‖�u0‖L2(�) + ‖f ∗‖L2(�) + ‖fk‖L2(�)

≤ ‖�u0‖L2(�) + ‖f ∗‖L2(�) + ‖f ‖L∞(0,∞;L2(�)). (74)

Here we used the fact that ‖fk‖L2(�) ≤ ‖f ‖L∞(0,∞;L2(�)) for all k. Moreover, set

h̄τ (t) := ∂tuτ (t) − �ūτ (t) = hk for t ∈ (tk−1, tk].

Recalling the convergence of approximate solutions obtained in the proof of Theorem 1.8, we 
observe that

h̄τ → ∂tu − �u =: h weakly in L2(0, T ;L2(�)).

On the other hand, since {h̄τ } is bounded in L∞(0, T ; L2(�)) by (74), we assure, up to a (non-
relabeled) subsequence, that

h̄τ → h weakly star in L∞(0, T ;L2(�))

as |τ | → 0. Moreover, from the lower semicontinuity of the L∞-norm in the weak star topology, 
we have, by (74),

‖h‖L∞(0,T ;L2(�)) ≤ lim inf
τ→0

∥∥h̄τ

∥∥
L∞(0,T ;L2(�))

≤ ‖�u0‖L2(�) + ‖f ∗‖L2(�) + ‖f ‖L∞(0,∞;L2(�))

for each T > 0. Since the bound is independent of T > 0, one can derive that

‖h‖L∞(0,∞;L2(�)) ≤ ‖�u0‖L2(�) + ‖f ∗‖L2(�) + ‖f ‖L∞(0,∞;L2(�)). (75)

Note that (ξ, v)L2(�) = 0 for all v ∈ L2(�) with v ≥ 0 a.e. in � and ξ ∈ ∂I[ · ≥0](v). Thus 
testing (43) by ∂tu(t), we have

‖∂tu(t)‖2
L2(�)

+ 1

2

d

dt
‖∇u(t)‖2

L2(�)

= (f (t), ∂tu(t))L2(�)

= (f (t) − f∞, ∂tu(t))L2(�) + d

dt
(f∞, u(t))L2(�)

≤ 1

2
‖∂tu(t)‖2

L2(�)
+ 1

2
‖f (t) − f∞‖2

L2(�)
+ d

dt
(f∞, u(t))L2(�).

Define an energy functional E on V by

E(v) := 1

2
‖∇v‖2

L2(�)
− (f∞, v)L2(�) for v ∈ V.

Then one has
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1

2
‖∂tu(t)‖2

L2(�)
+ d

dt
E(u(t)) ≤ 1

2
‖f (t) − f∞‖2

L2(�)
for a.e. t ≥ 0, (76)

which implies the non-increase of the function

t �→ E(u(t)) − 1

2

tˆ

0

‖f (τ) − f∞‖2
L2(�)

dτ for t ≥ 0.

Moreover, by using the Poincaré inequality (due to (H1)), we have

E(v) ≥ 1

4
‖∇v‖2

L2(�)
− C‖f∞‖2

L2(�)
for all v ∈ V. (77)

Thus integrating (76) over (0, s) and using (H2) and (77) we obtain

∞̂

0

‖∂tu(t)‖2
L2(�)

dt ≤ C, (78)

sup
t≥0

‖∇u(t)‖L2(�) ≤ C, (79)

which also yields

sup
t≥0

‖�u(t)‖V ′ ≤ C. (80)

Moreover, by virtue of (75), we have

‖g‖L∞(0,∞;L2(�)) ≤ ‖h‖L∞(0,∞;L2(�)) + ‖f ‖L∞(0,∞;L2(�)) ≤ M (81)

for some constant M . Here we used the fact that g(t) = h(t) − f (t).
Let I ⊂ (0, ∞) be the set of all t ≥ 0 for which (43) holds true and ‖g(t)‖L2(�) is bounded 

by M as in (81). Then the set (0, ∞) \ I has zero Lebesgue measure. Recalling by (78) and (H2) 
that

∞̂

0

(
‖∂tu(t)‖2

L2(�)
+ ‖f (t) − f∞‖2

L2(�)

)
dt < ∞,

one can take a sequence sn ∈ [n, n + 1] ∩ I such that

∂tu(sn) → 0 strongly in L2(�), (82)

f (sn) → f∞ strongly in L2(�) (83)

as n → ∞.
Moreover, by using the preceding uniform (in t ) estimates and the compact embedding V ↪→

L2(�), we deduce, up to a (non-relabeled) subsequence, that
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u(sn) → z weakly in V, (84)

strongly in L2(�), (85)

−�u(sn) → −�z weakly in V ′, (86)

−g(t) → ξ weakly in L2(�) (87)

with some z ∈ V and ξ ∈ L2(�). From the demiclosedness of ∂I[ · ≥0] in L2(�) and the fact that 
−g(t) ∈ ∂I[ · ≥0](∂tu(t)) for a.e. t ∈ (0, ∞), it follows that ξ ∈ ∂I[ · ≥0](0), that is, ξ ≤ 0 a.e. in �
by ∂I[ · ≥0](0) = (−∞, 0]. Moreover, by (43) and (83), we get ξ − �z = f∞, which leads us to 
f∞ + �z = ξ ≤ 0 a.e. in �. Furthermore, by (12) along with Proposition 2.8, the limit z belongs 
to X, since z − �z = z − ξ + f∞ ∈ L2(�).

Therefore we derive that

‖∇u(sn)‖2
L2(�)

= (−�u(sn), u(sn))L2(�)

= (−∂tu(sn), u(sn))L2(�) + (g(sn), u(sn))L2(�) + (f (sn), u(sn))L2(�)

→ (−ξ + f∞, z)L2(�) = (−�z, z)L2(�) = ‖∇z‖2
L2(�)

.

From the uniform convexity of V , it holds that

u(sn) → z strongly in V. (88)

We shall next verify the convergence of the solution u(t) to the same limit z as t → ∞, that is, 
u(tn) → z for any sequence tn → ∞ and the limit z is independent of the choice of the sequence 
(tn). Subtracting the stationary equation

∂I[ · ≥0](0) − �z � f∞

from the evolution equation (43), we see that

∂tu(t) + ∂I[ · ≥0](∂tu(t)) − ∂I[ · ≥0](0) − �(u(t) − z) � f (t) − f∞.

Test it by ∂tu(t) to get

1

2
‖∂tu(t)‖2

L2(�)
+ 1

2

d

dt
‖∇(u(t) − z)‖2

L2(�)
≤ 1

2
‖f (t) − f∞‖2

L2(�)
.

Integrate both sides over (sn, τ) for τ > sn. Then it follows from (88) that

1

2
sup
τ≥sn

‖∇(u(τ) − z)‖2
L2(�)

≤ 1

2
‖∇(u(sn) − z)‖2

L2(�)
+ 1

2

∞̂

sn

‖f (t) − f∞‖2
L2(�)

dt

(H2)→ 0.

Thus u(t) converges to the limit z strongly in V as t → ∞. This completes the proof of the first 
half of the assertion.
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We next prove the second half of the assertion. In addition, assume that f (x, t) ≤ f∞(x) for 
a.e. x ∈ Q and let z̄ ∈ X ∩ V be the unique solution of the variational inequality (VI)(u0, f∞). 
Then by Proposition 2.3 and Theorem 2.4 for A = Aσ with σ = 0, z̄ satisfies −�z̄ ≥ f∞
a.e. in �, and moreover, we deduce that U(x, t) := z̄(x) becomes a strong solution of (6) by 
observing that

∂tU ≡ 0 and �U(x, t) + f (x, t) ≤ �z̄(x) + f∞(x) ≤ 0 a.e. in Q.

Hence by the comparison principle for the evolutionary problem (6) (see Theorem 1.11), we 
assure that u(x, t) ≤ z̄(x) for a.e. (x, t) ∈ Q. Letting t → ∞ and recalling (85), we obtain

z(x) ≤ z̄(x) for a.e. x ∈ �.

On the other hand, since z belongs to X ∩ V and satisfies z ≥ u0 and −�z ≥ f∞ in V ′, 
applying the comparison theorem for variational inequalities of obstacle type (see Lemma 2.11) 
to (VI)(u0, f∞), we assure that z̄ ≤ z a.e. in �. Consequently, we conclude that z = z̄ a.e. in �. 
Thus we have proved the second half of the assertion of Theorem 1.12. �
6. Other equivalent formulations

In this section, we discuss other formulations of solutions for (6)–(9) equivalent to those 
defined by Definition 1.4. Let us start with a complementarity form of strong solutions.

Theorem 6.1. Let f ∈ L2(QT ) and u0 ∈ L2(�). Then u is a strong solution of the problem 
(6)–(9) on [0, T ], if and only if the following six conditions are satisfied:

(V1) u ∈ W 1,2(0, T ; L2(�)) ∩ L2(0, T ; X ∩ V ),
(V2) ∂tu ≥ 0 a.e. in QT ,
(V3) ∂tu − �u − f ≥ 0 a.e. in QT ,
(V4) (∂tu − �u − f ) ∂tu = 0 a.e. in QT ,
(V5) u(0, ·) = u0.

Proof. If u satisfies (V1) (or (i) of Definition 1.4), one can define the following measurable 
subsets of QT :

Q0 := {(x, t) ∈ QT : ∂tu �= (�u + f )+},
Q1 := {(x, t) ∈ QT : ∂tu = (�u + f )+ > 0},
Q2 := {(x, t) ∈ QT : ∂tu = (�u + f )+ = 0},

which are disjoint and satisfy QT = Q0 ∪ Q1 ∪ Q2.
Let u satisfy (i)–(iii) of Definition 1.4. Conditions (V1) and (V5) follow immediately. From 

(ii) of Definition 1.4, it follows that

Hn+1(Q0) = 0,

and moreover, by definition,
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∂tu > 0, ∂tu − �u − f = 0 a.e. in Q1,

∂tu = 0, ∂tu − �u − f ≥ 0 a.e. in Q2.

Hence (V2), (V3) and (V4) follows. Consequently, every strong solution u of (6)–(9) in the sense 
of Definition 1.4 satisfies all the conditions (V1)–(V5).

Conversely, let u satisfy (V1)–(V5). Conditions (i) and (iii) of Definition 1.4 follow from 
(V1) and (V5). Let us next show that Hn+1(Q0) = 0, which is equivalent to the condition (ii) of 
Definition 1.4. Define

Q∗ := {(x, t) ∈ QT : ∂tu ≥ 0 and ∂tu − �u − f ≥ 0 at (x, t)}.

Then it holds that Hn+1(QT \ Q∗) = 0 by (V2) and (V3).
We claim that

∂tu > 0, ∂tu − �u − f > 0 at each (x, t) ∈ Q0 ∩ Q∗. (89)

Indeed, by the definitions of Q0 and Q∗, u satisfies the following conditions at each (x, t) ∈
Q0 ∩ Q∗:

∂tu �= (�u + f )+, (90)

∂tu ≥ 0, (91)

∂tu − �u − f ≥ 0. (92)

If ∂tu = 0 at some (x0, t0) ∈ Q0 ∩Q∗, then �u +f > 0 at (x0, t0) by (90) and it contradicts (92). 
Hence, we obtain ∂tu > 0 at each point of Q0 ∩ Q∗ by (91). Similarly, if ∂tu − �u − f = 0 at 
some (x0, y0) ∈ Q0 ∩ Q∗, then 0 < ∂tu = �u + f = (�u + f )+ at (x0, y0), which contradicts 
(90). Thus, we obtain ∂tu − �u − f > 0 in Q0 ∩ Q∗ by (92).

Since QT = Q0 ∪ Q1 ∪ Q2 is a disjoint union and Hn−1(QT \ Q∗) = 0, we have

0
(V4)=

¨

QT

(∂tu − �u − f ) ∂tudx dt =
¨

Q0

(∂tu − �u − f ) ∂tudx dt

=
¨

Q0∩Q∗
(∂tu − �u − f ) ∂tudx dt.

By (89), we obtain Hn+1(Q0 ∩ Q∗) = 0; otherwise the last integral is positive. Hence we con-
clude that

Hn+1(Q0) =Hn+1(Q0 ∩ Q∗) +Hn+1(Q0 \ Q∗) = 0.

This completes the proof. �
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Finally, let us discuss a possible formulation of (6) in the sense of viscosity solutions. Set

F(x, t, Y ) := −(
trY + f (x, t)

)
+ for x ∈ �, t ∈ (0, T ), Y ∈ R

n×n
sym , (93)

where Rn×n
sym denotes the set of all symmetric n × n real matrices. Then (1) is also written as

∂tu(x, t) + F(x, t,D2u(x, t)) = 0,

where D2u(x, t) ∈ R
n×n
sym is the Hessian matrix of u. Since F is degenerate elliptic, one may apply 

the theory of viscosity solutions to prove the existence and uniqueness of viscosity solutions of 
(93) under suitable assumptions for f (x, t) and the boundary condition. However, to the authors’ 
knowledge, no result on such a viscosity approach to (6) has been obtained except for [58] (see 
also [45] for the case f ≡ 0). Moreover, the relation between the notion of viscosity solutions 
and that of strong solutions for (6) is widely open. For further details of the theory of viscosity 
solutions, we refer the reader to [24], [41], [31] and references therein.
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Appendix A. Some auxiliary facts

Let us start with the following:

Lemma A.1. Let 1 ≤ p ≤ ∞, μ ∈ M(�) and ζ ∈ Lp(�). It holds that μ+ ∈ Lp(�) if and only 
if (μ + ζ )+ ∈ Lp(�). Moreover, ‖(μ + ζ )+‖Lp(�) ≤ ‖μ+‖Lp(�) + ‖ζ+‖Lp(�). An analogous 
conclusion also holds for the negative part.

To prove this lemma, we claim that:

Lemma A.2. Let μ ∈M(�) and 1 ≤ p ≤ ∞. If there exists f ∈ Lp(�) such that

0 ≤ μ(B) ≤
ˆ

B

f dx for any Borel set B ⊂ �,

then μ is absolutely continuous (with respect to Lebesgue measure) with an Lp density function.

Proof. For any Borel set ω ⊂ � whose Lebesgue measure is zero, we find μ(ω) = 0 by assump-
tion. Hence μ is absolutely continuous (with respect to Lebesgue measure), and therefore, there 
exists gμ ∈ L1(�) such that
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0 ≤ μ(B) =
ˆ

B

gμ dx ≤
ˆ

B

f dx

for any Borel set B ⊂ �. Thus we obtain 0 ≤ gμ ≤ f , which implies gμ ∈ Lp(�) by f ∈
Lp(�). �
Proof for Lemma A.1. Let ζ ∈ Lp(�). Assume that μ+ has an Lp(�) density function g. De-
note by B the set of all Borel sets in Rn. We then observe that

0 ≤ (μ + ζ )+(B) := sup
B ′⊂B
B ′∈B

(μ + ζ )(B ′)

= sup
B ′⊂B
B ′∈B

⎡
⎣μ(B ′) +

ˆ

B ′
ζ dx

⎤
⎦

≤ sup
B ′⊂B
B ′∈B

μ(B ′) +
ˆ

B

ζ+ dx

= μ+(B) +
ˆ

B

ζ+ dx =
ˆ

B

(g + ζ+)dx

for any Borel set B ⊂ �. Therefore by Lemma A.2, (μ + ζ )+ turns out to be absolutely con-
tinuous (with respect to Lebesgue measure) with an Lp density function h. Moreover, from 
the arbitrariness of B , one has 0 ≤ h ≤ g + ζ+ a.e. in �, which also yields ‖h‖Lp(�) ≤
‖g‖Lp(�) + ‖ζ+‖Lp(�). Conversely, assume that (μ + ζ )+ ∈ Lp(�). Then

0 ≤ μ+(B) := sup
B ′⊂B
B ′∈B

μ(B ′)

= sup
B ′⊂B
B ′∈B

⎡
⎣μ(B ′) +

ˆ

B ′
ζ dx −

ˆ

B ′
ζ dx

⎤
⎦ ≤ (μ + ζ )+(B) +

ˆ

B

ζ− dx

for any Borel set B ⊂ �. Thus μ+ is absolutely continuous (with respect to Lebesgue measure) 
and has an Lp density function. �

Finally, let us give a couple of concrete examples of ψ satisfying (24).

Remark A.3.

(i) If ψ ∈ W 2,1(�), (−�ψ)+ ∈ Lp(�) and (∂νψ)+ = 0 Hn−1-a.e. on �N , then (24) follows 
immediately.

(ii) Let us give another example of ψ satisfying (23) and (24): Let D be a smooth bounded 
domain of Rn−1 and set � = D × (−1, 1), �D = D × {−1} and �N = ∂� \ �D . Moreover, 
set
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ψ(x) = |xn| − 1 − a(xn + 1) − b

{
1

4
(xn − 1)2 − 1

}
for x = (x′, xn) ∈ D × (−1,1)

for arbitrary a ≥ 1 and b ∈R. Then for any ϕ ∈ V (in particular, ϕ(x ′, −1) ≡ 0),

〈Aψ − f,ϕ〉V = −2
ˆ

D

ϕ(x′,0)dx′ − (a − 1)

ˆ

D

ϕ(x′,1)dx′ +
ˆ

�

(
σψ − f + b

2

)
ϕ dx.

Hence, denote Aψ −f by μ ∈M(�). Then dμ+ = (σψ −f + b
2 )+ dx, which is absolutely 

continuous (with respect to Lebesgue measure) and

dμ− = 2 dHn−1�D×{0}+(a − 1)dHn−1�D×{1}+
(

σψ − f + b

2

)
−

dx.
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