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Introducing the Concept of Potential-Based
Organ Contours

Janine Becker and Mattia Fedrigo

Abstract—The aim of this paper is to explore a new method1

for organ contour description in radiology and radiation pro-2

tection. The method bases on the mathematical computation of3

electrical fields, exploited are the equipotential lines caused by4

a potential field of a distribution of point sources in analogy5

to electric charges. The organ shape is described by the poten-6

tial values of the field, the contour by the equipotentials. The7

potential-dependent methods offers an inside–outside criterion8

and can be scaled in size and edited by changing the source9

points. Because of that it offers a flexible possible framework for10

organ contour editing and also toward segmentation. The main11

focus of this paper is the proof of principle, i.e., the optimization12

of the source point coordinates and source strengths, to show the13

transfer of voxelized organ borders to potential-based contours.14

The already voxelized organ borders were from a human voxel15

phantom generated from 2-D CT images of a real patient. Results16

for several closed and compact organs shall be presented and the17

limitations, future applications and possibilities addressed, e.g.,18

the advantages of an implementation in Monte Carlo calculations19

of radiation transport.20

Index Terms—Equipotential contour, organ modeling,21

potential-based contour.22

I. INTRODUCTION23

ANUMERICAL description (modeling) of human anatomy24

is necessary for various fields of application, like oper-25

ation simulation, e.g., [1], and simulation of irradiations26

by ionizing or nonionizing radiation, e.g., [2]–[5]. For the27

calculation of organ doses in radiation protection human phan-28

toms [2], [6]–[12] and their modeled organs are essential.29

The organ dose Dorg = �E/�m is defined by the energy30

�E deposited by the radiation in an organ of mass �m and31

therefore not directly measurable. In order to obtain these32

organ doses the radiation transport is simulated by Monte33

Carlo codes. For a Monte Carlo simulation of radiation trans-34

port the history of photons or particles is followed. At the35

points of their interactions and endpoints the released energy36

is assigned to the whole organ. Here, the spatial information of37

the organ is needed to calculate the respective dose conversion38

coefficients. For simulation beyond that it would be desirable39
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to implement additional information about, e.g., mechanical, 40

electrical metabolic, or inflammatory status [13]. 41

Natural forms tend to be smooth and closed, compact 42

organs like heart and stomach can be seen as globally con- 43

vex closed shapes. The equipotential lines of a potential field 44

seem to match this aspect. They are continuous and closed. 45

The potential-based method is an indirect but continuous delin- 46

eation of the organ border by source points. The potential field 47

describes the organ border by equipotential lines. By specify- 48

ing a potential range walled and thin organs can be described, 49

e.g., the periosteum or the skin [14]. The gradient of the field 50

provides information if a point is inside or outside of the shape. 51

This is a key function in terms of Monte Carlo simulation 52

of radiation transport. The set of source points, the source 53

strengths and one potential value for an organ contour is an 54

effective data compression and provides a memory saving way 55

of storage and editing by no loss on information. 56

The aim of this paper has been to develop a practicable 57

method to identify the distribution of source points, whose 58

equipotential surface closely approximates a given organ 59

surface. At the present stage, the focus will be on the approx- 60

imation of organ contours in the 2-D case, and the feasibility 61

of the new approach will be tested for the case that all source 62

strengths have positive values. 63

II. STATE OF THE ART 64

So-called voxel models [5]–[12], [15] have been proven to 65

be adequate for radiation transport simulation. They consist 66

of a 3-D matrix of voxels with different organ identifica- 67

tion numbers as classification system. Many such models are 68

presently available. They offer more anatomic reality than 69

purely mathematical models describing organs by mathemati- 70

cal expressions [16]–[18]. The resolution of the voxels plays 71

a big role. This feature mainly dictates the smoothness of the 72

organ surface and how realistic an organ can be represented. 73

Small or thin tissues under voxel resolution cannot be delin- 74

eated or are overestimated in weight and volume, e.g., skin 75

and walled organs. A higher resolution is beneficial for the 76

realistic delineation of organs but affects the calculation time 77

on the other hand. In recent years interest has turned toward 78

individual modeling of organs needed for personal dosimetry, 79

patient treatment or medical image simulation, creating new 80

demands concerning the adjustment of existing models and of 81

the spatial resolution. Since the effort of segmenting new organ 82

models from medical images is still higher than their editing 83

in size or form, the main focus has been on their adaptation 84

to given specifications. Furthermore, the modeling of actual 85
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Fig. 1. Source points (green), equipotential lines of the single sources (dashed
circles), and common, equipotential line (red) for organ contour (black).

patient data is of interest for operation planning and train-86

ing, as well as for radiation therapy planning and organ dose87

calculation for diagnostic radiation exposures. Moreover, the88

editing of the organs and tissues on voxel base is very labo-89

rious [19]. Another way to scale organs in size and edit their90

shape is the transfer into other representations like hybrid rep-91

resentations, e.g., [20]–[24] or polygonal nets and nonuniform92

rational B-splines (NURBS) [25]. NURBS are a generaliza-93

tion of B-splines and Bézier curves and surfaces, which are94

fitted to control points on the contour or surface. These meth-95

ods describe only the contour and do not hold additional96

information.97

The transfer from one representation into another is usually98

done by manual interaction on a graphical user interface of99

available software, e.g., Rhinoceros [26].100

In the following other modeling methods that have been101

introduced in the literature are described. M-reps [27] have102

been developed to represent biological forms. Here, medial103

atoms on a line build the objects. A hierarchy of figures builds104

the resulting shape. They do not offer a classification method,105

meaning an individual atom or shape is assigned to a tissue. In106

operation planning a sphere-filled organ modeling [28] can be107

found. This representation is close to voxels. But depending108

on the modeled anatomy, it is probably memory intense as no109

spheres inside an area can be omitted. Furthermore, it is pos-110

sible to model single organ shapes via Fourier surfaces [29],111

spherical harmonics [30]–[32], and wavelets [33], [34]. These112

methods are not available in common software and have to be113

implemented by the user. They are based on a set of parame-114

ters and are not editable in a straightforward way via graphical115

interaction and require a specialist for applying. Further mathe-116

matical descriptions mainly describing the contour of an organ117

can be found in [35]–[38]. These approaches are commonly118

used for segmentation, i.e., organ extraction from medical119

images; to the authors’ knowledge they are not used as input120

format for the simulation of radiation transport.121

III. CONCEPTUAL BASICS122

For a single source point, analogous to an electric charge,123

the 3-D potential field in a homogeneous medium is a sphere,124

and if cut by any plane, the equipotential lines are circles. For125

a group of source points the superposition principle works,126

and the resulting equipotential line will form a more detailed127

contour, see Figs. 1 and 2.128

It shall be analyzed if this idea can be put in praxis, and129

how the source points can be distributed to obtain a resulting130

Fig. 2. Potential field with 7 Q, i.e., the peaks the potential field, and
equipotential line (black) with ϕ0 = 3.1 for a stomach contour, see also
Fig. 11.

equipotential line that is closely tracing a given realistic organ 131

contour. 132

A. Source Points With (Q/r)-Potential 133

For a better understanding how the source points can lead 134

to a contour a short derivation of the underlying electric field 135

principle is presented here 136

�E = Q

4πεr2
�er. (1) 137

Formula (1) shows the electrical field strength �E of an elec- 138

trical point charge Q in a medium with the dielectric constant 139

ε at a distance r. The associated electrical potential ϕ is 140

ϕ = Q

4πεr
. (2) 141

For a distribution of z point charges the resulting electrical 142

potential ϕ is obtained according to the superposition principle 143

ϕ =
z∑

i=0

Qi

4πεri
. (3) 144

In order to model the organ surfaces and no actual physical 145

situation we use a mathematical analogy: we consider source 146

points instead of electrical point charges. The physical constant 147

ε is neglected, a “source strength” Qi is associated with each 148

source point i resulting in a sum potential ϕ. We define that Qi 149

is a positive number and r is the distance from the point source. 150

The potential for a spatial distribution of z source points is 151

ϕ =
z∑

i=0

Qi

ri
. (4) 152

B. Computation and Display of the Potential-Based Lines 153

To show a line of equipotentials it is necessary to pick a 154

field point and compare its local potential ϕ0 to the rest of the 155

potential field. It is the question how to decide for this point 156

of reference. To answer this question the inertia axes of the 157

organ slice were utilized. 158

The axes of inertia span a coordinate system with their 159

origin in the barycenter B of the organ slice, as shown in 160

Fig. 3. The axes cut the organ borders and the intersection 161

points serve as reference for the potential. In the process 162
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Fig. 3. Transversal voxelized slice of the heart with barycenter B and
intersection points S1...4 of the inertia axes and organ border.

of first implementation the potential-based contours for all163

four intersection points S1···4 were displayed and compared.164

The resulting potential-based contours are slightly differ-165

ent and shall be compared by parameters of goodness,166

see Section III-E.167

C. Positioning of the Source Points168

After the consideration how to adapt the basic idea and169

how to display a potential-based contour there is still the open170

question how many and where to place source points in a171

sensible way to proof the concept.172

The already known organ border of a voxelized computa-173

tional phantom shall serve as a guideline for the potential-174

based contours. The voxel model “Laura” [39] of the HMGU175

voxel model family [6] provided the organ borders that176

were transformed in potential-based contours. The so-called177

voxelized phantoms offer a realistic presentation of human178

anatomy. Here, it can be seen if the method of a source point179

distribution fits for realistic organ shapes. In essence every180

other phantom of [6] or set of contour coordinates could be181

used.182

1) Coordinates of the Source Points: An iteration process183

shall distribute a number of sources within the given organ184

border. The individual source points have to be placed in185

regard to their respective border segment, which is obtained186

by dividing the total number of border voxels by the total187

number of sources. Since the equipotential line of a single188

source point is a circle in 2-D (see Section III, Fig. 1), it189

is assumed the respective border voxels xj, yj are on this cir-190

cle and the source is placed at its center point xc, yc at a the191

radius r.192

Formula (5) describes the variation of the center point coor-193

dinates and its distance to each border voxel xj, yj by means194

of auxiliary variables ϑ, η, ρ195

(xc, yc, r) = argmin
ϑ,η,ρ

n∑

j=1

[(
xj − ϑ

)2 + (
yj − η

)2 − ρ2
]2

. (5)196

This algorithm serves to minimize the sum of the squared197

differences (d2
j − r2)2, where198

d2
j = (

xj − xc
)2 + (

yj − yc
)2

. (6)199

These expressions were the basis for a system of equations200

whose final matrix formulation was solved via Cramers’ rule201

and thus provided the desired center points xc, yc.202

Fig. 4. Computation of source point coordinates xc, yc by circle approxima-
tion of xj, yj. AQ2

D. Choice of the Source Strengths 203

After the source points Qi have been placed in a distance r 204

to the border, the source strengths are determined by 205

Qi = ri · ϕR (7) 206

where the potential on the border is ϕR = 1. The sum poten- 207

tial on the organ border ϕ0 will differ from 1 because of the 208

superposition of all point sources. It is expected to be higher 209

but remaining within the same order of magnitude. Among all 210

tried ways this simple one provided adequate results. 211

E. Comparison of the Potential-Based Organ Area With 212

Voxel Area 213

After placing the source points and displaying the equipo- 214

tential line there must be a way of judging how well the final 215

potential-based contour matches the voxelized one. For this 216

purpose the parameters of goodness are introduced. 217

1) Parameters for the Goodness of Fit: For the comparison 218

of the equipotential with the voxel representation, the over- 219

lap U between the potential-modeled and originally voxelized 220

organ region is computed. The combined area of voxelized (O) 221

and potential-based (M) organ region except the intersection 222

of both is related to the original region (O) by 223

U = O ∪ M \ O ∩ M

O
. (8) 224

This can be intuitively understood as organ area not covered 225

by the potential-based region. The closer to zero the better the 226

match between the areas. Because one goodness-of-fit param- 227

eter did not turn out to be sufficient, the distance a between 228

the barycenters of original and potential-based contour were 229

additionally calculated 230

a =
√

(xO − xM)2 + (yO − yM)2. (9) 231

Formula (9) subtracts the coordinates (xO, yO) and (xM, yM) 232

of the barycenters of the original and modeled area and a is 233

given in voxel distances. The optimal case is when there is no 234

distance between the barycenters, i.e., the expression is zero. 235

The values U and a are calculated for a source point dis- 236

tribution, the pair with the smallest values, i.e., closest to 237

zero, indicates the best fit. This way resulting potential-based 238

contours can be compared and evaluated. 239
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Fig. 5. Voxelized heart slice (dark gray) with potential-based contour (light
gray) of 2Q, U=0.05, a=0.44, S4.

Fig. 6. Heart with 11Q (U=0.04, a=1.13, left) and 16 Q(U=0.04, a = 0.71,
right).

IV. RESULTS240

The transversal slice T256 of the voxel data set Laura pro-241

vided the heart contour that served for testing the new method,242

see Figs. 5–7. After the evaluation of the first trials, the posi-243

tioning of the source points, see Section IV-B, was refined and244

applied for organ slices of heart, bladder, stomach, and aorta,245

as presented in Section IV-C.246

A. First Trials247

For the heart slice, the number of source points was var-248

ied from 2 to 42. The parameters of goodness U and a were249

analyzed for every distribution at the four intersection points250

S1, S2, S3, or S4 between the axes of inertia and the organ251

border. Table I shows an excerpt of the parameters for the252

iteration process. The full table can be found in [40].253

For just two source points, Fig. 5 shows that the principle of254

superposition is working. Exact tracing of the organ contour255

is not yet achieved, but that a match between the equipoten-256

tial line and the organ border appears as possible, when the257

number of source points is increased. The distributions with258

11 sources (Fig. 6, left) and 16 sources (Fig. 6, right) show259

the best parameters of all distributions. For both approxima-260

tions small areas outside the original organ contour have been261

modeled, this is due to the more concave segment of the organ262

contour, the single source was oriented to.263

In the example of Fig. 7 the probable optimal number of264

source points is exceeded. Ring structures were created rather265

than a closed area.266

B. Conclusion for Source Point Positioning267

From these results the following conclusions have been268

deduced.269

1) The algorithm for minimization the goodness-of-fit270

parameters does not have an unique solution. For one271

TABLE I
ITERATIONS OF 9–18 SOURCE POINTS Q, WITH THE GOODNESS-OF-FIT

PARAMETERS U AND a FOR THE INTERSECTION POINTS S1 TO S4

Fig. 7. Heart T256 with 29 Q (U = 0.18, a = 1.02, left) and 39 Q (U=0.24
a=0.75, right) each for S1.

organ contour several source point distributions with 272

nearly the same set of goodness parameters have been 273

found. 274

2) Highly curved contours benefit from a higher number of 275

source points. 276

The following rules for numerical stability were adopted in 277

the placing algorithm. 278

1) In a distribution with source points of the same sign, the 279

source points have to be placed inside the organ region. 280

2) Source points very close to or on the organ border lead to 281

numerical instabilities. Improvements may be achieved 282

by eliminating unfavorable source points. 283

C. Potential-Based Organ Contour 284

Based on this experience, potential-based contours for 285

slices of heart, aorta, kidney, stomach, and bladder have 286
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Fig. 8. Heart slice T256, 9 Q, U = 0.02, and a = 0.29 for S4.

Fig. 9. Voxelized slice of aorta with barycenter B and intersections points
S1...4 (left) and potential-based contours with 1Q (middle) and 2Q (right),
both U = 0.04, a = 0.02 for S3.

Fig. 10. Voxelized kidney slice with barycenter B and intersections
pointsS1...4 (left) and 9Q, U = 0.01, and a = 0.55 for S1 (right).

been generated. The source points were distributed within287

the organ region but neither close nor on the organ bor-288

der according to the numerical stability rules of the placing289

algorithm.290

Figs. 8–12 present the original voxelized slices together291

with the best source point distributions with their respec-292

tive goodness parameters. The area within and including the293

potential-based contour can be understood as organ area.294

1) Heart, Aorta, and Kidney: After the implementation of295

the restrictions for placing the sources a distribution of nine296

sources provided the best fit of the potential and voxel-based297

contour for the heart slice (Fig. 8).298

For the aorta the distribution of one and two source points299

worked the same because of its nearly circular shape. For radi-300

ation protection purposed the aorta is not divided in wall and301

blood volume.302

The best set of parameters of all organs has been achieved303

for the kidney (Fig. 10). Only very few voxels were found304

outside the equipotential line.305

2) Walled Organs: In the underlying voxel data of stomach306

(Fig. 11) and bladder (Fig. 12) consist of wall and content.307

Here, the content provided the coordinates for the source point308

placement.309

In the upper part of Fig. 11 the equipotential line of seven310

source points covers a small area outside the organ.311

Similar to the stomach, the bladder (Fig. 12) is divided in312

wall and content. Here, too the content was taken as basis for313

the source point placements.314

Fig. 11. Stomach T250, B and S1..S4 (left); 7Q, U = 0.02, and a = 0.21
for S4 (right).

Fig. 12. Bladder T185, B, and S1...4 (left); 4 Q, U = 0.02, and a = 0.27
for S1 (right).

V. DISCUSSION OF POTENTIAL-BASED FEATURES 315

Figs. 8–12 give proof the principle of source points works 316

and show that a satisfying quality of modeling is achieved; 317

even slightly concave contours were modeled by the proper 318

choice of source distances. 319

A. Data Compression 320

For saving a continuous contour the coordinates of the 321

source points and the potential value at the respective refer- 322

ence point are needed, for the given examples it was less than 323

12 numbers. The calculation time for obtaining a distribution 324

for a given number of source points is in the range of a few 325

seconds. 326

B. Data Input for Source Point Placing 327

Since the data for the center calculations are coordinates, 328

the algorithm works for coronal, sagittal, and transversal slices. 329

The results of Section IV were obtained by implementing the 330

voxel model Laura [39]. The method can be applied also to 331

other voxel phantoms. To demonstrate this, heart contours of 332

the human phantoms Golem (T55 U = 0.02, a = 0.13) and 333

Irene (T255 U = 0.02, a = 0.55) were modeled. In theory 334

also other boundary representations, such as polygon meshes, 335

could deliver the basis coordinates for positioning the source 336

points as long as the boundary contour can be approximated 337

by circles (2-D) or spheres (3-D). 338

C. Scaling 339

A potential-based organ contour can be easily scaled in size. 340

It is sufficient to multiply the coordinates of the source points 341

as well as their source strengths Qi by a factor s. For the 342

enlarged heart region, shown in Fig. 13, a factor s = 1.4 was 343
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Fig. 13. Scaling of the equipotential line ϕ0 = 4.13 (red) in the heart slice
T256 (brown).

chosen arbitrarily344

ϕ0 =
z∑

i=0

sQi

sri
=

z∑

i=0

Qi

ri
. (10)345

Although all coordinates will be subjected to this affine trans-346

formation, the potential ϕ0 on the equipotential line will be347

conserved.348

This feature is of interest when existing organ model have to349

be adapted to individual shapes of a patient. For this purpose350

also a change of place and source strength of the single sources351

is of interest if a rigid transformation is not sufficient. At the352

moment this feature works only manually.353

D. Walled Organs and Subtissue354

It is possible to describe the organ wall as a potential range,355

e.g., ϕwall = ϕ0 ± �ϕ. For subtissues inside an organ a range356

of potential values could be utilized. In a voxel model all357

voxel adjacent to another tissue make the organ border. It is358

straightforward that the resolution of the voxels influence the359

resulting thickness of the wall. In this case Laura provides360

voxels of 1.875 ∗ 1.875 ∗ 5 mm3 which makes it difficult to361

present walled or thin organs in a accurate way.362

E. In- or Outside Criterion of the Potential-Based Contour363

For a Monte Carlo simulation of radiation transport the364

released energy of an interaction has to be assigned to an organ365

volume. In case of a voxelized human phantom the organ iden-366

tification number of a specific voxel informs about the tissue367

type. In case of boundary representations like polygon meshes368

and NURBS there is no according information. It is possible369

to implement these type of phantoms to Monte Carlo code but370

it is computational intense [41]. Additional algorithms deliver371

spatial information for assigning the released energy to the372

correct corresponding tissue, i.e., within which organ contour373

energy loss happens, [42].374

The equipotential line is a closed continuous contour, suit-375

able for compact organs like heart, bladder, or stomach, whose376

surfaces primarily show convex regions. To check where an377

arbitrary point is situated in respect to the organ border, it is378

sufficient to see if ϕ > ϕ0 for being inside or ϕ < ϕ0 for379

being outside. Further studies are necessary to show if the380

potential values and the gradient of the potential field provide381

the expected benefits.382

VI. CONCLUSION383

The first trials of the newly explored method of potential-384

based organ contours look promising and provide further385

aspects for development. The organ contours were modeled by 386

a source point distribution with an (1/r)-potential. This physi- 387

cal approach offers an advantage by making use of the inherent 388

features of the physical quantities and the connections among 389

each other. This way a potential-based delineation provides 390

more information about the organ shape despite basing on a 391

small data set. It offers a flexible frame for delineate natural 392

contours. Depending on the complexity of the organ, a point 393

source might not provide an adequate field geometry. Further 394

studies with other sources, e.g., a line source, would be needed. 395

The regulation of the individual source strengths is a complex 396

issue. The alteration of a single source strength is affecting 397

the whole field and changes the resulting equipotential line. 398

The focus of this paper was on compact mostly convex 399

organ shapes in 2-D to proof the principle. For small con- 400

cave parts of organ contours have been satisfactorily modeled 401

by proper spacing between positive sources. The developed 402

placing algorithm is rather basic and does not deliver satis- 403

fying results for organ contours with more convex parts or 404

peaks, e.g., tips of the lungs. These parts would benefit from 405

negative sources. 406

The proposed method can further be used for the extraction 407

of organs from medical images, i.e., for their segmentation. 408

Therefore, a first guess of the contour has to be placed into 409

the medical image. This can be done either manually by 410

placing sources with the mouse or taken from an already vox- 411

elized organ border. Here, the implied features of the physical 412

approach are used, i.e., electric force and the field lines of 413

the sources pointing in radial direction away. In combination 414

with an edge detection of the medical image, the field lines 415

of a source and the gradient of the edges are used to tell how 416

well a source point is oriented toward the respective edge. The 417

source points can be shifted individually in a predefined area 418

to a place where the resulting equipotential line traces the edge 419

in a better way. First tests on CT-images with practical results 420

have been made [40]. 421

OUTLOOK 422

It would be interesting to try more advanced algorithms 423

for source point positioning and the calculation of the source 424

strengths, as well as other potential distributions that may offer 425

mathematical advantages or face special needs for contouring. 426

The implementation of negative source points is an aspects 427

which should be addressed. Concave sections of the organ 428

border would benefit from the use of negative sources. 429

The implementation of the potential-based method into 430

Monte Carlo simulations of radiation transport is consid- 431

ered possible, see Section V-E. Small and thin walled organs 432

could be represented which have not been included in Monte 433

Carlo code until now. The point of data compression is also 434

interesting in regard to the computationally intense simula- 435

tion of radiation transport. Therefor, a 3-D representation with 436

sources is necessary. Equations (5) and (6) were also extended 437

to 3-D but not yet implemented. The compact data structure 438

of the potential-based organ contours also appears applica- 439

ble in computer assisted diagnosis and growth modeling for 440

tumors, e.g., in brains or tumor or organ tracking in radiation 441

therapy. 442
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Introducing the Concept of Potential-Based
Organ Contours

Janine Becker and Mattia Fedrigo

Abstract—The aim of this paper is to explore a new method1

for organ contour description in radiology and radiation pro-2

tection. The method bases on the mathematical computation of3

electrical fields, exploited are the equipotential lines caused by4

a potential field of a distribution of point sources in analogy5

to electric charges. The organ shape is described by the poten-6

tial values of the field, the contour by the equipotentials. The7

potential-dependent methods offers an inside–outside criterion8

and can be scaled in size and edited by changing the source9

points. Because of that it offers a flexible possible framework for10

organ contour editing and also toward segmentation. The main11

focus of this paper is the proof of principle, i.e., the optimization12

of the source point coordinates and source strengths, to show the13

transfer of voxelized organ borders to potential-based contours.14

The already voxelized organ borders were from a human voxel15

phantom generated from 2-D CT images of a real patient. Results16

for several closed and compact organs shall be presented and the17

limitations, future applications and possibilities addressed, e.g.,18

the advantages of an implementation in Monte Carlo calculations19

of radiation transport.20

Index Terms—Equipotential contour, organ modeling,21

potential-based contour.22

I. INTRODUCTION23

ANUMERICAL description (modeling) of human anatomy24

is necessary for various fields of application, like oper-25

ation simulation, e.g., [1], and simulation of irradiations26

by ionizing or nonionizing radiation, e.g., [2]–[5]. For the27

calculation of organ doses in radiation protection human phan-28

toms [2], [6]–[12] and their modeled organs are essential.29

The organ dose Dorg = �E/�m is defined by the energy30

�E deposited by the radiation in an organ of mass �m and31

therefore not directly measurable. In order to obtain these32

organ doses the radiation transport is simulated by Monte33

Carlo codes. For a Monte Carlo simulation of radiation trans-34

port the history of photons or particles is followed. At the35

points of their interactions and endpoints the released energy36

is assigned to the whole organ. Here, the spatial information of37

the organ is needed to calculate the respective dose conversion38

coefficients. For simulation beyond that it would be desirable39
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to implement additional information about, e.g., mechanical, 40

electrical metabolic, or inflammatory status [13]. 41

Natural forms tend to be smooth and closed, compact 42

organs like heart and stomach can be seen as globally con- 43

vex closed shapes. The equipotential lines of a potential field 44

seem to match this aspect. They are continuous and closed. 45

The potential-based method is an indirect but continuous delin- 46

eation of the organ border by source points. The potential field 47

describes the organ border by equipotential lines. By specify- 48

ing a potential range walled and thin organs can be described, 49

e.g., the periosteum or the skin [14]. The gradient of the field 50

provides information if a point is inside or outside of the shape. 51

This is a key function in terms of Monte Carlo simulation 52

of radiation transport. The set of source points, the source 53

strengths and one potential value for an organ contour is an 54

effective data compression and provides a memory saving way 55

of storage and editing by no loss on information. 56

The aim of this paper has been to develop a practicable 57

method to identify the distribution of source points, whose 58

equipotential surface closely approximates a given organ 59

surface. At the present stage, the focus will be on the approx- 60

imation of organ contours in the 2-D case, and the feasibility 61

of the new approach will be tested for the case that all source 62

strengths have positive values. 63

II. STATE OF THE ART 64

So-called voxel models [5]–[12], [15] have been proven to 65

be adequate for radiation transport simulation. They consist 66

of a 3-D matrix of voxels with different organ identifica- 67

tion numbers as classification system. Many such models are 68

presently available. They offer more anatomic reality than 69

purely mathematical models describing organs by mathemati- 70

cal expressions [16]–[18]. The resolution of the voxels plays 71

a big role. This feature mainly dictates the smoothness of the 72

organ surface and how realistic an organ can be represented. 73

Small or thin tissues under voxel resolution cannot be delin- 74

eated or are overestimated in weight and volume, e.g., skin 75

and walled organs. A higher resolution is beneficial for the 76

realistic delineation of organs but affects the calculation time 77

on the other hand. In recent years interest has turned toward 78

individual modeling of organs needed for personal dosimetry, 79

patient treatment or medical image simulation, creating new 80

demands concerning the adjustment of existing models and of 81

the spatial resolution. Since the effort of segmenting new organ 82

models from medical images is still higher than their editing 83

in size or form, the main focus has been on their adaptation 84

to given specifications. Furthermore, the modeling of actual 85

2469-7311 c© 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Source points (green), equipotential lines of the single sources (dashed
circles), and common, equipotential line (red) for organ contour (black).

patient data is of interest for operation planning and train-86

ing, as well as for radiation therapy planning and organ dose87

calculation for diagnostic radiation exposures. Moreover, the88

editing of the organs and tissues on voxel base is very labo-89

rious [19]. Another way to scale organs in size and edit their90

shape is the transfer into other representations like hybrid rep-91

resentations, e.g., [20]–[24] or polygonal nets and nonuniform92

rational B-splines (NURBS) [25]. NURBS are a generaliza-93

tion of B-splines and Bézier curves and surfaces, which are94

fitted to control points on the contour or surface. These meth-95

ods describe only the contour and do not hold additional96

information.97

The transfer from one representation into another is usually98

done by manual interaction on a graphical user interface of99

available software, e.g., Rhinoceros [26].100

In the following other modeling methods that have been101

introduced in the literature are described. M-reps [27] have102

been developed to represent biological forms. Here, medial103

atoms on a line build the objects. A hierarchy of figures builds104

the resulting shape. They do not offer a classification method,105

meaning an individual atom or shape is assigned to a tissue. In106

operation planning a sphere-filled organ modeling [28] can be107

found. This representation is close to voxels. But depending108

on the modeled anatomy, it is probably memory intense as no109

spheres inside an area can be omitted. Furthermore, it is pos-110

sible to model single organ shapes via Fourier surfaces [29],111

spherical harmonics [30]–[32], and wavelets [33], [34]. These112

methods are not available in common software and have to be113

implemented by the user. They are based on a set of parame-114

ters and are not editable in a straightforward way via graphical115

interaction and require a specialist for applying. Further mathe-116

matical descriptions mainly describing the contour of an organ117

can be found in [35]–[38]. These approaches are commonly118

used for segmentation, i.e., organ extraction from medical119

images; to the authors’ knowledge they are not used as input120

format for the simulation of radiation transport.121

III. CONCEPTUAL BASICS122

For a single source point, analogous to an electric charge,123

the 3-D potential field in a homogeneous medium is a sphere,124

and if cut by any plane, the equipotential lines are circles. For125

a group of source points the superposition principle works,126

and the resulting equipotential line will form a more detailed127

contour, see Figs. 1 and 2.128

It shall be analyzed if this idea can be put in praxis, and129

how the source points can be distributed to obtain a resulting130

Fig. 2. Potential field with 7 Q, i.e., the peaks the potential field, and
equipotential line (black) with ϕ0 = 3.1 for a stomach contour, see also
Fig. 11.

equipotential line that is closely tracing a given realistic organ 131

contour. 132

A. Source Points With (Q/r)-Potential 133

For a better understanding how the source points can lead 134

to a contour a short derivation of the underlying electric field 135

principle is presented here 136

�E = Q

4πεr2
�er. (1) 137

Formula (1) shows the electrical field strength �E of an elec- 138

trical point charge Q in a medium with the dielectric constant 139

ε at a distance r. The associated electrical potential ϕ is 140

ϕ = Q

4πεr
. (2) 141

For a distribution of z point charges the resulting electrical 142

potential ϕ is obtained according to the superposition principle 143

ϕ =
z∑

i=0

Qi

4πεri
. (3) 144

In order to model the organ surfaces and no actual physical 145

situation we use a mathematical analogy: we consider source 146

points instead of electrical point charges. The physical constant 147

ε is neglected, a “source strength” Qi is associated with each 148

source point i resulting in a sum potential ϕ. We define that Qi 149

is a positive number and r is the distance from the point source. 150

The potential for a spatial distribution of z source points is 151

ϕ =
z∑

i=0

Qi

ri
. (4) 152

B. Computation and Display of the Potential-Based Lines 153

To show a line of equipotentials it is necessary to pick a 154

field point and compare its local potential ϕ0 to the rest of the 155

potential field. It is the question how to decide for this point 156

of reference. To answer this question the inertia axes of the 157

organ slice were utilized. 158

The axes of inertia span a coordinate system with their 159

origin in the barycenter B of the organ slice, as shown in 160

Fig. 3. The axes cut the organ borders and the intersection 161

points serve as reference for the potential. In the process 162
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Fig. 3. Transversal voxelized slice of the heart with barycenter B and
intersection points S1...4 of the inertia axes and organ border.

of first implementation the potential-based contours for all163

four intersection points S1···4 were displayed and compared.164

The resulting potential-based contours are slightly differ-165

ent and shall be compared by parameters of goodness,166

see Section III-E.167

C. Positioning of the Source Points168

After the consideration how to adapt the basic idea and169

how to display a potential-based contour there is still the open170

question how many and where to place source points in a171

sensible way to proof the concept.172

The already known organ border of a voxelized computa-173

tional phantom shall serve as a guideline for the potential-174

based contours. The voxel model “Laura” [39] of the HMGU175

voxel model family [6] provided the organ borders that176

were transformed in potential-based contours. The so-called177

voxelized phantoms offer a realistic presentation of human178

anatomy. Here, it can be seen if the method of a source point179

distribution fits for realistic organ shapes. In essence every180

other phantom of [6] or set of contour coordinates could be181

used.182

1) Coordinates of the Source Points: An iteration process183

shall distribute a number of sources within the given organ184

border. The individual source points have to be placed in185

regard to their respective border segment, which is obtained186

by dividing the total number of border voxels by the total187

number of sources. Since the equipotential line of a single188

source point is a circle in 2-D (see Section III, Fig. 1), it189

is assumed the respective border voxels xj, yj are on this cir-190

cle and the source is placed at its center point xc, yc at a the191

radius r.192

Formula (5) describes the variation of the center point coor-193

dinates and its distance to each border voxel xj, yj by means194

of auxiliary variables ϑ, η, ρ195

(xc, yc, r) = argmin
ϑ,η,ρ

n∑

j=1

[(
xj − ϑ

)2 + (
yj − η

)2 − ρ2
]2

. (5)196

This algorithm serves to minimize the sum of the squared197

differences (d2
j − r2)2, where198

d2
j = (

xj − xc
)2 + (

yj − yc
)2

. (6)199

These expressions were the basis for a system of equations200

whose final matrix formulation was solved via Cramers’ rule201

and thus provided the desired center points xc, yc.202

Fig. 4. Computation of source point coordinates xc, yc by circle approxima-
tion of xj, yj. AQ2

D. Choice of the Source Strengths 203

After the source points Qi have been placed in a distance r 204

to the border, the source strengths are determined by 205

Qi = ri · ϕR (7) 206

where the potential on the border is ϕR = 1. The sum poten- 207

tial on the organ border ϕ0 will differ from 1 because of the 208

superposition of all point sources. It is expected to be higher 209

but remaining within the same order of magnitude. Among all 210

tried ways this simple one provided adequate results. 211

E. Comparison of the Potential-Based Organ Area With 212

Voxel Area 213

After placing the source points and displaying the equipo- 214

tential line there must be a way of judging how well the final 215

potential-based contour matches the voxelized one. For this 216

purpose the parameters of goodness are introduced. 217

1) Parameters for the Goodness of Fit: For the comparison 218

of the equipotential with the voxel representation, the over- 219

lap U between the potential-modeled and originally voxelized 220

organ region is computed. The combined area of voxelized (O) 221

and potential-based (M) organ region except the intersection 222

of both is related to the original region (O) by 223

U = O ∪ M \ O ∩ M

O
. (8) 224

This can be intuitively understood as organ area not covered 225

by the potential-based region. The closer to zero the better the 226

match between the areas. Because one goodness-of-fit param- 227

eter did not turn out to be sufficient, the distance a between 228

the barycenters of original and potential-based contour were 229

additionally calculated 230

a =
√

(xO − xM)2 + (yO − yM)2. (9) 231

Formula (9) subtracts the coordinates (xO, yO) and (xM, yM) 232

of the barycenters of the original and modeled area and a is 233

given in voxel distances. The optimal case is when there is no 234

distance between the barycenters, i.e., the expression is zero. 235

The values U and a are calculated for a source point dis- 236

tribution, the pair with the smallest values, i.e., closest to 237

zero, indicates the best fit. This way resulting potential-based 238

contours can be compared and evaluated. 239
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Fig. 5. Voxelized heart slice (dark gray) with potential-based contour (light
gray) of 2Q, U=0.05, a=0.44, S4.

Fig. 6. Heart with 11Q (U=0.04, a=1.13, left) and 16 Q(U=0.04, a = 0.71,
right).

IV. RESULTS240

The transversal slice T256 of the voxel data set Laura pro-241

vided the heart contour that served for testing the new method,242

see Figs. 5–7. After the evaluation of the first trials, the posi-243

tioning of the source points, see Section IV-B, was refined and244

applied for organ slices of heart, bladder, stomach, and aorta,245

as presented in Section IV-C.246

A. First Trials247

For the heart slice, the number of source points was var-248

ied from 2 to 42. The parameters of goodness U and a were249

analyzed for every distribution at the four intersection points250

S1, S2, S3, or S4 between the axes of inertia and the organ251

border. Table I shows an excerpt of the parameters for the252

iteration process. The full table can be found in [40].253

For just two source points, Fig. 5 shows that the principle of254

superposition is working. Exact tracing of the organ contour255

is not yet achieved, but that a match between the equipoten-256

tial line and the organ border appears as possible, when the257

number of source points is increased. The distributions with258

11 sources (Fig. 6, left) and 16 sources (Fig. 6, right) show259

the best parameters of all distributions. For both approxima-260

tions small areas outside the original organ contour have been261

modeled, this is due to the more concave segment of the organ262

contour, the single source was oriented to.263

In the example of Fig. 7 the probable optimal number of264

source points is exceeded. Ring structures were created rather265

than a closed area.266

B. Conclusion for Source Point Positioning267

From these results the following conclusions have been268

deduced.269

1) The algorithm for minimization the goodness-of-fit270

parameters does not have an unique solution. For one271

TABLE I
ITERATIONS OF 9–18 SOURCE POINTS Q, WITH THE GOODNESS-OF-FIT

PARAMETERS U AND a FOR THE INTERSECTION POINTS S1 TO S4

Fig. 7. Heart T256 with 29 Q (U = 0.18, a = 1.02, left) and 39 Q (U=0.24
a=0.75, right) each for S1.

organ contour several source point distributions with 272

nearly the same set of goodness parameters have been 273

found. 274

2) Highly curved contours benefit from a higher number of 275

source points. 276

The following rules for numerical stability were adopted in 277

the placing algorithm. 278

1) In a distribution with source points of the same sign, the 279

source points have to be placed inside the organ region. 280

2) Source points very close to or on the organ border lead to 281

numerical instabilities. Improvements may be achieved 282

by eliminating unfavorable source points. 283

C. Potential-Based Organ Contour 284

Based on this experience, potential-based contours for 285

slices of heart, aorta, kidney, stomach, and bladder have 286
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Fig. 8. Heart slice T256, 9 Q, U = 0.02, and a = 0.29 for S4.

Fig. 9. Voxelized slice of aorta with barycenter B and intersections points
S1...4 (left) and potential-based contours with 1Q (middle) and 2Q (right),
both U = 0.04, a = 0.02 for S3.

Fig. 10. Voxelized kidney slice with barycenter B and intersections
pointsS1...4 (left) and 9Q, U = 0.01, and a = 0.55 for S1 (right).

been generated. The source points were distributed within287

the organ region but neither close nor on the organ bor-288

der according to the numerical stability rules of the placing289

algorithm.290

Figs. 8–12 present the original voxelized slices together291

with the best source point distributions with their respec-292

tive goodness parameters. The area within and including the293

potential-based contour can be understood as organ area.294

1) Heart, Aorta, and Kidney: After the implementation of295

the restrictions for placing the sources a distribution of nine296

sources provided the best fit of the potential and voxel-based297

contour for the heart slice (Fig. 8).298

For the aorta the distribution of one and two source points299

worked the same because of its nearly circular shape. For radi-300

ation protection purposed the aorta is not divided in wall and301

blood volume.302

The best set of parameters of all organs has been achieved303

for the kidney (Fig. 10). Only very few voxels were found304

outside the equipotential line.305

2) Walled Organs: In the underlying voxel data of stomach306

(Fig. 11) and bladder (Fig. 12) consist of wall and content.307

Here, the content provided the coordinates for the source point308

placement.309

In the upper part of Fig. 11 the equipotential line of seven310

source points covers a small area outside the organ.311

Similar to the stomach, the bladder (Fig. 12) is divided in312

wall and content. Here, too the content was taken as basis for313

the source point placements.314

Fig. 11. Stomach T250, B and S1..S4 (left); 7Q, U = 0.02, and a = 0.21
for S4 (right).

Fig. 12. Bladder T185, B, and S1...4 (left); 4 Q, U = 0.02, and a = 0.27
for S1 (right).

V. DISCUSSION OF POTENTIAL-BASED FEATURES 315

Figs. 8–12 give proof the principle of source points works 316

and show that a satisfying quality of modeling is achieved; 317

even slightly concave contours were modeled by the proper 318

choice of source distances. 319

A. Data Compression 320

For saving a continuous contour the coordinates of the 321

source points and the potential value at the respective refer- 322

ence point are needed, for the given examples it was less than 323

12 numbers. The calculation time for obtaining a distribution 324

for a given number of source points is in the range of a few 325

seconds. 326

B. Data Input for Source Point Placing 327

Since the data for the center calculations are coordinates, 328

the algorithm works for coronal, sagittal, and transversal slices. 329

The results of Section IV were obtained by implementing the 330

voxel model Laura [39]. The method can be applied also to 331

other voxel phantoms. To demonstrate this, heart contours of 332

the human phantoms Golem (T55 U = 0.02, a = 0.13) and 333

Irene (T255 U = 0.02, a = 0.55) were modeled. In theory 334

also other boundary representations, such as polygon meshes, 335

could deliver the basis coordinates for positioning the source 336

points as long as the boundary contour can be approximated 337

by circles (2-D) or spheres (3-D). 338

C. Scaling 339

A potential-based organ contour can be easily scaled in size. 340

It is sufficient to multiply the coordinates of the source points 341

as well as their source strengths Qi by a factor s. For the 342

enlarged heart region, shown in Fig. 13, a factor s = 1.4 was 343
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Fig. 13. Scaling of the equipotential line ϕ0 = 4.13 (red) in the heart slice
T256 (brown).

chosen arbitrarily344

ϕ0 =
z∑

i=0

sQi

sri
=

z∑

i=0

Qi

ri
. (10)345

Although all coordinates will be subjected to this affine trans-346

formation, the potential ϕ0 on the equipotential line will be347

conserved.348

This feature is of interest when existing organ model have to349

be adapted to individual shapes of a patient. For this purpose350

also a change of place and source strength of the single sources351

is of interest if a rigid transformation is not sufficient. At the352

moment this feature works only manually.353

D. Walled Organs and Subtissue354

It is possible to describe the organ wall as a potential range,355

e.g., ϕwall = ϕ0 ± �ϕ. For subtissues inside an organ a range356

of potential values could be utilized. In a voxel model all357

voxel adjacent to another tissue make the organ border. It is358

straightforward that the resolution of the voxels influence the359

resulting thickness of the wall. In this case Laura provides360

voxels of 1.875 ∗ 1.875 ∗ 5 mm3 which makes it difficult to361

present walled or thin organs in a accurate way.362

E. In- or Outside Criterion of the Potential-Based Contour363

For a Monte Carlo simulation of radiation transport the364

released energy of an interaction has to be assigned to an organ365

volume. In case of a voxelized human phantom the organ iden-366

tification number of a specific voxel informs about the tissue367

type. In case of boundary representations like polygon meshes368

and NURBS there is no according information. It is possible369

to implement these type of phantoms to Monte Carlo code but370

it is computational intense [41]. Additional algorithms deliver371

spatial information for assigning the released energy to the372

correct corresponding tissue, i.e., within which organ contour373

energy loss happens, [42].374

The equipotential line is a closed continuous contour, suit-375

able for compact organs like heart, bladder, or stomach, whose376

surfaces primarily show convex regions. To check where an377

arbitrary point is situated in respect to the organ border, it is378

sufficient to see if ϕ > ϕ0 for being inside or ϕ < ϕ0 for379

being outside. Further studies are necessary to show if the380

potential values and the gradient of the potential field provide381

the expected benefits.382

VI. CONCLUSION383

The first trials of the newly explored method of potential-384

based organ contours look promising and provide further385

aspects for development. The organ contours were modeled by 386

a source point distribution with an (1/r)-potential. This physi- 387

cal approach offers an advantage by making use of the inherent 388

features of the physical quantities and the connections among 389

each other. This way a potential-based delineation provides 390

more information about the organ shape despite basing on a 391

small data set. It offers a flexible frame for delineate natural 392

contours. Depending on the complexity of the organ, a point 393

source might not provide an adequate field geometry. Further 394

studies with other sources, e.g., a line source, would be needed. 395

The regulation of the individual source strengths is a complex 396

issue. The alteration of a single source strength is affecting 397

the whole field and changes the resulting equipotential line. 398

The focus of this paper was on compact mostly convex 399

organ shapes in 2-D to proof the principle. For small con- 400

cave parts of organ contours have been satisfactorily modeled 401

by proper spacing between positive sources. The developed 402

placing algorithm is rather basic and does not deliver satis- 403

fying results for organ contours with more convex parts or 404

peaks, e.g., tips of the lungs. These parts would benefit from 405

negative sources. 406

The proposed method can further be used for the extraction 407

of organs from medical images, i.e., for their segmentation. 408

Therefore, a first guess of the contour has to be placed into 409

the medical image. This can be done either manually by 410

placing sources with the mouse or taken from an already vox- 411

elized organ border. Here, the implied features of the physical 412

approach are used, i.e., electric force and the field lines of 413

the sources pointing in radial direction away. In combination 414

with an edge detection of the medical image, the field lines 415

of a source and the gradient of the edges are used to tell how 416

well a source point is oriented toward the respective edge. The 417

source points can be shifted individually in a predefined area 418

to a place where the resulting equipotential line traces the edge 419

in a better way. First tests on CT-images with practical results 420

have been made [40]. 421

OUTLOOK 422

It would be interesting to try more advanced algorithms 423

for source point positioning and the calculation of the source 424

strengths, as well as other potential distributions that may offer 425

mathematical advantages or face special needs for contouring. 426

The implementation of negative source points is an aspects 427

which should be addressed. Concave sections of the organ 428

border would benefit from the use of negative sources. 429

The implementation of the potential-based method into 430

Monte Carlo simulations of radiation transport is consid- 431

ered possible, see Section V-E. Small and thin walled organs 432

could be represented which have not been included in Monte 433

Carlo code until now. The point of data compression is also 434

interesting in regard to the computationally intense simula- 435

tion of radiation transport. Therefor, a 3-D representation with 436

sources is necessary. Equations (5) and (6) were also extended 437

to 3-D but not yet implemented. The compact data structure 438

of the potential-based organ contours also appears applica- 439

ble in computer assisted diagnosis and growth modeling for 440

tumors, e.g., in brains or tumor or organ tracking in radiation 441

therapy. 442
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