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SUMMARY

The mitochondrial calcium uniporter is a highly
selective ion channel composed of species- and
tissue-specific subunits. However, the functional
role of each component still remains unclear. Here,
we establish a synthetic biology approach to dissect
the interdependence between the pore-forming sub-
unit MCU and the calcium-sensing regulator MICU1.
Correlated evolutionary patterns across 247 eukary-
otes indicate that their co-occurrence may have
conferred a positive fitness advantage. We find
that, while the heterologous reconstitution of MCU
and EMRE in vivo in yeast enhances manganese
stress, this is prevented by co-expression of
MICU1. Accordingly, MICU1 deletion sensitizes hu-
man cells to manganese-dependent cell death by
disinhibiting MCU-mediated manganese uptake. As
a result, manganese overload increases oxidative
stress, which can be effectively prevented by NAC
treatment. Our study identifies a critical contribution
of MICU1 to the uniporter selectivity, with important
implications for patients with MICU1 deficiency, as
well as neurological disorders arising upon chronic
manganese exposure.
INTRODUCTION

Mitochondria from several organisms are able to regulate intra-

cellular calcium (Ca2+) dynamics due to their ability to rapidly

and transiently uptake Ca2+. This occurs through an electropho-

retic uniporter mechanism that makes use of the steep electro-

chemical gradient generated by the respiratory chain (Carafoli

and Lehninger, 1971; Deluca and Engstrom, 1961; Vasington
Cell Repo
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and Murphy, 1962) and is mediated by a highly selective Ca2+

channel located at the inner mitochondrial membrane (Kirichok

et al., 2004). However, themolecular identity of themitochondrial

Ca2+ uniporter has remained a mystery for decades. Recently,

a functional genomics approach has allowed the discovery of

the first peripheral Ca2+-dependent regulator (MICU1) (Perocchi

et al., 2010) and the transmembrane pore-forming subunit of the

uniporter (MCU) (Baughman et al., 2011; De Stefani et al., 2011),

paving the way for the identification of several other inhibitory

and enhancing effectors of mitochondrial Ca2+ (mt-Ca2+) uptake

such as MCUb, MICU2, MICU3, and EMRE (De Stefani et al.,

2016).

Overall, the complex molecular nature of the mammalian uni-

porter highlights the physiological relevance of achieving great

plasticity and selectivity in mt-Ca2+ uptake. Due to the presence

of a very large driving force for cation influx, the uniporter must at

the same time limit mt-Ca2+ accumulation when the cell is at rest

to prevent vicious Ca2+ cycling and rapidly transmit a cytosolic

Ca2+ (cyt-Ca2+) signal to the mitochondrial matrix during

signaling. The highly selective permeability of the uniporter for

Ca2+ is thought to derive from the high-affinity binding of the

ion to the DXXE motif at the MCU pore (Arduino et al., 2017;

Baughman et al., 2011; Cao et al., 2017; Chaudhuri et al.,

2013; Oxenoid et al., 2016), whereas both gating and coopera-

tive activation of the uniporter have been attributed to its inter-

action with hetero-oligomers of MICU1 and MICU2 or MICU3

(Csordás et al., 2013; Kamer et al., 2017; Mallilankaraman

et al., 2012; Patron et al., 2014, 2018). However, the respective

functional and mechanistic roles of those subunits in regulating

uniporter activity have been thus far investigated in mammalian

systems, in which the interpretation of results is hampered by dif-

ferences in the degree of gene silencing, tissue-specific protein

composition (Murgia and Rizzuto, 2015; Vecellio Reane et al.,

2016), stoichiometry, and compensatory remodeling (Liu et al.,

2016; Paillard et al., 2017) of the channel.

The budding yeast Saccharomyces cerevisiae represents an

ideal testbed for dissecting the functional contribution of each
rts 25, 1425–1435, November 6, 2018 ª 2018 The Author(s). 1425
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component of the human uniporter, given that it completely lacks

any detectable MCU homolog (Bick et al., 2012; Cheng and Per-

occhi, 2015) and endogenous mt-Ca2+ transport activity (Ardu-

ino et al., 2017; Carafoli and Lehninger, 1971; Kovács-Bogdán

et al., 2014; Yamamoto et al., 2016), while enabling the facile

expression and targeting of human mitochondrial proteins.

Moreover, we and others have shown that mt-Ca2+ uptake can

be readily reconstituted in vitro in isolated yeast mitochondria

by co-expressing the human MCU and EMRE subunits (Arduino

et al., 2017; Kovács-Bogdán et al., 2014; Yamamoto et al., 2016).

Here, we establish a yeast-based heterologous system to inves-

tigate the functional interconnection between MCU and MICU1

in vivo. By screening for stress conditions whereby the expres-

sion of MICU1 in an MCU-reconstituted yeast strain would

confer a fitness advantage, we identify a protective role of

MICU1 against MCU-dependent manganese (Mn2+) toxicity.

Consistent with these findings, human HEK293 cells lacking

MICU1 become permeable to Mn2+, whose uptake is genetically

and chemically prevented by the re-introduction of wild-type

(WT) MICU1 and by ruthenium red (RuRed), respectively. As a

consequence, MICU1 knockout (KO) cells are greatly sensitized

to Mn2+-induced cell death that is triggered by an increase in

oxidative stress and prevented by N-acetyl-L-cysteine (NAC)

treatment. Our findings highlight a previously unknown role of

MICU1 in regulating the selectivity of the uniporter, with potential

implications for both MICU1 and Mn2+-related human disorders.

RESULTS

Phylogenetic Profiling of MCU and MICU1 across 247
Eukaryotes
We examined the co-evolution and predicted mitochondrial

co-localization of MCU and MICU1 across 247 fully sequenced

eukaryotic species (Figure 1A) from multiple taxonomic levels

at different evolutionary distances to maximize the resolution

of coupled evolutionary patterns (see also https://itol.embl.

de/tree/774755176425021526503446) (Cheng and Perocchi,

2015). We found that MCU homologs were widely distributed

in all of the major eukaryotic groups, present in nearly all Meta-

zoa and Plantae, but only in some Protozoa (e.g., Trypanosoma

cruzi, Leishmania major) and few Fungi. Instead, they apparently

had been lost in all Apicomplexa (e.g., Plasmodium falciparum),

mitochondrial-devoid, single-cell eukaryotes (e.g., Entamoeba

histolytica, Giardia lambia, E. cuniculi), and Saccharomycota

(e.g., S. cerevisiae, Schizosaccharomyces pombe, Candida
Figure 1. Evolutionary Analysis of MCU and MICU1 across 247 Eukary
(A) Phylogenetic distribution of MCU and MICU1 homologs (blue, percentage of

(B) Schematic of ectopically expressed fungal MCU constructs and protein doma

coiled-coil domain; TM, transmembrane domain.

(C) Analysis of whole-cell (W) and mitochondrial (M) fractions from pLKO (WT) or s

A. fumigatus (Af-MCU) MCU fused to a C-terminal V5-tag. HsMTS, mitochondria

(D) Analysis of mitochondrial soluble (S) and membrane pellet (P) fractions.

(E) Analysis of fungal MCU protein topology by proteinase K (PK) treatment. Dig

(F) Macromolecular protein complex analysis of fungal MCU constructs by blue

(G and H) Representative traces and quantification of mt-Ca2+ transients in pLKO

A. fumigatus (Af-MCU) (G) or N. crassa (Nc-MCU) (H) upon histamine (His) stimu

All data represent means ± SEMs; n = 6–8; ***p < 0.001, one-way ANOVA with T

See also Figure S1.
glabrata). We observed a largely overlapping distribution of

MICU1 andMCU homologs, pointing to a strong functional asso-

ciation between the two proteins, which we now know to be part

of the same complex. Only a few species within Basidiomycota

and Ascomycota fungal clades, such as Neurospora crassa

and Aspergillus fumigatus, contained MCU-like proteins without

any detectable MICU1 orthologs.

Given that Fungi also lack EMRE (Sancak et al., 2013), we

reasoned that fungal MCU homologs should be self-sufficient

to drive mt-Ca2+ uptake, similarly to the MCU ortholog from Dic-

tostillium discoideum (Dd-MCU) (Arduino et al., 2017; Kovács-

Bogdán et al., 2014). Therefore, we analyzed their ability to com-

plement MCU loss of function in human cells. We expressed

A. fumigatus (Af-MCU), N. crassa (Nc-MCU), or human MCU

(Hs-MCU) with a C-terminal V5 tag in MCU knockdown (shMCU)

HeLa cells (Figure 1B). To ensure the targeting of fungal MCUs to

humanmitochondria, we also tested chimera proteins consisting

of the Hs-MCUmitochondrial targeting sequence (HsMTS) fused

to the full-length form of Nc-MCU (HsMTSNc-MCU) and Af-MCU

(HsMTSAf-MCU). We showed that all constructs were properly

localized (Figure 1C) and inserted (Figure 1D) into the inner mito-

chondrial membrane of shMCU HeLa cells, with the C termini

facing the matrix side, similar to Hs-MCU (Figure 1E). Further-

more, on a native gel, both Af-MCU and Nc-MCU formed a large

protein complex of a size comparable to that of cells expressing

Hs-MCU (Figure 1F). Next, we quantified mt-Ca2+ uptake tran-

sients in intact (Figures 1G and 1H) and digitonin-permeabilized

(Figure S1) shMCU HeLa cells expressing Hs-MCU, Af-MCU,

or Nc-MCU, together with a mitochondrial matrix-targeted WT

aequorin (mt-AEQ) as a Ca2+ sensor. Although the expression

of Hs-MCU fully rescued mt-Ca2+ uptake, neither Af-MCU nor

Nc-MCU, with and without HsMTS, were able to functionally

complement Hs-MCU loss of function.

The strong co-evolution of MCU andMICU1, together with the

apparent lack of functional MCU homologs in A. fumigatus,

N. crassa, and several other fungal species (Baradaran et al.,

2018) that do not express any MICU1-like component, suggest

that MCU and MICU1 constitute the conserved unit of a eukary-

otic uniporter, and their functional interaction could be required

to provide a fitness advantage.

In Vivo Reconstitution of Mitochondrial Calcium Uptake
in Yeast
Yeast uses cyt-Ca2+ signaling to activate pro-survival, adaptive

responses to diverse environmental stresses (Cyert, 2003). We
otes
amino acids match length). MTS, mitochondrial targeting sequence.

ins. DXXEmotif and MTS cleavage site prediction (arrow) are also shown. CCD,

hMCU HeLa cells stably expressing human (Hs-MCU), N. crassa (Nc-MCU), or

l targeting sequence of human MCU; NI, not infected.

, digitonin; T, triton (1%).

native (BN)-PAGE.

(WT) or shMCU HeLa cells stably expressing MCU from human (Hs-MCU) and

lation.

ukey’s multiple comparisons test.
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Figure 2. In vivo Reconstitution of mt-Ca2+ Uptake in Yeast

(A) Schematic of the Ca2+ homeostasis system and glucose-induced calcium (GIC) signaling in S. cerevisiae. CaM, calmodulin; CaN, calcineurin; Crz1, calci-

neurin-dependent transcription factor; Crz1P, phosphorylated Crz1; ER, endoplasmic reticulum; HACS, high-affinity Ca2+ transport system; HXT, hexose

transporter; mtAEQ, mitochondria-targeted aequorin; PMC1, vacuolar Ca2+-ATPase; PMR1, ER/Golgi Ca2+-ATPase; VCX1, vacuolar H+/Ca2+ exchanger; Yvc1,

transient receptor potential cation (TRPC)-type Ca2+ channel.

(B) Cyt-Ca2+ transients in yeast cells upon GIC stimulation in the presence of different extracellular CaCl2 concentrations (n = 3); *p < 0.05, **p < 0.01, ***p < 0.001;

one-way ANOVA with Dunnett’s multiple comparisons test.

(C) Mt-Ca2+ transients in yeast cells expressing WT mtAEQ, Hs-EMRE, and either WT or mutated Hs-MCU upon GIC stimulation in the presence of 1 mM CaCl2
(n = 3); ***p < 0.0001; one-way ANOVA with Tukey’s multiple comparisons test. Inset: immunoblot analysis of cytosolic (C) and mitochondrial (M) fractions.

(D) Cyt-Ca2+ transients in yeast cells expressing empty vectors (p425, p423) or Hs-EMREwith either WT or mutant Hs-MCU upon GIC stimulation in the presence

of 1 mM CaCl2 (n = 3); *p < 0.05, **p < 0.01, ***p < 0.001; one-way ANOVA with Dunnett’s multiple comparisons test.

(E) Extracellular Ca2+ clearance by mitochondria isolated from the yeast strains expressing Hs-MCU, Hs-EMRE, and either an empty vector (p414), human WT

MICU1 (Hs-MICU1), or EF-hands mutant MICU1 (Hs-MICU1mEF), (n = 3); ***p < 0.001; one-way ANOVA with Tukey’s multiple comparisons test.

All data represent means ± SEMs.

See also Figure S2.
therefore asked whether the reconstitution of MCU-mediated

mt-Ca2+ uptake in yeast would affect the activation of cyt-Ca2+

dynamics in vivo. As an extracellular stimulus, we chose

glucose-induced calcium (GIC) activation, whereby the addition

of glucose and extracellular Ca2+ to cells starved for >2 hr

in hexose-free medium triggers cyt-Ca2+ transients (Figures 2A

and 2B) (Groppi et al., 2011). Next, we generated yeast strains

expressing WT mt-AEQ together with Hs-MCU, Hs-EMRE, or
1428 Cell Reports 25, 1425–1435, November 6, 2018
both and confirmed that their co-expression was necessary

and sufficient to drive mt-Ca2+ uptake in vivo (Figure S2A) and

to respond to a wide dynamic range of external Ca2+ concentra-

tions (Figure S2B). Accordingly, Hs-MCU mutants in highly

conserved acidic residues within the DXXE motif (Hs-MCUD261A;

Hs-MCUE264A) were either partially functional (Hs-MCUD261A)

or almost completely unable (Hs-MCUE264A) to fully transfer

GIC-induced cyt-Ca2+ signals into the mitochondrial matrix



(Figure 2C). Likewise, yeast strains expressing Af-MCU or

Nc-MCU (Figure S2C) were unable to drive Ca2+ uptake in the

organelle, compared to cells reconstituted with Dd-MCU (Fig-

ure S2D). As hypothesized, the in vivo reconstitution of MCU-

mediated mt-Ca2+ uptake resulted in a prompt buffering of

GIC-induced cyt-Ca2+ elevations (Figure 2D). We then tested

whether the expression of WT human MICU1 (Hs-MICU1) (Fig-

ure S2E) would be sufficient to reconstitute a Ca2+-regulated uni-

porter in yeast. Similar to mammalian cells (Csordás et al., 2013;

Kamer et al., 2017; Mallilankaraman et al., 2012), the presence of

WT but not EF-hands mutant (Hs-MICU1mEF) significantly

increased the MCU-dependent mt-Ca2+ level upon GIC activa-

tion in intact cells (Figure S2F) and a bolus of high Ca2+ in isolated

mitochondria (Figure 2E).

These results validate our in vivo, heterologous experimental

system for the study of uniporter-mediated Ca2+ uptake. They

also demonstrate that the expression of Hs-MCU, Hs-EMRE,

and Hs-MICU1 in yeast is sufficient to reconstitute Ca2+-regu-

lated uniporter activity in response to physiological stimuli that

activate intracellular Ca2+ signaling.

MCU Impairs Yeast Tolerance to Metal Stress
We then searched for biological conditions in which the reconsti-

tution of MCU-mediated mt-Ca2+ uptake in the absence of the

regulatory subunit MICU1 would lead to fitness impairment.

We compared the fitness of yeast strains expressing a functional

(Hs-MCU/EMRE) or an inactive (Hs-MCUE264A/EMRE) uniporter

to that of WT cells upon different environmental stresses (Fig-

ure 3), including heat shock, fungicide treatment, high salt, and

heavy metals. To this end, we used growth rate as a proxy for

cell survival and proliferation and ensured their reliance on func-

tional mitochondria by using lactate as a non-fermentable car-

bon source. Overall, we observed comparable doubling times

among the three different strains during normal growth at 30�C
in lactate medium, which was >2-fold higher upon heat shock

(37�C) (Figure 3A). Likewise, treatment with increasing doses

of two antifungal drugs, miconazole and amiodarone, either

decreased the growth rate of the yeast cultures by >2-fold

(miconazole, 100 ng/mL) (Figure 3B) or resulted in a complete

cessation of growth (amiodarone, 20 mM) (Figure 3C), regardless

of the genetic background. The three strains also showed similar

sensitivities to salt stress (NaCl and CaCl2) within the range of the

tested concentrations (Figures 3D, 3E, and S3A).

Instead, we observed notable differences among strains

in their responses to heavy metals-induced stress (Sr2+, Cu2+,

Zn2+, Fe2+, Mn2+) (Figure 3F). Those cations are essential for

normal growth and metabolism when present at minimal levels

in the medium, but at high concentrations they can induce cyto-

toxicity (Wysocki and Tamás, 2010). Accordingly, with the

exception of Sr2+ (Figure S3B), the doubling time of WT yeast

cultures was >2-fold higher in the presence of high extracellular

concentrations of CuCl2, FeCl2, and ZnCl2 (Figure 3F). While all

strains showed a similar tolerance to CuCl2 and ZnCl2, we

observed a greater hypersensitivity of the functional MCU-re-

constituted strain to both Fe2+ and Mn2+ toxicity, which mani-

fested as a drastic reduction in cell proliferation at concentra-

tions >10 and 1 mM, respectively (Figure 3F). In addition,

expression of Hs-MCUE264A did not impair tolerance to Mn2+
stress, whereas the same mutation was not sufficient to prevent

Fe2+-induced toxicity, suggesting a potentially different coordi-

nation of Fe2+ with the DXXE motif.

These observations indicate that in the absence of MICU1,

MCU may mediate the cytotoxic accumulation of heavy metals

in mitochondria.

MICU1 Protects Human Cells from MCU-Dependent
Mn2+ Toxicity
We speculate that the co-occurrence of MCU and MICU1 could

confer an evolutionary advantage by shielding mitochondria

from an unwanted accumulation of heavy metals. Thus, we

tested whether the reconstitution of an MICU1-regulated uni-

porter would be sufficient to protect yeast cells from MCU-

dependent Mn2+ and Fe2+ stresses. We found that the expres-

sion of either Hs-MICU1 or Hs-MICU1mEF significantly rescued

the hypersensitivity of the MCU-reconstituted strain toward

both Fe2+ (Figure S4A) and Mn2+ (Figure 4A) stresses. This

finding indicated that MICU1 interaction with Hs-MCU and

Hs-EMRE, rather than functional EF-hands, was required to pre-

vent Fe2+ and Mn2+ entry into mitochondria, most probably by

keeping the channel in a close conformation.

Next, we recapitulated the above findings in mammalian cells.

To this end, we compared the viability of WT and MICU1-KO

HEK293 cells upon treatment with increasing concentrations of

either FeCl2 or MnCl2 for 48 hr. Unlike yeast, neither WT nor

MICU1-KO HEK293 cells showed an increased sensitivity to

Fe2+ treatment (Figure S4B), even at high non-physiological

concentrations, indicating major differences in the mechanisms

used by fungal and mammalian cells to regulate Fe2+ homeosta-

sis and cope with its overload (Philpott, 2012). Instead, we

observed a dramatic decrease in cell viability when MICU1-KO

cells were treated with concentrations of Mn2+ >10 mM, which

did not affect WT cells (Figure 4B). As observed in yeast, the pro-

tective role ofMICU1 towardMn2+ toxicity was not dependent on

having functional Ca2+-sensing domains, as a genetic rescue

with either Hs-MICU1 or Hs-MICU1mEF resulted in a significantly

higher tolerance than MICU1-KO cells to 25 mM Mn2+ (Figures

S4C and S4D).

These results pointed toward a critical role of MICU1 in inhib-

iting MCU-dependent Mn2+ toxicity, which could be exerted by

directly regulating Mn2+ entry through the uniporter. We there-

fore measured mitochondrial Mn2+ uptake in WT and MICU1-

KO HEK293 cells by monitoring the quenching of the fluores-

cence signal from mitochondrial compartmentalized Fura-FF

upon Mn2+ entry in the mitochondrial matrix (Csordás and Haj-

nóczky, 2003). We confirmed previous findings showing that in

the presence of submicromolar cyt-Ca2+ levels, mitochondria

from WT cells are not permeable to Mn2+ (Figure 4C). Instead,

in the same conditions, MICU1 KO cells displayed robust mito-

chondrial Mn2+ uptake, as indicated by the time-dependent

quenching of the fluorescence signal upon addition of 20 mM

Mn2+ (Figure 4C). This uptake was completely inhibited by

RuRed and fully rescued by the expression of WT MICU1 in

the HEK293 KO genetic background (Figure 4D), validating that

the observed Mn2+ transport was mediated by MCU. Moreover,

we showed that the pre-addition of 30 mMCa2+, a concentration

at which the uniporter is disinhibited, resulted in Mn2+ entry also
Cell Reports 25, 1425–1435, November 6, 2018 1429
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Figure 3. MCU Impairs Yeast Tolerance to Iron and Manganese Stresses

(A–F) Quantification of growth rate and average growth curve of yeast strains expressing empty vectors (p423 and p425) or Hs-EMRE with WT or mutated

Hs-MCU at 30�C and 37�C (A), and at increasing concentrations of miconazole (B), amiodarone (C), NaCl (D), CaCl2 (E), or heavy metals (F).

Data represent means ± SEMs; n = 4; ***p < 0.0001; one-way ANOVA with Tukey’s multiple comparisons test.

See also Figure S3.
in HEK293WT cells (Figure 4E), which is consistent with previous

results in rat basophilic leukemia (RBL)-2H3 mast cells (Csordás

and Hajnóczky, 2003).

Although the mechanism of mitochondrial Mn2+ toxicity is not

entirely understood, it is believed that increased oxidative stress

triggered by Mn2+ overload plays a role in the induction of cell

death (Smith et al., 2017). Thus, we measured reactive oxygen

species (ROS) production in MICU1-KO cells exposed to high

extracellular Mn2+ concentrations. As shown in Figure 4F,
1430 Cell Reports 25, 1425–1435, November 6, 2018
MICU1-KO cells exhibited a significant increase in intracellular

ROS production upon 25 mMMn2+ treatment, which is compara-

ble to the level induced by treatment with H2O2. We then

searched for strategies that could prevent Mn2+-induced

toxicity. Fe2+ supplementation has already been proposed as a

therapeutic strategy to treat or prevent neurological disorders

due to a chronic increase of Mn2+ level in the blood (O’Neal

and Zheng, 2015; Tai et al., 2016), as both cations compete

for the same plasma membrane divalent metal transporter.
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Figure 4. MICU1 Protects from Manganese-Induced Cell Death

(A) Quantification of growth rate and average growth curve of yeast strains treated with MnCl2; n = 4; **p < 0.01; ***p < 0.001; one-way ANOVA with Tukey’s

multiple comparisons test.

(B) Cell viability of wild-type (WT) and MICU1 knockout (MICU1-KO) HEK293 cells treated for 48 hr with MnCl2; n = 4.

(C–E) Detection of mitochondrial Mn2+ uptake through the quench of compartmentalized Fura-FF in permeabilized single WT andMICU1-KO cells in the absence

(C) or presence (D) of CaCl2 and upon transfection with MICU1 or pcDNA in the absence and presence of 3 mM RuRed (E). Each trace represents the mean of

40–50 cells from one of three different cell cultures.

(F) Measurements of ROS by 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) inWT andMICU1-KO cells treated for 48 hr with

vehicle, MnCl2, or H2O2. Data represent means ± SEMs; n = 8; **p < 0.01, ***p < 0.001; one-way ANOVA with Tukey’s multiple comparisons test.

(legend continued on next page)
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Treatment of MICU1-KO cells with 25 mM Mn2+ in the presence

of 0.5 mM FeCl2 (Figure 4G) consistently resulted in cell survival,

whereas FeCl2 pre-treatment for 24 hr was unable to confer

protection to Mn2+-induced stress (Figure S4E). We also tested

the effect of several antioxidant compounds on Mn2+-induced

oxidative stress (Figure S4F) and found that NAC treatment

was able to fully rescue Mn2+-induced cell death in MICU1 KO

cells (Figure 4H).

Our findings establish an essential role of MICU1 in regulating

the permeability of the uniporter to Mn2+, which is essential for

preventing Mn2+-induced cytotoxicity.

DISCUSSION

Our phylogenetic analysis (Figure 1) and a previous compara-

tive genomics study (Bick et al., 2012) highlight a widespread

co-occurrence of MCU and MICU1 across Metazoa, Plantae,

and Protozoa, with the exception of Fungi. The presence of

MCU homologs in several Ascomycota and Basidiomycota

fungal clades devoid of any detectable MICU1 has led to the

hypothesis that MCU could exist independently of a Ca2+-

sensing regulator. This is based on the assumption that fungal

MCU homologs are able per se to mediate mt-Ca2+ uptake,

with properties similar to the mammalian uniporter. Our results

from functional complementation analyses in human shMCU

cells (Figures 1 and S1) and from in vivo reconstitution in yeast

(Figure S2) show that MCU orthologs from N. crassa and

A. fumigatus are unable to drive mt-Ca2+ uptake, despite

proper expression, mitochondrial localization, topology, and

assembly. Those findings are consistent with previous observa-

tions from Carafoli and Lehninger (1971) and from Gonçalves

et al. (2015) that mitochondria of N. crassa have a limited ability

to accumulate Ca2+, which occurs in the range of hours, are

only partially inhibited by Ru360, and are not driven by mem-

brane potential. Recently, it was reported that a putative

MCU ortholog could mediate Ca2+ transport into A. fumigatus

mitochondria (Song et al., 2016) and the structures of MCU or-

thologs from several Fungi (Baradaran et al., 2018; Fan et al.,

2018; Nguyen et al., 2018), including N. crassa (Yoo et al.,

2018), have been characterized. However, Af-MCU-KO elicited

only a 50% decrease in Ca2+ uptake into A. fumigatus mito-

chondria. Moreover, there is currently no direct evidence that

MCU orthologs from Nassarius fischeri (Nguyen et al., 2018),

Fusarium graminearum, and Metarhizium acridum (Fan et al.,

2018) mediate mt-Ca2+ uptake in those organisms, neither

that other fungal MCUs can reconstitute mt-Ca2+ uptake

when expressed in yeast or mammalian cells (Baradaran

et al., 2018). These results would lead to conjecture that either

the MCU-like sequences found in some Fungi encode for pro-

teins that have lost Ca2+ uptake ability or they could be involved

in Ca2+ transport through mechanisms that are different from

the mammalian uniporter. Further experiments will be neces-
(G) Cell viability of WT and MICU1-KO cells treated for 48 hr with MnCl2 in the p

(H) Cell viability of WT and MICU1-KO cells treated for 48 hr with MnCl2 in the pr

All data represent means ± SEMs and are reported as the percentage of viable c

See also Figure S4.
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sary to uncover the function of those MCU-like proteins in

Fungi and to resolve the paradox of species with MCU-like

sequences without MICU1 orthologs.

To investigate the direct contribution ofMICU1 to the uniporter

activity, we used the yeast S. cerevisiae as a model system.

Previous results, including ours, have shown that Hs-MCU and

Hs-EMRE are sufficient to drive Ca2+ uptake in vitro into the ma-

trix of isolated mitochondria (Arduino et al., 2017; Kovács-Bog-

dán et al., 2014; Yamamoto et al., 2016). Here, we show that

they can reconstitute mt-Ca2+ entry in vivo in yeast in response

to a physiological increase in cyt-Ca2+ (Figure 2). Furthermore,

similar to mammalian cells, the expression of Hs-MICU1 in

MCU-reconstituted yeast cells exerts a synergistic effect on

mt-Ca2+ uptake, which is dependent on its Ca2+-sensing do-

mains. Therefore, we searched for biological conditions whereby

a positive MCU-MICU1 genetic interaction would provide a se-

lective fitness advantage over a yeast strain reconstituted with

MCU without its regulator (Figure 3). We found that MCU-recon-

stituted yeast cells are more susceptible to the increase of Mn2+

levels in the extracellular medium, which is likely due to its

permeation across the uniporter (Cao et al., 2017; Csordás

and Hajnóczky, 2003; Mela and Chance, 1968; Romslo and

Flatmark, 1973; Saris, 2012; Vinogradov and Scarpa, 1973).

Co-expression with MICU1 conferred full protection against

uniporter-dependent Mn2+ toxicity (Figure 4), regardless of func-

tional EF-hand domains. All of these findings were recapitulated

in HEK293 cells, where the KO of MICU1 hypersensitized cells to

Mn2+-dependent cell death. Thus, unlike Ca2+, the binding of

Mn2+ to EF-hands (Senguen and Grabarek, 2012; Shirran and

Barran, 2009) would be insufficient to trigger in MICU1 the

conformational change needed for the opening of the MCU

channel, a hypothesis that was recently validated by Kamer

et al. (2018).

Our findings are of great relevance for patients with MICU1

loss-of-function mutations (Lewis-Smith et al., 2016; Logan

et al., 2014; Musa et al., 2018). So far, the disease phenotypes

observed in human patients and recapitulated in MICU1-KO

mice (Antony et al., 2016; Liu et al., 2016) were attributed to

high basal mt-Ca2+ levels, possibly due to the loss of MICU1-

dependent gatekeeping of the uniporter. In light of our results,

those could also result fromMn2+ accumulation in mitochondria,

which would have an additive effect: it would increase mt-Ca2+

levels by inhibiting both Na+-dependent and Na+-independent

mt-Ca2+ efflux routes (Gavin et al., 1990), and it would increase

oxidative stress and trigger cell death (Smith et al., 2017).

Accordingly, antioxidant treatment with NAC fully prevented

Mn2+-induced cell death in MICU1-KO cells. This result is

consistent with previous findings showing that treatment of cells,

mice, rats, and nonhuman primates with NAC during exposure to

high doses of MnCl2 is protective against Mn2+ cytotoxicity

(Smith et al., 2017). Finally, our findings also suggest MICU1 as

a possible target for neurological diseases related to chronic
resence of FeCl2 (n = 3).

esence of N-acetyl-L-cysteine (NAC) (n = 3).

ells in untreated samples.



exposure to environmental sources of Mn2+ such as, for

example, Mn2+-rich foods, Mn2+ aerosols and dusts in mines

and smelters, and air pollution from the combustion of gasoline

containing methylcyclopentadienyl Mn2+ tricarbonyl (O’Neal

and Zheng, 2015).

In summary, our study demonstrates the power of combining

comparative genomics analyses with the use of yeast as amodel

system for dissecting the functional andmechanistic role of each

component of the mammalian uniporter. The reconstitution of an

MICU1-regulated uniporter in yeast offers an incomparable

advantage over similar investigations of MICU1 and MCU inter-

dependence in mammalian cells, in which MICU1 KO or knock-

down also has confounding effects on the expression of other

uniporter subunits, such as MICU2 and MICU3 (Patron et al.,

2014, 2018; Plovanich et al., 2013). Importantly, we unraveled

a key role of MICU1 in regulating the selectivity of the uniporter

towards Ca2+ ions, with important implications for patients with

MICU1 deficiency.
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Mantoan, M., Granatiero, V., Szabò, I., De Stefani, D., and Rizzuto, R.

(2014). MICU1 and MICU2 finely tune the mitochondrial Ca2+ uniporter by

exerting opposite effects on MCU activity. Mol. Cell 53, 726–737.

Patron, M., Granatiero, V., Espino, J., Rizzuto, R., and De Stefani, D. (2018).

MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell

Death Differ. Published online May 3, 2018. https://doi.org/10.1038/s41418-

018-0113-8.

Perocchi, F., Gohil, V.M., Girgis, H.S., Bao, X.R., McCombs, J.E., Palmer, A.E.,

and Mootha, V.K. (2010). MICU1 encodes a mitochondrial EF hand protein

required for Ca(2+) uptake. Nature 467, 291–296.

Philpott, C.C. (2012). Coming into view: eukaryotic iron chaperones and intra-

cellular iron delivery. J. Biol. Chem. 287, 13518–13523.

Plovanich, M., Bogorad, R.L., Sancak, Y., Kamer, K.J., Strittmatter, L., Li, A.A.,

Girgis, H.S., Kuchimanchi, S., De Groot, J., Speciner, L., et al. (2013). MICU2, a

paralog of MICU1, resides within the mitochondrial uniporter complex to regu-

late calcium handling. PLoS One 8, e55785.

Romslo, I., and Flatmark, T. (1973). Energy-dependent accumulation of iron

by isolated rat liver mitochondria. II. Relationship to the active transport of

Ca2+. Biochim. Biophys. Acta 325, 38–46.

Sancak, Y., Markhard, A.L., Kitami, T., Kovács-Bogdán, E., Kamer, K.J., Ude-
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De Filippis, V., Szabò, I., Zanotti, G., Rizzuto, R., and Raffaello, A. (2016).
A MICU1 splice variant confers high sensitivity to the mitochondrial Ca2+

uptake machinery of skeletal muscle. Mol. Cell 64, 760–773.

Vinogradov, A., and Scarpa, A. (1973). The initial velocities of calcium uptake

by rat liver mitochondria. J. Biol. Chem. 248, 5527–5531.

Wettmarshausen, J., and Perocchi, F. (2017). Isolation of functional mitochon-

dria from cultured cells and mouse tissues. Methods Mol. Biol. 1567, 15–32.

Wysocki, R., and Tamás, M.J. (2010). How Saccharomyces cerevisiae copes

with toxic metals and metalloids. FEMS Microbiol. Rev. 34, 925–951.

Yamamoto, T., Yamagoshi, R., Harada, K., Kawano, M., Minami, N., Ido, Y.,

Kuwahara, K., Fujita, A., Ozono, M., Watanabe, A., et al. (2016). Analysis of

the structure and function of EMRE in a yeast expression system. Biochim.

Biophys. Acta 1857, 831–839.

Yoo, J., Wu, M., Yin, Y., Herzik, M.A., Jr., Lander, G.C., and Lee, S.Y. (2018).

Cryo-EM structure of a mitochondrial calcium uniporter. Science 361,

506–511.
Cell Reports 25, 1425–1435, November 6, 2018 1435

http://refhub.elsevier.com/S2211-1247(18)31613-9/sref50
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref50
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref50
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref51
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref51
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref51
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref52
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref52
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref52
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref52
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref53
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref53
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref53
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref54
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref54
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref54
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref54
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref55
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref55
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref56
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref56
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref57
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref57
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref58
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref58
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref58
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref58
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref59
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref59
http://refhub.elsevier.com/S2211-1247(18)31613-9/sref59


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-MCU Sigma-Aldrich Cat#HPA016480; Lot#C0114358; RRID: AB_2071893

Rabbit polyclonal anti-EMRE - C22orf32 (clone C-12) Santa Cruz Biotechnology Cat#sc-86337; Lot#K0215; RRID: AB_2250685

Mouse monoclonal anti-Aequorin (clone 6E3.2) Merck/Millipore Cat#MAB4405; RRID: AB_94900; RRID: AB_94900

Rabbit polyclonal anti-MICU1 Sigma-Aldrich Cat#HPA037480; Lot#N107141; RRID: AB_10696934

Anti-Sc-Yme1 produced in rabbit Schreiner et al., 2012 N/A

Mouse monoclonal anti-TIM23 BD Bioscience Cat#611222; Lot#3067849; RRID: AB_398754

Rabbit polyclonal anti-MICU1 Atlas Antibody Cat#HPA037479; Lot#R34024; RRID: AB_2675495

Mouse monoclonal anti-Cyclophilin D [E11AE12BD4] Abcam Cat#ab110324; Lot#GR134866-15; RRID: AB_10864110

Mouse monoclonal anti-ATP5A Invitrogen Cat#43-9800; Lot#TA2516391; RRID: AB_2533548

Mouse monoclonal anti-V5 Life Technologies Cat#R96025; Lot#1792242; RRID: AB_2556564

Mouse monoclonal anti-HSP60 R&D System Cat#MAB1800; Lot#UNG02; RRID: AB_11212084

Mouse monoclonal anti-TOMM20 Abcam Cat#Ab56783; Lot#GR3188177-1; RRID: AB_945896

Mouse monoclonal anti-b-Actin Sigma-Aldrich Cat#A2228; Lot#085M4754V; RRID: AB_476697

Chemicals, Peptides, and Recombinant Proteins

Amiodarone hydrochloride Sigma-Aldrich Cat#A8423; CAS: 19774-82-4

Antioxidant Supplement (1000 3 ) Sigma-Aldrich Cat#A1345

Calcium chloride dihydrate Merck/Millipore Cat#208290; CAS: 10035-04-8

Calcium Green-5N, Hexapotassium Salt,

cell impermeant

Thermo Fisher Scientific Cat#C3737; CAS: 153130-66-6

CM-H2DCFDA (General Oxidative Stress Indicator) Thermo Fisher Scientific Cat#C6827

Coelenterazine, native Abcam Cat#ab145165; CAS: 55779-48-1

Copper(II) chloride Sigma-Aldrich Cat#751944; CAS: 7447-39-4

Digitonin Sigma-Aldrich Cat#D141; CAS: 11024-24-1

Hydrogen peroxide 30% (w/w) solution Sigma-Aldrich Cat#H1009; CAS: 7722-84-1

Idebenone Santhera Pharmaceuticals CAS: 58186-27-9; Lot#99826G001B

Iron(II) chloride tetrahydrate Merck/Millipore Cat#1038610250; CAS: 13478-10-9

L-Glutathione reduced Sigma-Aldrich Cat#G6013; CAS: 70-18-8

Mn2+(II) chloride tetrahydrate Merck/Millipore Cat#1059271000; CAS: 13446-34-9

Miconazole nitrate salt Sigma-Aldrich Cat#M3512; CAS: 22832-87-7

N-Acetyl-L-cysteine Sigma-Aldrich Cat#A9165; CAS: 616-91-1

Native Mark Unstained Protein Standard-5 Life Technologies Cat#LC0725

Native PAGE 20x Cathode Buffer Life Technologies Cat#BN2002

Native PAGE Novex 3-12%, Bis-Tris Protein, 10well Life Technologies Cat#BN1001

Native PAGE Running Buffer (20x) Life Technologies Cat#BN2001

NativePAGE 5% G-250 Sample Additive Life Technologies Cat#BN2004

NativePAGE Sample Buffer (4x) Life Technologies Cat#BN2003

Ru360 Calbiochem Cat#557440

Strontium chloride hexahydrate Merck/Millipore Cat#1078650250; CAS: 10025-70-4

Thiazolyl Blue Tetrazolium Bromide (MTT) Sigma-Aldrich Cat#M5655; CAS: 298-93-1

Zinc chloride Sigma-Aldrich Cat#Z0152; CAS: 7646-85-7

Zymolyase 20T from Arthrobacter luteus Amsbio Cat#120491-1

6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic

acid (Trolox)

Sigma-Aldrich Cat#238813; CAS: 53188-07-1

(Continued on next page)
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Continued
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Ruthenium Red Sigma R2751

Fura-2 low affinity (AM) Teflabs 0-136

Thapsigargin Enzo Life Sciences BML-PE180-0005

CGP-37157 Enzo Life Sciences BML-CM119-0005

Lipofectamine 3000 Life Technologies L3000008

Critical Commercial Assays

Pierce BCA Protein Assay Kit Thermo Fisher Scientific Cat#23227

CyQUANT Cell Proliferation Assay Kit Thermo Fisher Scientific Cat#C7026

Experimental Models: Cell Lines

HEK293T cells ATCC CRL-11268

MICU1-knockout HEK293T cells (MICU1-KO) Vamsi K. Mootha

Laboratory

Kamer and Mootha (2014); Kamer et al. (2017)

MICU1-KO HEK293T cells rescued with WT MICU1 This paper N/A

MICU1-knockout HEK293T cells rescued with

EF-hands mutant MICU1

This paper N/A

pLKO HeLa cells stably expressing WT mt-AEQ This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ +

HsMCU

This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ +
HsMTSAfMCU

This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ +

AfMCU

This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ +

NcMCU

This paper N/A

shMCU HeLa cells stably expressing WT mt-AEQ +
HsMTSNcMCU

This paper N/A

Experimental Models: Organisms/Strains

S. cerevisiae: Strain background: YPH499 expressing

HsMCU + HsEMRE + WT mt-AEQ

Arduino et al., 2017 N/A

S. cerevisiae: Strain background: YPH499 expressing

HsMCUE264A + HsEMRE + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

HsMCUD261A + HsEMRE + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

HsMCU + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

DdMCU + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

AfMCU + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

NcMCU + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

HsEMRE + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

HsMCU + HsEMRE + HsMICU1 + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

HsMCU + HsEMRE + HsMICU1mEF + WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 + p414GPD

expressing HsMCU + HsEMRE + WT mt-AEQ

This paper N/A

(Continued on next page)
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Continued
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S. cerevisiae: Strain background: YPH499 +p423GPD +

p425GPD expressing WT mt-AEQ

This paper N/A

S. cerevisiae: Strain background: YPH499 expressing

WT mt-AEQ

This paper N/A

Oligonucleotides

MCU shRNA targeting sequence:

50-GCAAGGAGTTTCTTTCTCTTT-30
RNAi Consortium,

Broad Institute

TRCN0000133861

Recombinant DNA

p316GPD (plasmid) Arduino et al., 2017 N/A

p423GPD (plasmid) Mumberg et al., 1995 N/A

p425GPD (plasmid) Mumberg et al., 1995 N/A

p414GPD (plasmid) Mumberg et al., 1995 N/A

MCU full-length with V5-tag (pLX304) Arduino et al., 2017 N/A

AfMCU full-length with V5-tag (pLX304) This paper N/A
HsMTSAfMCU full-length with V5-tag (pLX304) This paper N/A
HsMTSNcMCU full-length with V5-tag (pLX304) This paper N/A

NcMCU full-length with V5-tag (pLX304) This paper N/A

DdMCU full-length with V5-tag (pLX304) This paper N/A

MCU full-length with V5-tag (p423GPD) Arduino et al., 2017 N/A

AfMCU full-length with V5-tag (p423GPD) This paper N/A

NcMCU full-length with V5-tag (p423GPD) This paper N/A

DdMCU full-length with V5-tag (p423GPD) This paper N/A

pcDNA-dest40-MICU1-HA (Kamer et al., 2017) N/A

Software and Algorithms

GraphPad Prism 5.0 or newer GraphPad Software N/A

MATLAB R2014b MathWorks N/A

ProtPhylo Cheng and Perocchi, 2015 www.protphylo.org

Phylogenetic tree generator N/A https://phylot.biobyte.de/

iTOL N/A https://itol.embl.de/

Canvas X N/A N/A

SigmaPlot 12.5 N/A N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Fabiana

Perocchi (fabiana.perocchi@helmholtz-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines
All mammalian cells were grown in high-glucose Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich; D6429) supple-

mentedwith 10%FBS (Sigma-Aldrich, F7524) at 37�Cand 5%CO2. HeLa cells stably expressing aWTmitochondrial matrix-targeted

GFP-aequorin (mt-AEQ HeLa) were generated as previously described (Arduino et al., 2017) and selected with 100 mg/ml geneticin

(Thermo Fisher Scientific, 10131027). Mt-AEQHeLa cells stably expressing either an empty vector (pLKO; Addgene, 8453) or a pLKO

vector expressing a shRNA targeting Hs-MCU (shMCU; Sigma Aldrich, TRCN0000133861) were generated as previously described

(Baughman et al., 2011) and selected with 2 mg/mL puromycin (Life Technologies, A11138) and 100 mg/ml geneticin. MCU-knock-

downmtAEQ HeLa cells stably expressing Hs-MCU, Nc-MCU, Af-MCU, HsMTSAf-MCU and HsMTSNc-MCU from the pLX304 lentiviral

vector were generated by transduction. Lentivirus production and infection were performed according to guidelines from the Broad

RNAi Consortium and infected cell lines were selected 48 hr post-transduction with the respective selection markers. MICU1-

knockout HEK293 cells were kindly provided by Prof. Vamsi Mootha (Howard Hughes Medical Institute). MICU1-knockout
e3 Cell Reports 25, 1425–1435.e1–e7, November 6, 2018
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HEK293 cells stably expressing either wild-type (Hs-MICU1) or mutant Hs-MICU1 (Hs-MICU1mEF) from the pLX304 vector were

generated by transduction and selected with 10 mg/mL blasticidin.

Yeast Strains
Yeast strains expressing mt-AEQ or cyt-AEQwere generated by transforming the wild-type yeast strain YPH499 and selecting trans-

formants in glucose medium lacking uracil (Sikorski and Hieter, 1989). Yeast strains expressing Dd-MCU, Af-MCU, Nc-MCU,

Hs-EMRE, Hs-MCU, Hs-MICU1 and their mutants were generated by transforming the YPH499 strain with the respective plasmids

and by selecting transformants on glucose medium lacking uracil (empty vector p316GPD or mt-AEQ and cyt-AEQ), histidine (empty

vector p423GPD or Hs-MCU, Hs-MCUD261A, Hs-MCUE264A, Dd-MCU, Af-MCU, and Nc-MCU), leucine (empty vector p425GPD or

Hs-EMRE), and tryptophan (empty vector p414GPD or Hs-MICU1, Hs-MICU1mEF) as selection markers.

METHOD DETAILS

Phylogenetic Profiling of MICU1 and MCU
Homologs of human MCU and MICU1 across 247 eukaryotes were retrieved from ProtPhylo (www.protphylo.org) (Cheng and

Perocchi, 2015) usingOrthoMCLwithmore than 0%match length and inflation index of 1.1 for orthology assignment. The percentage

of amino acids match length was determined based on BLASTp-NIH. The phylogenetic tree of 247 eukaryotes was reconstructed

using the phylogenetic tree generator (https://phylot.biobyte.de/) and visualized using iTOL (https://itol.embl.de/). The mitochon-

drial-targeting sequence (MTS) probability was determined with MitoProt (https://ihg.gsf.de/ihg/mitoprot.html).

Protein Domains
Protein sequences of Homo sapiens MCU (Hs-MCU, NP_612366.1) Neurospora crassa MCU (Nc-MCU, XP_959658.1), and

Aspergillus fumigatus MCU (Af-MCU, XP_751795.1) were analyzed to predict MTS, DUF607 motif, coiled coil domains (CCD)

(https://embnet.vital-it.ch/software/COILS_form.html), and transmembrane domains (TM) (TMHMM 2.0). Clustal Omega was used

for proteins alignment and sequence similarities above 80% were color-coded with the Sequence Manipulation Suite tool.

Plasmids and Reagents
The lentiviral vector pLX304 was obtained from the Broad Institute’s RNAi Consortium and used for expressing V5- tagged cDNAs.

Full-length, human wild-type EMRE (Hs-EMRE), MCU (Hs-MCU), MICU1 (Hs-MICU1) and their mutants (Hs-MCUD261A,

Hs-MCUE264A, and Hs-MICU1mEF) cDNAs without a stop codon were obtained from Addgene. Hs-MICU1mEF contains two point

mutations in both first (D231A, E242K) and second (D421A, E432K) EF-hand domains as described in (Perocchi et al., 2010).

Dd-MCU, Af-MCU and Nc-MCU with (HsMTSAf-MCU and HsMTSNc-MCU) and without the N-terminal MTS of Hs-MCU (aminoacids

1-56) and without a stop codon were codon optimized for human expression, synthesized de novo in the PuC57 vector (GenScript)

and amplified with flanked attB1 and attB2 sites by PCR using the following primers: fw-DdMCU (50-GGG GAC AAG TTT GTA CAA

AAA AGC AGG CTT AGC CAC CAT GAA CTC CTT TGT CAT CAG-30); rv-DdMCU (50-GGG GAC AAG TTT GTA CAA AAA AGC AGG

CTTAGCCACCATGAA TTGCGTGAGAATGAGACTC-30); fw-NcMCU (50-GGGGACAGGTTTGTACAAAAAAGCAGGCTTAGC

CACCATGAA TTGCGTGAG AATGAG ACTC-30); rv-NcMCU (50-GGGGACCAC TTT GTA CAAGAA AGC TGGGTT ACTGTC TCC

GCT GGT CTC TTT-30), fw-AfMCU (50-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT AGC CAC CAT GGT CCT GTC TTG TGA

TAC TAG A-30); rv-AfMCU (50-GGG GAC CAC TTT GTA CAA GAA AGC TGG GTT GTC GTC ATC TCG GTC ATC GTT-30); fw-HsMTS

(50-GGG GAC AAG TTT GTA CAA AAA AGC AGG CTT AGC CAC CAT GGC GGC CGC CGC AGG TAG A-30). PCR products

were integrated into the pDONR221 vector using a site-specific recombination system (GATEWAY cloning technology) according

to manufacturer’s instructions (Life Technologies). For the expression in mammalian cells, cDNAs were integrated from the

pDONR221 Gateway vector (Thermo Fisher Scientific, 1253607), by site-specific recombination, into the pLX304 vector according

to manufacturer’s instructions (Life Technologies).

Cytosolic aequorin (cyt-AEQ)plasmidwaskindly providedbyProf. TeresaAlonso (University Valladolid) andamitochondria-targeted

GFP-aequorin (mt-AEQ) plasmid was generated as previously described in (Arduino et al., 2017). cDNAs of Dd-MCU, Af-MCU, Nc-

MCU, Hs-EMRE, Hs-MCU, Hs-MICU1 and their mutants were amplified by PCR using the following primers: fw-DdMCU (50-CCC
TCT AGA ATG AAC TCC TTT GTC ATC AG-30); fw-AfMCU (50-CCC TCT AGA ATG GTC CTG TCT TGT GAT AC-30); fw-NcMCU

(50-CCCTCTAGAATGAATTGCGTGAGAATGAG-30); rv-V5 (50-GGGCTCGAGCTACGTAGAATCGAGACCGAG-30); fw-HsEMRE

(50-CCCGGATCCATGGCGTCCGGAGCGGCTCGC-30); rv-HsEMRE (50-GGGCTCGAGTTAGTCATCATCATCATCATCCTC-30);
fw-HsMCU (50-CCC TCTAGAATGGCGGCCGCCGCAGGTAG-30); rv-HsMCU (50-GGGCTCGAGTTAATC TTT TTCACCAAT TTG

TCG-30); fw-HsMICU1 (50-CCCGGATCCATGTTTCGTCTGAACTCACTTTC-30); rv-HsMICU1 (50-GGGCTCGAGTTACTGTTTGGG

TAAAGCGAAG-30), and cloned into the yeast expression plasmids p423GPD (Dd-MCU, Af-MCU, Nc-MCU, Hs-MCU, Hs-MCUD261A,

Hs-MCUE264A), p414GPD (Hs-MICU1, Hs-MICU1mEF) and p425GPD (Hs-EMRE) as in (Mumberg et al., 1995).

Isolation of Crude Mitochondria from HeLa Cells
Crude mitochondria were prepared from cultured HeLa cells as previously described (Wettmarshausen and Perocchi, 2017). Briefly,

HeLa cells were grown to confluency in 2453 2453 20 mm cell culture plates. Culture medium was removed and cells were rinsed
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with 30 mL PBS, scraped down and resuspended in 5 mL PBS. After 5 minutes of centrifugation at 600 x g, 4�C, the cell pellet was

resuspended in �15 mL of ice cold isolation buffer (IB; 220 mM mannitol, 70 mM sucrose, 5 mM HEPES-KOH pH 7.4, 1 mM EGTA-

KOH pH 7.4), with one protease inhibitor tablet added per 50 mL of buffer. Cell suspension was immediately subjected to nitrogen

cavitation at 600 psi for 10 minutes at 4�C. Nuclei and intact cells were pelleted by centrifugation at 600 x g for 10 minutes at 4�C.
Supernatants were transferred into new tubes and centrifuged at 8000 x g for 10minutes at 4�C. The resulting pellet containing crude

mitochondria was resuspended in 50-200 ml IB for further analyses.

Topology Analysis of Mitochondrial Proteins
Alkaline carbonate extraction from crude mitochondria was performed as described previously (Baughman et al., 2011). Briefly,

100 mg of mitochondria were pelleted by centrifugation at 8000 x g for 10 minutes at 4�C. Pellets were resuspended in 0.1 M

Na2CO3 at pH 10, pH 11 or pH 12 and incubated for 30 minutes on ice. Samples were then centrifuged at 45,000 x g for 10 minutes

at 4�C. Pellets were resuspended in 100 ml of 2 x Laemmli buffer, boiled at 98�C for 5 minutes and stored at �80�C until further use

(pellet sample). Supernatants were mixed with 40 ml of 100% TCA and incubated overnight at �20�C. On the following day,

supernatants were centrifuged at 16,000 x g for 25 min at 4�C. Pellets were then washed twice with cold acetone, air-dried for

20-30 minutes at room temperature, resuspended in 100 ml of 2 x Laemmli buffer and heated up to 98�C for 5 minutes (supernatant

sample). 25 ml of supernatant and pellet samples were analyzed by SDS-PAGE. TIM23 and HSP60, integral inner membrane and

soluble matrix targeted proteins, respectively, are used as controls.

Proteinase K protection assay was performed by incubating 30 mg of mitochondria in 30 ml of isolation buffer with increasing

concentrations of digitonin or 1% Triton X-100 in the presence of 100 mg/ml proteinase K to sequentially permeabilize outer and inner

membranes. The reaction was carried out at room temperature for 15 minutes and was stopped by the addition of 5 mM PMSF,

followed by incubation on ice for 10 minutes. Samples were mixed with 10 ml of 4 X Laemmli buffer containing 10% 2-mercaptoe-

thanol and boiled for 5 minutes at 98�C. Samples were then loaded at 10 ml per lane and were analyzed by SDS-PAGE. TOM20

and cyclophilin D (Cyp D), an integral outer membrane and a soluble matrix protein, respectively, were used as controls.

Blue Native – PAGE Analysis
Samples forBN-PAGEanalysiswerepreparedby incubating 10mgof crudemitochondria on ice for 10minutes in 9.5ml of Invitrogen1X

NativePAGETM sample buffer containing 1% digitonin. Samples were centrifuged at 20,000 x g for 30 minutes at 4�C. Supernatants
were transferred into new tubes and 0.5 ml of NativePAGETM 5%G-250 Sample Additive was added to a final concentration of 0.25%.

Anode and cathode buffers for gel electrophoresis were prepared according to the manufacturer’s protocol for the Invitrogen

NativePAGETM Novex� Bis-Tris Gel System and were cooled to 4�C before use. Electrophoresis was performed at 4�C and gels

were performed at 40 V for 1 hour. The voltage was then increased to 60 V for 30minutes and subsequently to 100 V until the dye front

had traveled through 1/3 of the gel, at which point the Dark Blue Cathode Buffer was replaced with Light Blue Cathode Buffer. Elec-

trophoresis was continued at 100 V for 30minutes and then increased to 150 V until completed. Proteins were transferred onto PVDF

membranesbyelectrophoreticwet transfer overnight at 40V, 4�C.After transfer, proteinswere fixedon themembraneby incubating in

8% acetic acid for 15 minutes at room temperature on a shaker. Immunoblot analyses were performed with the following antibodies:

anti-MCU (Sigma Aldrich, HPA01648), anti-V5 (Life Technologies, R96025), and anti-ATP5A (Abcam,MS507), anti-TIM23 (BDBiosci-

ence, 611222), and anti-HSP60 (R&DSystem,MAB1800), anti-TOM20 (Abcam, ab56783), and anti-Cyclophilin D (Abcam, ab110324).

Measurements of Mitochondrial Calcium Uptake in Intact HeLa Cells
Mitochondrial Ca2+ uptake was measured in mt-AEQ HeLa cells as previously described (Arduino et al., 2017). Briefly, HeLa cells

stably expressing mt-AEQ were seeded in white 96-well plates at 25,000 cells/well in growth medium. After 24 hours, mt-AEQ

was reconstituted with 2 mM native coelenterazine (Abcam, ab145165) for 2 hours at 37�C. Mt-AEQ-based measurements of

Ca2+-dependent light kinetics were performed upon 100 mM histamine stimulation. Light emission was measured in a luminescence

counter (MicroBeta2 LumiJET Microplate Counter, PerkinElmer) at 469 nm every 0.1 s. At the end of each experiment, cells were

lysed with a solution containing 0.5% Triton X-100 and 10 mM CaCl2 to release all the residual aequorin counts.

Measurements of Mitochondrial Calcium Uptake in Digitonin-Permeabilized HeLa Cells
HeLa cells stably expressing mt-AEQ were harvested at a density of 500,000 cells/mL in growth medium supplemented with 20 mM

HEPES (pH 7.4/NaOH) and the photoprotein aequorin was reconstituted by incubation with 3 mM native coelenterazine for 2.5 hours

at room temperature. Cells were then centrifuged at 300 g for 3minutes and the pellet was re-suspended in an extracellular-like buffer

containing 145 mMNaCl, 5 mM KCl, 1 mMMgCl2, 10 mM glucose, 10 mMHEPES and 500 mMEGTA (pH 7.4/NaOH), supplemented

with 200 nM thapsigargin. After 20minutes at room temperature, cells were collected by centrifugation at 300 g for 3 minutes and the

pellet was resuspended in an intracellular-like buffer containing 140 mM KCl, 1 mM KH2PO4/K2HPO4, 1 mMMgCl2, 20 mM HEPES,

100 mM EGTA (pH 7.2/KOH), supplemented with 1 mM Na+-pyruvate, 1 mM ATP/MgCl2 and 2 mM Na+-succinate. Cells were per-

meabilized with 60 mMdigitonin for 5 minutes, collected by centrifugation at 300 g for 3 minutes and resuspended in intracellular-like

buffer at a density of�900 cells/mL. Then, 90 mL of cell suspension was dispensed into a white 96-well plate (PerkinElmer). Cells were

incubated for 5 minutes at room temperature and Ca2+-stimulated light signal was recorded at 469 nm every 0.1 s using a lumines-

cence counter (MicroBeta2 LumiJET Microplate Counter, PerkinElmer). Ru360 (10 mM) was used as a positive control.
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Subcellular Fractionation of Yeast Cells
To test the expression and subcellular localization of heterologous proteins, yeast cells were grown at 30�C in a selective lactate

medium (S-LAC) containing 8.5 g/L yeast nitrogen base, 25 g/L ammonium sulfate, 2% (v/v) lactic acid (90%), 0.1% glucose

(pH 5.5/KOH), supplemented with the respective selection markers. At an OD �0.8, cells were harvested at 1000 g for 5 minutes

at room temperature. The cell pellet was re-suspended in SHK buffer (0.6 M sorbitol, 20 mM HEPES/KOH pH 7.2, 80 mM KCl,

and 1 mM PMSF) and vortexed five times for 30 s with glass beads (425-600 mm diameter), with a 30 s cooling interval in between.

This sample was then centrifuged at 1000 g for 5 minutes at 4�C and the supernatant was further centrifuged at 20,000 g for

10 minutes at 4�C to obtain the mitochondrial fraction (pellet). The resulting supernatant (cytosolic fraction) was precipitated with

trichloroacetic acid at �20�C for 1 hour, washed once with cold acetone and centrifuged at 20,000 g for 10 minutes at 4�C to obtain

the cytosolic fraction (pellet). Both cytosolic and mitochondrial fractions were directly resuspended in Laemmli buffer and separated

under reducing conditions in 12 or 14% SDS-PAGE gels. Immunoblotting was performed according to the standard procedures

using the following antibodies: anti-MCU (Sigma-Aldrich, HPA016480); anti-EMRE (Santa Cruz Biotechnology, sc- 86337); anti-

MICU1 (Sigma Aldrich, HPA037480); anti-YME1 (Thermofisher/Novex, 459250); anti-AEQ (Merck/Millipore, MAB4405).

Measurements of Calcium Transients in Intact Yeast Cells
In vivo analyses of cytosolic andmitochondrial Ca2+ dynamics in yeast cells were performed as described by (Groppi et al., 2011) with

some modifications. Yeast were grown in S-LAC at 30�C overnight to an OD �0.8, (�24x106 cells/mL), and cells were harvested by

centrifugation at 3,500 g for 5 minutes at room temperature. Yeast cell pellet was washed three times with milliQ water and resus-

pended in a nutrient-free buffer (NFB; 100 mM Tris, pH 6.5) at a density of 1x108 cells/mL. Cells were incubated for 1.5 hours at room

temperature (starvation), collected by centrifugation at 3,500 rpm for 5 minutes and concentrated in the same buffer to a density of

25x108 cells/mL. The photoprotein aequorin was then reconstituted with 50 mM native coelenterazine in the dark for 30 minutes at

room temperature. Excess of coelenterazine was washed thrice with NFB and the cell pellet was resuspended to a final density

of 5x108 cells/mL. Then, a suspension of 0.5x108 cells/well were plated into a white 96-well plate and Ca2+-dependent aequorin

light signal was recorded upon stimulation with containing 1 mM CaCl2 and 100 mM glucose, at 0.5 s interval in a MicroBeta2

LumiJET Microplate Counter. At the end of each experiment, a lysis solution containing 5 mM digitonin, 450 mM EGTA,

100 mM Tris (pH 6.5/KOH) was added at a ratio of 1:5 for 5 minutes at 37�C and light response was measured upon the addition

of CaCl2 to a final concentration of 140 mM to release all the residual aequorin counts.

Measurements of Mitochondrial Calcium Uptake in Isolated Yeast Mitochondria
Crude mitochondria were isolated from yeast strains as described previously (Arduino et al., 2017). Mitochondria were then resus-

pended in a buffer containing 0.6 M sorbitol, 20 mM HEPES, 2 mM MgCl2, 10 mM KH2PO4, 3 mM glutamate, 3 mM malate, 3 mM

succinate, 50 mM EDTA, and 0.1 mM Calcium Green-5N (Life technologies, C3737) and seeded into a black 96-well plate at

150 mg/100 mL. Calcium Green-5N fluorescence (excitation 506 nm, emission 531 nm) was monitored every 2 s at room temperature

using aCLARIOstar microplate reader (BMGLabtech Perkin-Elmer Envision) after injection of CaCl2 (100 mMfinal concentration). The

MCU inhibitor Ru360 (10 mM) was used as a positive control.

Yeast Growth Measurement
For growth assays in liquid media, overnight yeast cultures grown at 30�C in S-LAC were diluted to an OD of 0.1 (3x106 cells/mL)

and then 0.3x106 cells/well were seeded in a black, gas-permeable Lumox 96-well plate. Absorbance measurements of yeast

suspension light scattering were performed at lmax = 600 nm and intervals of 340 s using a CLARIOstar microplate reader (BMG

Labtech) for 48-72 hourswith shaking at 30�C, 37�C, or in the presence of sterile solutions of sodium chloride (NaCl, 0.1-1M), calcium

chloride (CaCl2, 10-100 mM), copper (II) chloride (CuCl2, 10-30 mM), iron (II) chloride (FeCl2, 10-40 mM), Mn2+ (II) chloride (MnCl2,

1-5 mM), strontium (II) chloride (SrCl2, 10-50 mM), zinc (II) chloride (ZnCl2, 10-50 mM), or antifungal drugs (miconazole,

10-100 ng/ml; amoidarone, 5-20 mM). The average time taken by the yeast culture to double in the log-growth phase (doubling

time) was calculated using the following equation:

Doubling time=
ðTf � TiÞ � logð2Þ
logðNfÞ � logðNiÞ

where T is the time between the log-growth phase from Ti to Tf and N the number of cells measured as an optical density at lmax =

600 nm at the time point Ti (Ni) and Tf (Nf).

For spot assays, yeast cultures grown at 30�C in S-LACwere harvested at an OD of 1.0 (30x106 cells/mL) at 3200 g for 5minutes at

room temperature. The cell pellet was re-suspended in sterile water to 30x106 cells/mL and diluted in a 10-fold series. Aliquots of 5 mL

from each dilution were spotted onto a S-LAC plate with or without the respective treatment (CaCl2, 100-600mM; SrCl2, 50-500mM).

Plates were then incubated at 30�C for 72 h.

Cell Viability Analysis
A colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) metabolic activity assay was used to determine

cell viability. HEK293 cells were seeded at 50,000 cells/well in 1 mL of DMEM with high glucose and 10% FBS in a transparent
Cell Reports 25, 1425–1435.e1–e7, November 6, 2018 e6



24-well plate at 37�C and 5% CO2. After 24 hours, cells were incubated in the presence or absence of metal ions (FeCl2, 0.1-1 mM;

MnCl2, 5-50 mM) or antioxidants (N-acetyl-L-cysteine, NAC, 1-10 mM; L-glutathione, GSH, 1-20 mM; antioxidant supplement, 1-20X

concentration according to manufacturer’s protocol; Trolox, 0.5-5 mM; Idebenone, 0.1 mM), together with 10-50 mM of MnCl2, for

further 48 hours. Afterward, 500 mL of medium was replaced, 50 mL of MTT solution (Sigma Aldrich, M5655; 5 mg/ml in PBS) was

added, and cells were incubated for 3 hours at 37�C. Finally, cells were lysed with 500 mL of solubilization solution (1% SDS and

0.1 M HCl in isopropanol) for 15 minutes at 37�C and absorbance at lmax 570 nm was monitored in a CLARIOstar microplate reader

(BMG Labtech).

Mitochondrial Mn2+ Transport Measurement in Human Cells
Measurements of Mn2+ uptake inmitochondria were performed as previously described (Csordás andHajnóczky, 2003). Briefly, cells

were first loaded with Fura2FF/AM (4 mM for 60 min) and then rinsed with a Ca2+-free extracellular buffer containing 100 mM EGTA.

Permeabilization was carried out in 1 mL ICM (120 mM KCl, 10 mM NaCl, 1 mM KH2PO4, 20 mM Tris-HEPES, 2 mM MgATP, and

1 mg/ml each of antipain, leupeptin and pepstatin at pH 7.2) supplemented with saponin (20 mg/ml) and 20 mM EGTA/Tris (pH 7.4)

in the incubation chamber for 5 min (35�C). Subsequently, fresh ICM supplemented with succinate (2 mM) and CGP (20 mM) to

energize mitochondria and to inhibit mitochondrial Ca2+ efflux, respectively. Fluorescence imaging of Fura2FF-quenching by

Mn2+ was carried out using a multiwavelength beamsplitter/emission filter combination and a high quantum-efficiency cooled

CCD camera. Fura2FF was excited at 360 nm (Mn2+ quench). Image analysis was performed using custom-made software

(Spectralyzer). Genetic rescue of MICU1-KO HEK293 cells was performed with either WT MICU1 or pcDNA 48 hr before imaging.

ROS Measurement
HEK293 cells were loadedwith 10 mMof 5-(and-6)-chloromethyl-2’, 7’-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) in Krebs

buffer (140 mM NaCl, 5 mM KCl, 1 mM MgCl2, 5.6 mM D-glucose, 20 mM HEPES, 1.5 mM CaCl2, 1 mM NaH2PO4, pH 7.4) for

30 minutes at 37�C. Cells were washed once with PBS, re-suspended in DMEM (without phenol red, REF, source ID), supplemented

with 5mMglucose, 1mMpyruvate, 2mML-glutamine and 10%FBS, seeded at 20,000 cells/well in a black 96-well plate, and treated

with 25 mMofMnCl2 for 48 hours. H2O2 (50-100 mM) was used as a positive control. Fluorescence wasmeasured at an excitation and

emission wavelength of 485 nm and 520 nm respectively. Data was normalized to cell number quantified using a CyQUANT Cell

Proliferation Assay Kit (Thermo Fisher Scientific).

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification of Calcium Transients
Quantification of mt-Ca2+ concentration was performed using a MATLAB software as previously described in (Arduino et al., 2017).

The dynamics of mt-Ca2+-dependent luminescence signal was smoothed by the cubic spline function:

p
Xn

1

ðyi � fðxi ÞÞ2 + ð1� pÞ
Z �

d2f

dx2

�2

dx

Where, p is a smoothing parameter, controlling the tradeoff between fidelity to the data and roughness of the function estimate, f is

the estimated cubic spline function to minimize the above function, and xi and yiare the dynamical data points. Here, p is set at 0.5.

Parametrization of the Ca2+-dependent luminescence kinetics was performed in order to determine the maximal amplitude of the

luminescence signal (peak) and the left slope of the bell-shaped kinetic trace. Aequorin-based luminescence signal calibration

into mt-Ca2+ concentration was performed using the algorithm reported in (Bonora et al., 2013) for wild-type aequorin and native

coelenterazine, with the following formula:
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Where l = 1, KR = 7.23x106, KTR = 120 and n = 2.99 are the calibration values used for WT aequorin and native coelenterazine.

Data Analysis
Data are represented as mean ± SEM and the statistical analysis of each experiment is described in the figure legends including

the statistical tests used and the exact value of n. Here n represents the number of biological replicates. For each biological replicate

experiment at least 3 technical replicates were used for quantification and data analysis. Normal distribution was tested by Shapiro-

Wilk normality test. Differences between two datasets were evaluated by two-tailed unpaired Student’s t test. Statistical tests

between multiple datasets and conditions were carried out using one-way analysis of variance (ANOVA) followed by Tukey’s or

Dunnett’s Multiple Comparison tests. Statistical analyses were performed using GraphPad Prism (GraphPad Software, version 7).
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