
BRIEF COMMUNICATION Open Access
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Abstract

Background: Visceral adipose tissue (VAT) area is a strong predictor of obesity-related cardiometabolic alterations,
but its measurement is costly, time consuming and, in some cases, involves radiation exposure. Glutamate,
a by-product of branched-chain-amino-acid (BCAA) catabolism, has been shown to be increased in visceral
obese individuals. In this follow-up data analysis, we aimed to investigate the ability of plasma glutamate to
identify individuals with visceral obesity and concomitant metabolic alterations.

Methods: Measurements of adiposity, targeted blood metabolomics and cardiometabolic risk factors were
performed in 59 healthy middle-aged women. Visceral and subcutaneous adipose tissue areas were measured by
computed tomography (CT) whereas body fat and lean mass were assessed by dual-energy x-ray absorptiometry (DEXA).

Results: The univariate Pearson correlation coefficient between glutamate and VAT area was r = 0.46 (p < 0.001) and it
was r = 0.36 (p = 0.006) when adjusted for total body fat mass. Glutamate allowed to identify individuals with VAT
areas ≥100 cm2 (ROC_AUC: 0.78, 95% CI: 0.66–0.91) and VAT ≥130 cm2 (ROC_AUC: 0.71, 95% CI: 0.56–0.87). The optimal
glutamate concentration threshold determined from the ROC curve (glutamate ≥34.6 μmol/L) had a greater sensitivity
than the metabolic syndrome (MetS) and the hypertriglyceridemic waist (HTW) phenotype to identify individuals with
VAT ≥100 cm2 (83% for glutamate vs 52% for the MetS and 35% for the HTW). Variance analysis showed that women
with a high circulating glutamate level (≥34.6 μmol/L) had an altered metabolic profile, particularly regarding total
triglyceride levels and the amount of triglycerides and cholesterol in very-low-density lipoproteins (all p < 0.01).

Conclusion: Circulating glutamate is strongly associated with VAT area and may represent a potential screening tool
for visceral obesity and alterations of the metabolic profile.

Keywords: Glutamate, Metabolomics, Branched-chain amino acids, Visceral obesity, Waist circumference

Background
Obesity is associated with an increased cardiometabolic
risk [1, 2]. This association is, however, heterogeneous
and it is now increasingly recognized that accumulation
of abdominal fat and more precisely visceral adipose
tissue (VAT) is a very strong indicator of metabolic
dysfunction [3]. Precise assessment of VAT accumulation
by imaging methods is not feasible on a large scale
because it is costly, time consuming and, in some cases,

involves radiation exposure [4]. Therefore, simple and
accurate VAT predicting tools are still needed.
Studies focusing on metabolomics and the metabolic

alterations linked to obesity or body fat distribution have
found that obese individuals are characterized by higher
circulating levels of branched-chained amino acids (BCAA;
valine, leucine and isoleucine) and related metabolites [5].
Moreover, BCAA levels have been shown to decrease
upon weight loss by either bariatric surgery [6] or diet
[7]. Interestingly, glutamate, a by-product of BCAA
catabolism, has been shown to be increased especially
in visceral obesity [8–10].
In a large study assessing VAT with computed tomog-

raphy (CT) in 1449 Japanese subjects, Yakamado et al.
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found that glutamate was the single metabolite most
strongly correlated with VAT area (r = 0.49, p < 0.001)
[8]. They also reported that an amino acid index (AAindex)
combining glutamate with 7 other amino acids (valine,
leucine, isoleucine, glycine, alanine, tyrosine and trypto-
phan) could help identify individuals with excessive VAT
accumulation. Takashina et al. reported similar results on
83 Japanese adults with normal glucose tolerance. Indeed,
glutamate showed the strongest association with VAT vol-
ume (measured by magnetic resonance imaging, MRI)
among all the metabolites tested (r = 0.568, p < 0.001) [9].
We reported consistent results in the present sample of
59 healthy Caucasian women for which glutamate concen-
trations once again was the strongest correlate of
CT-measured VAT area (r = 0.46, p < 0.001) [10]. Consid-
ering these independent and consistent results, we investi-
gated the potential of circulating glutamate concentration
as a screening tool for excessive VAT accumulation and
concomitant metabolic alterations. In a follow-up analysis
of our sample [10], we tested the hypothesis that glutam-
ate is strongly and independently associated with VAT and
accurately identifies patients with visceral obesity and an
altered metabolic profile.

Methods
This is a new analysis of a dataset for which the recruitment
and metabolic assessment details have already been de-
scribed elsewhere [10]. Briefly, adiposity, targeted blood
metabolomics and cardiometabolic risk factors of 59 healthy
women undergoing gynaecological surgery were assessed.
Total body fat and lean mass were measured by dual-energy
x-ray absorptiometry (DEXA). VAT and subcutaneous adi-
pose tissue (SAT) areas were determined by CT at the L4L5
vertebrae level. Plasma lipid and lipoprotein levels were ob-
tained from 12 h fasting blood samples as previously de-
scribed [10]. Amino acid levels were determined by targeted
metabolomics using the Absolute IDQ kit p180 (Biocrates,
Innsbruck, Austria) as described [10]. Alcohol consumption
frequency (occasional, frequent or regular) and smoking sta-
tus (yes or no) were assessed by questionnaire. Menopausal
status (pre-, peri- or post-menopausal) was determined by
measurement of the follicle-stimulating hormone (FSH)
level and the reported presence/absence of menstrual bleed-
ing. Menopausal status was missing for 2 women. The
AAindex was calculated as (− 3.5250) + (0.0379*glutamate)
+ (− 0.0070*glycine) + (0.0034*alanine) + (0.0196*tyrosine)
+ (− 0.0216*tryptophan) + (0.0054*BCAA) [8]. The car-
diometabolic risk stratification algorithms used were
the metabolic syndrome (MetS) and the hypertriglyceri-
demic waist (HTW) phenotype. Presence of the MetS was
established with the NCEP-ATP III criteria [11], i.e. 3 or
more of the following features: waist circumference
(WC) > 88 cm, triglycerides (TG) ≥1.7 mmol/L,
high-density lipoprotein (HDL) < 1.3 mmol/L, fasting

glucose ≥5.6 mmol/L and diastolic blood pressure (DBP)
≥130 mmHg or systolic blood pressure (SBP) ≥85 mmHg.
Presence of the HTW phenotype was defined according
to values proposed by Blackburn et al. in 2008 [12];
WC ≥85 cm and TG ≥1.5 mmol/L, as they were ob-
tained in a study sample similar to ours. VAT area
thresholds tested were ≥100 cm2 and ≥130 cm2 be-
cause they have been associated with increased car-
diometabolic risk [13].
Pearson’s correlation coefficient was used to assess the

association of glutamate concentration with VAT. Logistic
regression analyses were used to determine the receiving
operator characteristic (ROC) curves of glutamate con-
centration ability to identify individuals with excessive
VAT accumulation. The optimal glutamate threshold was
determined using Youden’s Index (J), which measures the
distance between the cut-off points and the line of equality
(diagonal line) and is calculated as J = sensitivity + specifi-
city – 1. The value with the highest J being the cut-off
point with the best differentiation ability when equal
weight is given to sensitivity and specificity [14]. Sensitiv-
ity and specificity were defined as true positive/(true posi-
tive + false negative) and true negative/(true negative +
false positive) respectively. Women were classified as hav-
ing high or low glutamate level according to the optimal
threshold and analyses of variance (ANOVA) were used to
compare adiposity and lipid profiles between groups. Vari-
ables were transformed using Log10 or BoxCox to obtain
normal distribution when needed. Data are presented as
mean ± standard deviation when they were normally dis-
tributed and median (min-max) when they were not. Test
results were considered significant when p-value was
≤0.05. All statistical analyses were performed using JMP
software (SAS Institute, Cary, NC).

Results
Participant characteristics have already been described in
detail elsewhere [10]. In brief, all participants were female,
mean age was 47.0 ± 5.0 years, median BMI was 26.4
(20.2–41.1) kg/m2, median VAT was 89.3 (33.6–278.1)
cm2, median glutamate level was 35.0 (9.4–93.7) μmol/L,
mean fasting glucose was 5.5 ± 0.58 mmol/L, median fast-
ing insulinemia was 7.09 (4.71–10.74) μU/mL and median
HOMA-IR was 1.72 (1.12–2.55). Thirty nine women were
pre- or perimenopausal and 17 were postmenopausal. The
univariate Pearson correlation coefficient between circu-
lating glutamate and VAT area was r = 0.46 (p < 0.001) and
it was r = 0.36 (p = 0.006) when adjusted for body fat mass.
Interestingly, glutamate was only moderately correlated
with SAT area (r = 0.33, p = 0.013) and adjustment
for fat mass rendered the correlation not significant
(r = − 0.01, p = 0.937). Glutamate level did not differ ac-
cording to smoking status (p = 0.333), alcohol con-
sumption frequency (p = 0.727) or menopausal status
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(p = 0.112). Glutamate was not significantly correlated to
SBP (r = 0.12, p = 0.369) or DBP (r = 0.21, p = 0.106).

Logistic regression analysis
Figure 1 shows ROC curves of glutamate as a continu-
ous variable with the two VAT area thresholds (100 cm2

and 130 cm2). The area under the curve (ROC_AUC)
was 0.78 (95% CI: 0.66–0.91) for VAT ≥100 cm2 and
0.71 (95% CI: 0.56–0.87) for VAT ≥130 cm2. The best
glutamate threshold, defined as the ROC curve’s point
with the highest Youden Index, was glutamate concen-
tration ≥ 34.6 μmol/L for both VAT area thresholds. This
cut-off point was very close to the glutamate level me-
dian (35.0 μmol/L) in this sample. The ROC_AUC of the
AAindex to identify women with excess VAT accumulation
was 0.80 (95% CI: 0.67–0.92) for VAT ≥100 cm2 and 0.72
(95% CI: 0.57–0.87) for VAT ≥130 cm2 (data not shown).
The sensitivity and specificity of the optimal glutamate

threshold (≥34.6 μmol/L) and the use of the MetS or the
HTW phenotype to identify individuals with excessive
VAT are presented in Table 1. For VAT ≥100 cm2, the
glutamate threshold had far better sensitivity than the
other screening tools (83% for glutamate vs 52% for the
MetS and 35% for the HTW), but the traditional risk
algorithms had better specificity (71% for glutamate vs
83% for the MetS and 91% for the HTW). The glutamate
threshold seemed to have better overall identification
ability than the other screening tools for VAT ≥100 cm2,
when targeting balance between sensitivity and specificity.
The ability to identify participants with VAT ≥130 cm2 was
less promising for all screening tools, but overall glutamate

seemed to have the best equilibrium between sensitivity
and specificity for this VATarea threshold.

Variance analysis
Individuals were divided into low or high glutamate level
subgroups according to the optimal glutamate threshold
(≥34.6 μmol/L). Comparisons of adiposity indices as well
as cholesterol and TG levels in plasma and lipoprotein
fractions between the two subgroups are shown in Fig. 2.
Interestingly, fat mass (FM) was not significantly dif-

ferent between women with high or low glutamate,
suggesting that concentrations of this analyte reflect
body fat distribution rather than general adiposity. Fur-
thermore, women with high circulating glutamate had,
on average, a greater WC and abdominal SAT area.
They also had greater VAT accumulation.
Total plasma cholesterol as well as cholesterol in the

low-density lipoprotein (LDL) fraction was not signifi-
cantly different between groups. Cholesterol in the
very-low-density lipoprotein (VLDL) fraction was higher
and that in the HDL faction was lower for the high glu-
tamate level subgroup.
Total plasma TG as well as its levels in LDLs and

VLDLs was higher in the high glutamate level subgroup,
but was not significantly different in HDLs. Age, fasting
glycaemia and insulinemia or HOMA-IR were not sig-
nificantly different between individuals with high and
low glutamate levels (data not shown). Glucose homeo-
stasis variables were not significantly different in partici-
pants with versus those without the MetS or the HTW
phenotype.

Fig. 1 ROC curves of the ability of glutamate concentrations to identify individuals with excessive VAT accumulation. Best thresholds are
represented by circles and were determined using Youden’s Index (J = sensitivity + specificity – 1). Sensitivity and specificity were defined as true
positive/(true positive + false negative) and true negative/(true negative + false positive) respectively. ROC receiving operator characteristic, VAT
visceral adipose tissue, AUC area under the curve
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Discussion
We aimed to determine the ability of glutamate concen-
tration to identify individuals with visceral obesity and an
altered metabolic profile. We showed that glutamate level
was significantly associated with VAT and that it allowed
identification of individuals with VAT area ≥100 cm2

and ≥130 cm2. To this end, the optimal glutamate thresh-
old had a greater sensitivity, but a lower specificity than
the MetS and the HTW phenotype. Furthermore, women
with a high glutamate level had an altered metabolic pro-
file, particularly regarding total TG levels and the amount
of TG and cholesterol in their VLDLs. To our knowledge,
this is the first study focusing on the potential of glutam-
ate concentration as a biomarker of VAT accumulation
and metabolic alterations.
Our results showed that glutamate is strongly correlated

with VAT but less with SAT area (r = 0.46, p < 0.001 versus
r = 0.33, p = 0.013). These results are consistent with those
of the two other studies investigating the metabolomics of
visceral obesity. Yamakado et al. reported that glutamate
was strongly associated with VAT (r = 0.49, p-value not
available) but weakly with SAT (r = 0.21, p-value not avail-
able) and Takashina et al. found that although glutamate
was strongly correlated with VAT (r = 0.568, p < 0.001),
it was not significantly associated with SAT (r = 0.196,
p = 0.076).
Like us, Yamakado et al. found that glutamate had a

good ability to identify individuals with VAT accumula-
tion ≥100 cm2 (ROC_AUC: 0.75, 95% CI: 0.73–0.78).
They created an index composed of 8 amino acids (val-
ine, leucine, isoleucine, glutamate, glycine, alanine,
tyrosine and tryptophan) which had a slightly higher
VAT-predicting ability (ROC_AUC: 0.81, 95% CI: 0.78–
0.83 for VAT ≥100 cm2). In our sample, this amino acid
index showed virtually no improvement compared to
the use of glutamate alone (ROC_AUC: 0.80, 95% CI:
0.67–0.92 for the index versus 0.78, 95% CI: 0.66–0.91
for glutamate alone, data not shown). The benefit of

using a single metabolite as opposed to a composite
score requires further analysis in other samples.
Takashina et al. investigated the association between

amino acids and glucose homeostasis indices. They re-
ported that glutamate was positively and significantly cor-
related with fasting glucose level (r = 0.439, p < 0.001), two
hours glycaemia during an oral glucose tolerance test
(OGTT, r = 0.302, p = 0.006) and the homeostasis-model
assessment of insulin resistance (HOMA-IR) index
(r = 0.292, p = 0.007). Other teams also have reported
an association between glutamate and altered glucose
metabolism, be it insulin resistance [15] or type 2 diabetes
[16, 17]. Conversely, in our sample, glucose homeostasis
was not different between women with high or low glu-
tamate level. This discrepancy might be due to the fact
that the insulin sensitivity range of our cohort was par-
ticularly narrow, which might have underestimated the as-
sociation of glutamate levels with glucose homeostasis
measurements.
Although the mechanism linking glutamate to VAT

accumulation is not yet clear, we suggest that it may
involve BCAA catabolism in visceral adipocytes. BCAAs
can be metabolized in adipocyte mitochondria to gener-
ate substrates of the tricarboxylic acid (TCA) cycle and
the first two steps of this pathway are common to all
three BCAAs [18]. The first step is a transamination by
the branched-chain-aminotransferase (BCAT) enzyme,
in which α-ketoglutarate receives an amino group from
the BCAA, producing glutamate and a branched-chain
keto acid (BCKA). The subsequent step is a decarboxyl-
ation by the branched-chain-keto-acid dehydrogenase
complex (BCKDC). Conversion of α-ketoglutarate to
glutamate is an integral part of BCAA to BCKA trans-
amination [19]. The fact that glutamate is a by-product
of all 3 BCAAs catabolism may contribute to make it a
stronger biomarker than individual BCAAs.
An increasing amount of evidence suggests gene ex-

pression down regulation of the two main BCAA catab-
olizing enzymes (BCAT and BCKDC) in adipocytes of
obese individuals [6, 10, 20], which could partly explain
the increased plasma BCAA and glutamate levels ob-
served in obesity [21]. Herman et al. showed that obese
mice BCAA catabolism was decreased in adipose tissue
and not in skeletal muscle [22]. Furthermore, Nagao et
al. demonstrated in an in vivo metabolic study that adi-
pose tissue of obese mice (ob/ob as well as diet induced
obese) produced significantly more glutamate than that
of lean mice [23].
In humans, Lackey et al. compared adipose tissue gene

expression of BCAT and BCKDC between metabolically
impaired (presence of MetS) and healthy subjects. In
SAT, no significant difference was observed. In VAT,
metabolically impaired subjects had significantly lower
BCKDC expression and a trend towards lower BCAT

Table 1 Sensitivity and specificity of different screening tools to
identify women with excessive VAT accumulation

VAT area ≥ 100 cm2 VAT area≥ 130 cm2

Sensitivity Specificity Sensitivity Specificity

Glutamate ≥34.6 μmol/L 83% 71% 79% 59%

MetS 52% 83% 57% 77%

HTW 35% 91% 36% 86%

The optimal glutamate concentration threshold (≥34.6μmol/L) was determined
with Youden’s Index calculations (J= sensitivity + specificity – 1). Sensitivity and
specificity were defined as true positive/(true positive + false negative) and true
negative/(true negative + false positive) respectively. MetS: metabolic syndrome,
i.e. three or more of the following features: WC >88cm, TG ≥1.7mmol/L, HDL
<1.3mmol/L, fasting glucose ≥5.6mmol/L and diastolic blood pressure (BP)
≥130mmHg or systolic BP ≥85mmHg; HTW: hypertriglyceridemic waist, i.e. WC
≥85cm and TG ≥1.5mmol/L
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expression (p = 0.056) compared to healthy subjects [24].
Accordingly, the adipose tissue gene expression results
in our sample showed that BCKDC was only decreased
in VAT and not in SAT of the participants, whereas
BCAT was decreased in both compartments [10]. These
results suggest that although BCAA catabolism is de-
creased in both visceral and subcutaneous adipose tissue
of obese subjects, BCKDC down regulation seems of

particular importance in VAT. This could possibly ex-
plain the close association between glutamate level and
VAT area that we and other teams have observed [8, 9].
According to this hypothesis, a BCKDC down regulation
could block the metabolic pathway and cause glutamate
accumulation. More studies are needed to confirm previ-
ous results and to assess whether other mechanisms are
involved.

a

b

c

Fig. 2 Comparison of adiposity, cholesterol and triglyceride values in women with low or high glutamate level. Results are presented as box-and-
whisker plots; the box is the range between the lower (Q1) and upper (Q3) quartile, the horizontal line is the median (Q2), the cross sign (+) is
the mean and the whiskers are the minimum and maximum. Women were considered as having a high glutamate level if it was ≥34.6 μmol/L (in
grey) and low if it was less than 34.6 μmol/L (in white). P-values are from one-way ANOVA. FM fat mass, WC waist circumference, SAT subcutaneous
adipose tissue, VAT visceral adipose tissue, LDL low-density lipoprotein, VLDL very-low-density lipoprotein, HDL high-density lipoprotein, TG triglycerides
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The main limitation of this study is that our sample is
small and composed exclusively of lean-to-moderately
obese women, making it difficult to extrapolate our re-
sults to other population. This is why we do not propose
the optimal glutamate threshold found in this study to
be used in the general population. More studies in larger
and more diverse samples would be needed to establish
such thresholds.
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