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Competitive interactions between native tree seedlings and exotic grasses frequently hinder forest restoration. We investigated the
consequences of competition with exotic grasses on the growth and net nitrogen (N) uptake capacity of native rainforest seedlings
used for reforestation depending on soil N availability and N source. Tree seedlings and grasses were grown in the greenhouse in
different competition regimes (one tree species vs one grass species) and controls (grass monocultures or single tree seedlings) at low
and high soil N. After 8 weeks, we quantified net N uptake capacity using 15N-labelled organic (i.e., glutamine and arginine) and
inorganic (i.e., ammonium and nitrate) N sources and biomass indices. Depending on soil N availability, we observed different species-
specific responses to growth and N acquisition. Tree seedlings generally increased their net N uptake capacity in response to competi-
tion with grasses, although overall seedling growth was unaffected. In contrast, the responses to competition by the grasses were
species-specific and varied with soil N availability. The different N acquisition strategies suggest the avoidance of competition for
N between trees and grasses. Overall, the results highlight that quantifying underlying mechanisms of N acquisition complements the
information on biomass allocation as a measure of responses to competition, particularly with varying environmental conditions.

Keywords: ammonium, interspecific competition, net nitrogen uptake capacity, nitrate, nitrogen acquisition, organic nitrogen,
reforestation, subtropics.

Introduction

Plant–plant interactions shape the structure of plant communities
(Callaway and Walker 1997, Brooker 2006, Tylianakis et al.
2008). Their magnitude and direction are influenced by factors
including life stage, physiological requirements as well as envir-
onmental conditions (Callaway and Walker 1997). The interplay
between these biotic and abiotic factors determines the outcome
of species interactions which in turn affects the coexistence and
spatial distribution of species (Brooker et al. 2008, Soliveres
and Maestre 2014). A main interaction is the competition for
resources such as soil nutrients. The ability of plants to acquire
nutrients is determined by morphological and physiological

traits, such as uptake rates of nutrients (Casper and Jackson
1997). By modifying nutrient uptake in response to environmen-
tal cues, such as nutrient availability, plants can be more com-
petitive but the extent of such response varies (Hodge 2004).

Competitive interactions between native and exotic plant spe-
cies are relevant in the context of global environmental change,
because there is evidence that the predicted changes in the abi-
otic environment will likely influence competition in favour of
exotic species (Bradley et al. 2010, Verlinden et al. 2014). The
superior competitive ability of exotic plant species is frequently a
key factor promoting invasions, with exotic species able to better
exploit limited resources, to the detriment of native species
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(D’Antonio and Vitousek 1992, Gioria and Osborne 2014).
Changing nutrient status, such as increased nitrogen (N) avail-
ability with atmospheric deposition, can alter plant growth and
biomass allocation in a species-specific manner, and conse-
quently results in shifts in the outcome of interspecific competi-
tion (Rennenberg et al. 2009). Here, we investigate the
competition between exotic and native plants comparing the
response strategies of different species, and how resource avail-
ability modulates these interactions. A focus on N physiology is
warranted because N is quantitatively the most important of soil-
acquired nutrients (Marschner 1995), limits plant growth in
most ecosystems (Agren et al. 2012), drives competition (Eller
and Oliveira 2017), and N availability and uptake can vary con-
siderably in response to environmental change (BassiriRad
2000, Kuster et al. 2016). Since most studies focus on biomass
production as indicator of the magnitude and direction of com-
petitive interactions, even though other factors besides competi-
tion may influence biomass, (Trinder et al. 2013), we also
examined net N uptake as a process that underlies the inter-
action between native and exotic species, because exotic spe-
cies might alter soil N availability, show strong preferences to
certain N forms and/or interfere with the N acquisition of native
species, therefore affecting their performance (Fraterrigo et al.
2011, Huangfu et al. 2016, Eller and Oliveira 2017).
While earlier studies have focused mainly on the acquisition of

inorganic N, organic N uptake has received increasing attention
due to its potential to drive niche differentiation and species
coexistence, and therefore ecosystem stability (Schmidt and
Stewart 1999, McKane et al. 2002, Kielland et al. 2006,
Näsholm et al. 2009, Ashton et al. 2010). A plant’s ability to use
a wider array of N sources can result in competition avoidance
(e.g., Miller et al. 2007, Simon et al. 2010, Simon et al. 2014, Li
et al. 2015). Studies that have quantified the uptake of organic
and inorganic N forms found species-specific preferences for
different N forms (e.g., Persson et al. 2003, Weigelt et al. 2005,
Simon et al. 2010, Li et al. 2015). For example, European beech
(Fagus sylvatica) shows a preference for organic rather than
inorganic N, whereas the opposite is true for sycamore maple
(Acer pseudoplatanus) (Li et al. 2015). In a study on excised
roots of native and exotic grasses of Australian savannas, a gen-
eral preference for ammonium was found, but preferences for
nitrate and the amino acid glycine were species-specific
(Rossiter-Rachor et al. 2009). Furthermore, the uptake capacity
of different N sources is influenced by interspecific competition
(e.g., Miller et al. 2007, Simon et al. 2010, Simon et al. 2014, Li
et al. 2015). For example, when grown in competition with syca-
more maple, the capacity for organic N uptake of European
beech seedlings was reduced (Simon et al. 2014). However,
the responses of competition with regard to N acquisition are
also influenced by environmental factors (Simon et al. 2014,
Li et al. 2015). Overall, most studies that have examined the
acquisition of different N forms in context of competition have

focused either on herbaceous or woody species in temperate
ecosystems, rather than the interactions between trees and
grasses. These, however, are important in the context of conser-
vation and ecosystem restoration, because the successful estab-
lishment of tree seedlings (commonly planted in order to restore
a plant community) often depends on the outcome of their inter-
action with grasses (Erskine et al. 2005, Doust et al. 2008,
Elgar et al. 2014), where N is likely to play a determinant role
(Coll et al. 2004, Barbosa et al. 2014).

Tree–grass interactions have been broadly studied in savanna
ecosystems measuring the influence of abiotic factors (e.g., light,
water and nutrient availability) that mediate the interaction (e.g.,
Ludwig et al. 2001, van der Waal et al. 2009, Moustakas et al.
2013) and in studies investigating the long-term coexistence of
these contrasting life forms (e.g., Jeltsch et al. 2000, Sankaran
et al. 2004). With regard to forest regeneration, tree–grass
interactions have been studied in the context of secondary suc-
cession, tree regeneration in forest gaps after disturbances, or
meadows (e.g., Coll et al. 2004, Bloor et al. 2008a, Elgar et al.
2014), where tree seedlings interact with the already estab-
lished plant community commonly composed of early succes-
sional life forms, including grasses. However, research on the
effect of herbaceous vegetation on tree seedlings mainly
focusses on seedling survival and growth (e.g., Davis et al.
1998, Bloor et al. 2008b, Meli and Dirzo 2013), physiological
aspects such as water relations (e.g., Quinteros et al. 2017) or
photosynthesis (e.g., Davis et al. 1999, Loik and Holl 2001),
while competition for nutrients, specifically N, has received little
attention despite the potential of belowground competition with
grasses to influence tree growth and establishment (e.g.,
Cramer et al. 2010) and the influence of soil N availability on the
competition outcome (e.g., Cramer et al. 2012).

Here, we studied the interactions between native tree seedlings
and exotic grasses because ecological forest restoration efforts are
frequently hindered by competition from exotic grasses (Kanowski
et al. 2003, Erskine et al. 2005). In reforestation programs,
grasses successfully establish even after the planting of seedlings
without regular weeding. To mimic these conditions, we used
nursery-grown tree seedlings and grasses grown from seed in our
study. We selected tree species that are relevant in the context of
restoration of riparian zones in subtropical Australia (Catteral and
Harrison 2006, Gageler et al. 2014), including an N2 fixer. Tree
species with the capacity to fix atmospheric N2 via symbiotic rhizo-
bacteria in root nodules are commonly used in restoration pro-
grams with the intent to improve the overall N supply at a site
(Erskine et al. 2005). Their N2 fixing ability would make them
largely independent from external soil N supply (Messina and
Barton 1985) and potentially alleviate competition for N (Epron
et al. 2006). We conducted a greenhouse experiment to advance
the understanding of whether competition for N plays a role in the
interaction between seedlings of two native tree species and two
exotic grass species, and the potential effects of soil N availability.
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Our objectives were to (i) determine the effect of interspecific com-
petition on inorganic and organic N acquisition and biomass indices
as response strategies of tree seedlings and grasses, and (ii)
evaluate the impact of low vs high soil N availability on the competi-
tion outcome in terms of N acquisition. We hypothesized that tree
seedlings and grasses potentially avoid competition by using differ-
ent N forms (i.e., fast-growing grasses using inorganic forms and
relatively slow-growing trees using organic forms), that growth and
net N uptake capacity of tree seedlings is negatively affected in the
presence of competing exotic grasses, and that this negative effect
is lessened at high soil N availability.

Materials and methods

Study species and plant material

We selected two native tree species used in riparian reforest-
ation in the Maleny region (26.7° S, 152.8° E, Queensland,
Australia), angiosperm Acacia melanoxylon R.Br (Fabaceae) and
gymnosperm Podocarpus elatus R.Br. ex Endl. (Podocarpaceae).
Acacia melanoxylon is an early successional, N2 fixing species
native to south-east Australia (Smith et al. 2008, Birnbaum et al.
2012) that occurs in rainforests and wet sclerophyll forests
(Doran and Turnbull 1997). Podocarpus elatus is a late-
successional endemic species that grows in subtropical rainfor-
ests (Smith et al. 2008). Seedlings of A. melanoxylon (5 months
old, ~40 cm tall) and P. elatus (10 months old, ~30 cm tall)
were obtained from a local nursery (Brush Turkey Enterprises,
Maleny, Australia). We selected tree species with contrasting
successional status to explore potential differences in their N
acquisition strategies related to growth rate (Li et al. 2015), and
species adaptation to N forms available in soils of different suc-
cessional status (e.g., higher nitrate availability in early succes-
sional sites compared to late sites) (Kronzucker et al. 1997,
Britto and Kronzucker 2013). The exotic grasses Pennisetum
clandestinum Hochst. ex Chiov. (Poaceae) and Cynodon dactylon
(L.) Pers. (Poaceae) are perennial, originate from Africa and
have been introduced to tropical areas around the world (Judd
1979). Spreading via rhizomes, stolons and seeds, these
grasses naturally occur in grasslands and are common in pas-
tures and lawns in their introduced range (Judd 1979). In sub-
tropical Australia, these two grass species are reported as a
threat to restoration efforts, and their negative effects on the
growth of native tree seedlings have been observed in the field
(M. Amos, personal communication). Grass seeds were pur-
chased from Royston Petrie Seeds (Mudgee, Australia). From
here on, species will be referred to by their genus, i.e., Acacia,
Podocarpus, Pennisetum and Cynodon.

Experimental setup

Tree seedlings were planted and grasses were sown from seed
into 1 l pots (125 mm diameter, Anova Solutions, Brisbane,
Australia) with a 1:1 mixture of grade A pit sand (grain size:

0.5 mm) and G2 vermiculite (grain size: 1–2mm) in interspe-
cific competition or under control conditions at low and high soil
N availability. Competition treatments consisted of one tree indi-
vidual surrounded by 10–12 individual grasses that were uni-
formly distributed ∼4 cm from the seedling stem. The four
species combinations were Acacia vs Pennisetum, Acacia vs
Cynodon, Podocarpus vs Pennisetum and Podocarpus vs
Cynodon. Control treatments consisted either of a single tree
seedling or 12 individuals of one grass species (i.e., monocul-
ture). Tree seedlings were not large enough to result in shading
for the grasses (A. Bueno, pers. obs.). Because competition for
N is highest under conditions of N limitation (Wilson and Tilman
1991, Casper and Jackson 1997), all competition regimes
received the low soil N treatment. To ensure sufficient replica-
tion, the high soil N treatment was only applied for tree species
vs Pennisetum because Cynodon had poor germination rates.
Therefore, it was excluded from the high soil N treatment to
ensure sufficient replicates in the low soil N treatment. For each
combination of competition regime and soil N availability treat-
ment, ten replicates were established. To control for the variation
in initial size of the seedlings, we recorded the initial above-
ground size of all tree seedlings (i.e., stem length measured
from root crown, number of leaves and length of largest leaf)
before planting. Pots were watered with tap water every second
day to field capacity until the grasses germinated which occurred
within 2 weeks of planting. Soil N availability treatments there-
fore commenced 2 weeks after planting. Subsequently, once a
week 100ml of nutrient solution was applied, with low or high N
concentrations, for low N: 1 μM NH4Cl, 100 μM KNO3, 25 μM
glutamine and 25 μM arginine; high N: 40 μM NH4Cl, 400 μM
KNO3, 100 μM glutamine and 100 μM arginine, based on soil N
availability in previous low vs high soil N studies (Simon et al.
2013) based on a low and high N forest site (Dannenmann
et al. 2009, Stoelken et al. 2010, respectively), and on the
occurrence of glutamine and arginine in subtropical Queensland
soils (Holst et al. 2012). Other nutrients applied at the same
rate in both N treatments were: 10 μM AlCl3, 90 μM CaCl2, 7 μM
FeSO4, 6 μM K2HPO4, 50 μM KCl, 24 μM MnCl2, 20 μM NaCl
and 70 μM MgCl2. The experiment was conducted in a naturally
lit greenhouse at The University of Queensland, St. Lucia
Campus (Brisbane, Australia), between April and June 2015.
Average temperature recorded in the greenhouse was 24.7 ±
3.7 °C during the day and 20.3 ± 1.8 °C at night, reaching a
minimum of 13.5 °C and a maximum of 35.3 °C.

15N uptake experiments and harvest

Eight weeks after commencing the N treatments (and 10 weeks
after planting), the net inorganic (i.e., ammonium, nitrate) and
organic (i.e., glutamine, arginine) N uptake capacity of fine roots
of tree seedlings and grasses was quantified following the 15N
enrichment technique described by Gessler et al. (1998) as
modified by Simon et al. (2010) using fine roots still attached to
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the individuals. For this, we carefully removed the plants from
the pots and washed the roots to remove adherent soil particles.
Fine roots were then incubated for a 2 h period in 4 ml artificial
nutrient solution containing all four N sources (as described
above), but with one of the sources labelled as either
15N-ammonium, 15N-nitrate, 13C/15N-glutamine or 13C/15N-
arginine. Amino acids were 13C/15N double-labelled to deter-
mine whether they were taken up as intact molecules or
degraded over the time of incubation (Simon et al. 2011).
Additionally, we used artificial soil solution without 15N-label to
account for the natural abundance of 15N in the roots of each
species for all treatment levels. Plants were incubated in either
low or high N artificial soil solution matching the soil N availability
treatment to which they had been subjected. Root incubation
occurred between 10 a.m. and 2 p.m. to avoid diurnal variation
in N uptake (Gessler et al. 2002), i.e., the incubation period of
2 h for any given individual sample started between 10 a.m. and
12 p.m. and ended between 12 and 2 p.m. For the duration of
the 15N incubation experiments, the remaining seedling’s roots
were carefully wrapped in wet tissue to prevent drying out. A
total of six replicate root samples were set up for each of the
four N sources (plus controls for natural abundance) per spe-
cies, competition regime and soil N availability level. Depending
on the size of the root system for an individual plant, one to four
N sources plus control were tested per individual. After the incu-
bation period, fine roots were carefully cut, washed twice in
0.5 M CaCl2 solution to remove the incubation solution from the
root surface, and dried with tissue. Following the 15N uptake
experiments, we separated the plants into above- and below-
ground organs, i.e., the tree seedlings into leaves, stem and
roots, and the grasses into shoots and roots, since no stem had
developed. We determined the fresh weight (fw) of all plant tis-
sues and the incubated fine roots, oven dried the samples at
65 °C for 72 h and determined their dry weight (dw) to obtain
biomass indices.

Quantification of total N and C, 15N and 13C in fine roots

To quantify 15N and 13C enrichment the dried fine roots were
ground using a ball mill (TissueLyser, Retsch, Haan, Germany).
Aliquots of 1.2–2.5mg of the resulting homogeneous fine powder
were weighed into 4 × 6mm tin capsules (IVA Analysentechnik,
Meerbusch, Germany), and analysed with an isotope ratio mass
spectrometer (Delta V Advantage, Thermo Electron, Dreieich,
Germany) coupled to an elemental analyser (Euro EA, Eurovector,
Milan, Italy). Δ values were calculated using a laboratory standard
(acetanilide) that was part of every sequence in intervals, and
also used in different weights to determine isotope linearity of the
system. The laboratory standard was calibrated against different
international standards from IAEA (Vienna): for 15N USGS 40
(δ15NAir = −4.5‰), IAEA 600 (δ15NAir = +1.0‰), IAEA N2
(δ15NAir = +20.3‰), USGS 41 (δ15NAir = +47.6‰), USGS 26
(δ15NAir = +53.7‰), and USGS 32 (δ15NAir = +180‰), and for

13C IAEA 600 (δ13CV-PDB = −27.77‰), IAEA 3 (δ13CV-PDB =
−24.72‰), and IAEA CH6 (δ13CV-PDB = −10.45). 15N results of
highly enriched samples were finally corrected with different
enriched 15N standards (from 0.437 to 0.734 at %) from Fischer
Analysen Instrumente (Leipzig, Germany). Δ values are defined as δ
[‰] = (RSA/RStd – 1) ∗ 1000, where R is the ratio of heavy isotope
against light isotope (i.e., 13C/12C and 15N/14N), SA is sample and
Std the international reference for the respective element (V-PDB for
13C and air-N2 for

15N). For each of the four N sources, we then cal-
culated net N uptake capacity (nmol N g–1 fw h–1) based on the
incorporation of 15N into root fresh weight according to Gessler et al.
(1998): net N uptake capacity = ((15Nl–

15Nc) ∗ Ntot ∗ dw ∗ 105)
(MW ∗ fw ∗ t)−1, where 15Nl and

15Nc are the atom% of 15N in
labelled (Nl) and control plants (Nc, natural abundance), respectively,
Ntot is the total N percentage, MW is the molecular weight
(15N gmol−1), and t represents the incubation time (120min).
Based on 13C incorporation, net uptake capacity of glutamine and
arginine was ~60% and ~95%, respectively, compared to that based
on 15N incorporation, which indicates (1) the degradation of amino
acids in the solution or on the root surface, and/or (2) the respiration
of amino acid-derived C inside the roots (Simon et al. 2011).

Statistical analysis

For all species, we tested for differences between treatments for
total biomass and root:shoot ratio as well as net uptake capacity
of the four N sources by performing Permutational ANOVAs
(PERMANOVA) based on a Euclidean resemblance matrix
between samples (Anderson et al. 2008). PERMANOVA was
chosen as a non-parametric univariate test equivalent to ANOVA
(Anderson et al. 2008). We performed two-way PERMANOVAs
using ‘competition regime’ and ‘soil N availability’ as orthogonal
factors. For the tree species, the ‘competition regime’ factor had
three levels: control, competition with Pennisetum, and competi-
tion with Cynodon. Moreover, for the tree seedlings biomass and
root:shoot ratio analyses, initial size measurements of the tree
seedlings were included as a covariate. For the grass species,
the three levels were: control, competition with Acacia, and com-
petition with Podocarpus. The ‘soil N availability’ factor included
two levels: high N and low N for Acacia, Podocarpus and
Pennisetum. For the grass Cynodon, we performed one-way
PERMANOVAs, considering the factor ‘competition regime’ with
three levels: control, competition with Acacia, and competition
with Podocarpus, all at low soil N availability as described above.
When a significant interaction between factors was found, post
hoc PERMANOVA pairwise comparisons were performed. To
test for differences in net N uptake capacity between species,
one-way PERMANOVAs were performed on the control data
(i.e., no competition), using species as factor, for each N form.
To test for preferences in net uptake capacity of the four N
sources for a given species, one-way PERMANOVAs were per-
formed, using N source as factor, for each combination of com-
petition regime and soil N availability treatment. All analyses
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were performed using PRIMER 6.0 with the PERMANOVA+ add-
on (PRIMER-E Ltd, Plymouth, UK), and figures were prepared in
SigmaPlot 13.0 (Systat Software Inc., San Jose, USA).

Results

Effects of competition regime and soil N availability on
biomass and root:shoot ratio

Native tree seedlings and exotic grasses responded differently in bio-
mass production depending on competition regime and soil N avail-
ability (Figure 1). For the tree species, neither Acacia nor Podocarpus
differed significantly in total biomass between single and competing
seedlings regardless of soil N availability (Figure 1; see
Supplementary Table S1 available as Supplementary Data at Tree
Physiology Online). Positive correlations were found for Acacia
between total biomass and the initial leaf number, for Podocarpus
between total biomass and both initial leaf number and initial stem
length (both p-perm < 0.001, data not shown). This indicates that
total biomass at the end of the experiment was a function of initial tree
seedling size. For the grass Pennisetum, total biomass was significantly

reduced in competition with Acacia or Podocarpus compared to the
control at high soil N availability, and it was also significantly reduced
at low compared to high soil N availability irrespective of the competi-
tion regime (Figure 1; see Table S2 available as Supplementary Data
at Tree Physiology Online). For the grass Cynodon, competition with
Acacia significantly reduced total biomass compared to competition
with Podocarpus or control (at low soil N availability) (Figure 1; see
Table S2 available as Supplementary Data at Tree PhysiologyOnline).

Root:shoot ratio was not affected by soil N availability or com-
petition regime for both tree species as well as competition
regimes for the grass Cynodon at low soil N availability
(Figure 1). For the grass Pennisetum, root:shoot ratio was sig-
nificantly lower in competition with Podocarpus compared to
competition with Acacia or controls irrespective of soil N avail-
ability (Figure 1).

Effects of competition regime and soil N availability on
inorganic and organic net N uptake capacity

Inorganic and organic net N uptake capacity of all species
increased significantly with high compared to low soil N

Figure 1. Total biomass and root:shoot ratio of Acacia melanoxylon, Podocarpus elatus, Pennisetum clandestinum and Cynodon dactylon, at low and high
soil N availability under different competition regimes. For C. dactylon, only low soil N data is available. comp Pennisetum = competition with P. clandesti-
num; comp Cynodon = competition with C. dactylon; comp Acacia = competition with A. melanoxylon; comp Podocarpus = competition with P. elatus.
Box plots show mean (dotted line) and median (straight line). Different letters indicate significant differences between competition regimes within a
specific soil N availability treatment, and asterisks indicate significant differences between soil N availability treatments, detected using permutational
analysis of variance (P < 0.05).
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availability, whereas the responses to competition regime dif-
fered depending on the species (Figures 2 and 3; see Table S3
available as Supplementary Data at Tree Physiology Online).
Inorganic and organic net N uptake capacity of Acacia seedlings
increased with higher soil N availability regardless of competition
regime. At high soil N availability, net ammonium uptake capacity
of Acacia seedlings competing with the grass Pennisetum
increased significantly compared to seedlings growing without
competition (Figure 2; see Supplementary Table S4 available as
Supplementary Data at Tree Physiology Online), but no change
for nitrate (Figure 2), glutamine-N or arginine-N (Figure 3) was
found at either low or high soil N availability. Similarly, inorganic
N (Figure 2) and arginine-N (Figure 3) net uptake capacity of
Podocarpus increased with high compared to low soil N availabil-
ity irrespective of competition regime. However, net glutamine-N
uptake capacity increased with higher soil N availability only for
Podocarpus seedlings grown in competition with Pennisetum
(Figure 3; see Table S4 available as Supplementary Data at Tree
Physiology Online). At high soil N availability, competition with
Pennisetum increased net glutamine-N uptake capacity of

Podocarpus seedlings compared to seedlings growing alone
(Figure 3); however, net ammonium, nitrate (Figure 2), and
arginine-N (Figure 3) uptake capacity were not affected. For the
grass Pennisetum, net ammonium and organic N, but not nitrate
uptake capacity were significantly higher at high compared to
low soil N availability (Figures 2 and 3). For Pennisetum, compe-
tition regime had no significant effect on organic (Figure 3) and
inorganic (Figure 2) net N uptake capacity at either low or high
soil N availability. At low soil N availability, nitrate, but not ammo-
nium or organic net N uptake capacity of the grass Cynodon was
significantly higher when grown in competition with Podocarpus
compared to that with Acacia, or control (Figures 2 and 3; see
Table S4 available as Supplementary Data at Tree Physiology
Online).

Differences between species with regard to inorganic and
organic N acquisition

In the absence of interspecific competition (i.e., single grown
tree seedlings or grasses growing in monocultures), species dif-
fered in their inorganic and organic N acquisition strategies

Figure 2. Ammonium (NH4
+) and nitrate (NO3

–) net uptake capacity (nmol N g–1 fw h–1) by fine roots of Acacia melanoxylon, Podocarpus elatus,
Pennisetum clandestinum and Cynodon dactylon at low and high soil N availability under different competition regimes. For C. dactylon, only low soil N
data is available. comp Pennisetum = competition with P. clandestinum; comp Cynodon = competition with C. dactylon; comp Acacia = competition with
A. melanoxylon; comp Podocarpus = competition with P. elatus. Box plots show mean (dotted line) and median (straight line). Different letters indicate
significant differences between competition regimes within a specific soil N availability treatment, and asterisks indicate significant differences between
soil N availability treatments detected using permutational analysis of variance (P < 0.05).
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depending on the N source: seedlings of Podocarpus took up
significantly less nitrate than seedlings of Acacia and the grass
Pennisetum, irrespective of soil N availability (Table 1).
However, glutamine-N acquisition of Pennisetum was signifi-
cantly lower than that of Podocarpus, which in turn was lower
than that of Acacia seedlings at both low and high soil N avail-
ability (Table 1). No differences were found between any of the
species with regard to ammonium and arginine-N acquisition
(Table 1).
General preference patterns of the different N forms were

found for each species within each competition regime depend-
ing on soil N availability: At low soil N availability, both tree spe-
cies preferred nitrate and glutamine-N over ammonium and
arginine-N (see Table S5 available as Supplementary Data at
Tree Physiology Online). However, at high soil N availability, this
pattern was reversed with ammonium and arginine-N being
favoured over nitrate and glutamine-N for both tree species
(Table 2; see Table S5 available as Supplementary Data at Tree
Physiology Online). For the grasses, inorganic N sources,

particularly nitrate, were preferred over organic N sources
(regardless of soil N availability for Pennisetum) (Table 2; see
Table S6 available as Supplementary Data at Tree Physiology
Online).

Discussion

Our study provides novel insight into the species-specific growth
and N acquisition patterns in native tree seedlings and exotic
grasses competing for N. Depending on soil N availability, native
tree seedlings responded to competition with increases in N
acquisition only, whereas the responses of the grasses in terms
of biomass and N acquisition varied with species and soil N
availability. These results highlight that quantifying underlying
mechanisms complements biomass indices to advance the
understanding of interspecific competition (Trinder et al. 2013).
Furthermore, the lack of response with regard to biomass in the
tree seedlings compared to the grasses suggests that N storage
capacity plays a role in the growth response as well.

Figure 3. Glutamine-N (Gln-N) and arginine-N (Arg-N) net uptake capacity (nmol N g–1 fw h–1) by fine roots of Acacia melanoxylon, Podocarpus elatus,
Pennisetum clandestinum and Cynodon dactylon at low and high soil N availability under different competition regimes. For C. dactylon, only low soil N
data is available. comp Pennisetum = competition with P. clandestinum; comp Cynodon = competition with C. dactylon; comp Acacia = competition with
A. melanoxylon; comp Podocarpus = competition with P. elatus. Box plots show mean (dotted line) and median (straight line). Different letters indicate
significant differences between competition regimes within a specific soil N availability treatment, and asterisks indicate significant differences between
soil N availability treatments detected using permutational analysis of variance (P < 0.05).
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Native tree seedlings increase N acquisition in competition
with exotic grasses at high soil N availability

At high soil N availability, both tree species responded similarly
to competition with the exotic grass Pennisetum by increasing N
acquisition. However, growth and biomass allocation were
unaffected, which indicates that they might allocate the newly
acquired N to storage rather than investing into growth, thereby
reducing N availability for their competitors (Millard and Grelet
2010). These similarities between Acacia and Podocarpus in

terms of net N uptake capacity and growth responses to compe-
tition with grasses indicate that both tree species use a common
strategy, which is rather unexpected given the different succes-
sional status, growth strategies and physiological characteristics
of the two tree species. Acacia is an early successional, fast-
growing and N2 fixing species, while Podocarpus is a slow-
growing, late-successional species (Smith et al. 2008). Thus,
since fast-growing species would require higher amounts of N to
meet their growth rate (Poorter et al. 2012), the observed

Table 1. PERMANOVA results of the differences in ammonium (NH4
+), nitrate (NO3

–), glutamine-N (Gln-N) and arginine-N (Arg-N) net uptake capacity
of fine roots between Acacia melanoxylon, Podocarpus elatus, Pennisetum clandestinum and Cynodon dactylon. Significant values are indicated in bold.

NH4
+ NO3

– Gln-N Arg-N

Main test Pseudo-F P(perm) Pseudo-F P(perm) Pseudo-F P(perm) Pseudo-F P(perm)

Species 1.630 0.170 4.248 0.013 7.469 <0.001 0.573 0.648
Soil N availability 16.749 <0.001 0.674 0.419 8.259 0.006 65.941 <0.001
Species × Soil N availability 2.184 0.098 0.011 0.991 2.545 0.092 1.307 0.295

Pairwise comparisons t P(perm) t P(perm) t P(perm) t P(perm)

Acacia vs Podocarpus Not applicable 3.843 <0.001 2.493 0.022 Not applicable
Acacia vs Pennisetum 1.180 0.251 4.766 <0.001
Acacia vs Cynodon 0.803 0.441 1.771 0.096
Podocarpus vs Pennisetum 3.0987 0.005 2.207 0.041
Podocarpus vs Cynodon 1.760 0.066 1.401 0.179
Pennisetum vs Cynodon 1.125 0.271 1.509 0.157

Table 2. Differences between ammonium (NH4
+), nitrate (NO3

–), glutamine-N (Gln-N) and arginine-N (Arg-N) net uptake capacity of fine roots of
Acacia melanoxylon, Podocarpus elatus, Pennisetum clandestinum and Cynodon dactylon, at low and high soil N availability. Only significant differences
are presented.

Acacia Podocarpus

1) Low soil N availability
Control NO3

–, Gln-N > NH4
+ > Arg-N Gln-N > NH4

+, NO3
–, Arg-N

NO3
– > Arg-N

Competition with Pennisetum NO3
–, Gln-N > NH4

+, Arg-N NO3
–, Gln-N > NH4

+, Arg-N
Competition with Cynodon Gln-N > NH4

+, Arg-N Gln-N > NO3
–, Arg-N > NH4

+

2) High soil N availability
Control No differences NH4

+ > NO3
–, Gln-N, Arg-N

Competition with Pennisetum NH4
+ > NO3

–, Gln-N, Arg-N
Arg-N > Gln-N

NH4
+ > NO3

–, Gln-N, Arg-N
Gln-N > NO3

–

Pennisetum Cynodon1

1) Low soil N availability
Control NO3

– > NH4
+, Gln-N, Arg-N NO3

–, Gln-N > NH4
+

Competition with Acacia NO3
– > NH4

+, Gln-N, Arg-N
Gln-N > Arg-N

NO3
– > NH4

+

Competition with Podocarpus NO3
– > NH4

+, Arg-N
NH4

+, Gln-N > Arg-N
NO3

– > NH4
+, Gln-N, Arg-N

Gln-N > Arg-N
2) High soil N availability

Control NH4
+ > NO3

–, Gln-N, Arg-N
Arg-N > Gln-N

Competition with Acacia NH4
+ > Arg-N > Gln-N

NO3
– > Gln-N

Competition with Podocarpus NH4
+ > Arg-N > Gln-N

1At low soil N availability.
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increase in net N uptake capacity when growing in competition
would be expected in Acacia and not in Podocarpus. However,
previous studies have shown that Acacia seedlings are capable
of N-fixation (Sun et al. 1992), and that root nodulation in
Acacia species is stimulated by competition with grasses
(Cramer et al. 2007). Therefore the increased requirements of
Acacia due to competition would probably be mitigated by its
ability to fix atmospheric N2 (not quantified in our study) and
thus reduce to an extent its dependency on external N supply.
Moreover, the lack of response of Acacia to competition in terms
of N uptake at low soil N availability in our study might also be
attributed to a greater reliance on N2 fixation under limiting N
conditions (Pfautsch et al. 2009).
Tree species differed in the acquired N forms: in competition

fast-growing Acacia acquired more ammonium compared to sin-
gle grown individuals, while slow-growing Podocarpus used
glutamine-N. This preference of inorganic vs organic N forms
when competing might reflect different N acquisition strategies
between fast- and slow-growers as reported for temperate tree
seedlings (Simon et al. 2010, 2014, Li et al. 2015). The similar
responses found here might be an early indication that, across
biomes, N acquisition of trees is linked to growth strategy. These
increases in net N uptake capacity as a response to competition
were found only at high soil N availability suggesting mediation
of N acquisition by soil N availability (e.g., Simon et al. 2013, Li
et al. 2015). For Acacia, this could be related to a reduced nod-
ule activity at high soil N concentrations, as it has been sug-
gested that N acquisition from the soil, rather than N2 fixation, is
energetically more efficient for this species when inorganic N is
readily available (Pfautsch et al. 2009). With regard to
Podocarpus, an increase in organic N acquisition with competi-
tion was also reported for a temperate slow-growing tree spe-
cies at high, but not low soil N (Li et al. 2015). Our results
constitute a further example of increased N acquisition under
competition with high N availability, but in a subtropical environ-
ment. Particularly in the view of increased atmospheric N depos-
ition in the future (Rennenberg and Dannenmann 2015, Jia et al.
2016), the outcomes of competition in currently N-limited habi-
tats are likely to change.
At low soil N availability, competition with grasses did not

result in changes in N acquisition or biomass production and
allocation for both tree species. Similarly, previous studies have
reported a lack of effects of competition with the grass Cynodon
dactylon on the growth (i.e., biomass, basal diameter and stem
height) of a different Acacia species (A. smallii Isely) on non-
supplemented native soil (Cohn et al. 1989). Nevertheless, this
grass species hinders the growth of native tree seedlings in the
field and is reported as a threat to restoration efforts in subtrop-
ical Australia (M. Amos, personal communication). Since we did
not observe these negative effects in our study, it is likely that
the impacts of the competition with Cynodon on tree seedling
growth are evident at later developmental stages of both the

grass and the tree species than the ones considered here. The
lack of response to competition of the tree seedlings regarding
total biomass could also be due to the short duration of our
experiment, considering the relatively slow growth of tree seed-
lings compared to grasses. Previous studies reporting negative
effects of grasses on Acacia measured responses over longer
periods, e.g., 3 years (Messina and Barton 1985), and 8 years
(Florentine and Westbrooke 2004). Furthermore, the effect of
the grass on tree seedlings may be mediated by soil N availabil-
ity: in our study, the effects of competition with Cynodon were
not investigated at high soil N availability, but it has been
reported that competition with Cynodon combined with an
increase in soil nutrient availability results in 70–90% reduction
in growth of A. smallii (Cohn et al. 1989).

Exotic grasses respond to competition for N depending on
the competitor and soil N availability

For the exotic grasses, four strategies were identified which
depended on the competing species and soil N availability: (1)
Pennisetum biomass was reduced in competition with both tree
species compared to the control at high, but not low soil N avail-
ability suggesting that the outcome of competitive interactions
between native tree seedlings and Pennisetum depends on soil
N availability. Moreover, the biomass of Pennisetum at high soil
N availability, even if reduced by competition with the tree seed-
lings, was still higher than its biomass at low soil N in the
absence of interspecific competition, suggesting that, at least in
the short-term, the grass is more successful than the tree seed-
lings at high soil N availability, despite the observed negative
effects of competition. (2) The grass Cynodon showed a similar
strategy as Pennisetum, i.e., a reduction in biomass but no change
in N acquisition, but only when competing with Acacia, but not
Podocarpus, indicating that for both grass species the response to
competition depends on the competitor. (3) Resource allocation
shifted to aboveground at the expense of belowground tissue pro-
duction (Aerts et al. 1991) for Pennisetum competing with
Podocarpus at low and high soil N. This suggests that, despite the
fact that shading from the tree seedlings was not apparent, the
potential competition for light is more relevant for Pennisetum than
competition for belowground resources (Poorter et al. 2012),
thus not leading to an increase in N acquisition. However, these
results were not observed when grown in competition with Acacia
or for the grass Cynodon indicating that this biomass allocation
strategy of Pennisetum also depends on the competing species,
but not soil N availability. (4) Competition with Podocarpus, but
not Acacia, resulted in increased net nitrate uptake in Cynodon, but
not Pennisetum suggesting different N acquisition strategies
between the two exotic grass species that vary with the competing
tree species. Overall, our results suggest that the outcome of com-
petitive interactions between native tree seedlings and exotic
grasses are species-specific and mediated by soil N availability.
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Differences in N acquisition strategies between species
suggest potential for niche differentiation

All four species took up both inorganic and organic N forms,
although specifics varied according to N forms. Nitrate acquisition
was higher in Pennisetum and Acacia compared to Podocarpus,
consistent with their successional status and the low abundance of
nitrate in late-successional forest soils as well as a reduced nitrate
use capacity in late-successional tree species (Kronzucker et al.
1997, Britto and Kronzucker 2013). At sites with higher soil
nitrate availability, e.g., disturbed areas, the grass Pennisetum
would have a competitive advantage over Podocarpus, but not
Acacia, highlighting the importance of species-specific consider-
ation for reforestation programs. Moreover, glutamine-N acquisi-
tion was higher for Acacia than Podocarpus, contrary to what we
expected according to their successional status, since soil amino
acid content generally increases as succession progresses
(Werdin-Pfisterer et al. 2009). Nevertheless, glutamine-N acquisi-
tion was higher in both tree species compared to Pennisetum indic-
ating a potential for avoidance of competition via the use of the
different N forms (Simon et al. 2017). Overall, that plants take up
organic N forms is now well established and has been reported for
numerous plant species and ecosystems (Näsholm et al. 2009).
Moreover, its ecological relevance is increasingly recognized due
to the resulting niche differentiation and consequences in terms of
species coexistence (Näsholm et al. 2009, Simon et al. 2014, Li
et al. 2015, Andersen et al. 2017, Uscola et al. 2017).
Comparing within tree and grass species, higher soil N avail-

ability resulted in increased inorganic and organic N acquisition
in general, which for Pennisetum was combined with increased
biomass production (for Cynodon data is only available for low
soil N). This increase in grass biomass production with increas-
ing soil N availability while there was no short-term response of
the tree seedlings suggests a potential advantage for the grass
in habitats on N-rich soils or in future scenarios with increased
atmospheric N deposition compared to the native trees. This link
between high resource availability and success of invasive spe-
cies has been explored in previous studies (e.g., Badgery et al.
2005, Gao et al. 2014, Yelenik et al. 2017), and has been
linked to invader traits related to exploitation and efficient use of
resources, which allows for better growth (Huangfu et al. 2016,
Yelenik et al. 2017). In our study, although competition with
seedlings of both tree species reduced the total biomass of
Pennisetum compared to Pennisetum grown in controls, the
increase in Pennisetum biomass in response to higher soil N
availability was of greater magnitude. Increases in the productiv-
ity of Pennisetum with N fertilization resulting in its dominance at
fertilized sites have been reported before (Mears 1970, Barton
et al. 2008), and under such conditions, Pennisetum might be
more competitive than tree seedlings. Moreover, the potential of
Acacia to induce increases in soil N availability over time as a
consequence of its N2 fixing ability has been shown before in

silvopastoral systems (Power et al. 2003). Thus, increased N
supply as a consequence of the use of N2 fixing tree species
such as Acacia might favour the growth and potential dominance
of Pennisetum at restoration sites.

Methodological considerations

Our experimental approach has several limitations. First, the
competitor grasses were grown from seeds, whereas the trees
were purchased as seedlings. This set up was selected because
our aim was to mimic the actual timing in a restoration setting
under field conditions for which tree species are planted as
seedlings for reforestation and grasses arrive at a later time.
Thus, a comparison between trees and grasses cannot exclude
differences due to variation in developmental stages between
tree species and grasses. Specifically, the lack of response in
seedling biomass reported here might not persist with older or
larger grasses. Second, tree seedlings differed in their age at the
start of the experiment which might have influenced their
responses to competition and/or soil N availability in our experi-
ment. However, given the differences in growth rates between
the tree species used in this study, seedlings of similar age
would have likely differed in their initial above- and belowground
dimensions, thereby introducing another variable. Third, the
experiment ran for 8 weeks which might not be sufficient time
for a response in tree seedling biomass, however they did
respond with regard to N acquisition from the soil. Finally, the
artificial N solution used in this study is based on a low and high
N forest site (Dannenmann et al. 2009, Stoelken et al. 2010,
respectively) as well as the occurrence of glutamine and arginine
in soils of subtropical Queensland (Holst et al. 2012), but not
actual measured concentrations at subtropical restoration sites.

Conclusions

In our study, native tree seedlings and exotic grasses responded
to competition with two distinct response types: (1) a reduction in
biomass, but no change in N acquisition, (2) an increase in N
acquisition without a change in biomass. This outcome depended
on the competing species and soil N availability. Thus, we suggest
that these aspects be considered also for ecosystem restoration
and management, with special attention to the potential feedbacks
between native trees possessing traits such as N2 fixing ability
and exotic grasses that may benefit from the resulting increase in
soil N availability. Exotic grasses such as Pennisetum and Cynodon
are considered a high priority for control in Australia and their sup-
pression can promote the reestablishment of woody vegetation,
thus determining the success of subtropical rainforest restoration
programs (Florentine and Westbrooke 2004, Downey et al.
2010, Shoo and Catterall 2013). We found no common N acqui-
sition strategy across species in response to competition between
native trees and invasive grasses indicating the need to consider
species-specific approaches in restoration management plans.
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