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Abstract: Pollen exposure is a major cause of respiratory allergies 

worldwide. However, it is unclear how everyday exposure is related to 

symptoms and how allergic patients may be affected spatially and 

temporally. Hence, we investigated the relationship of pollen, symptoms 

and immune responses under a controlled regime of 'high-low-moderate' 

pollen exposure in urban versus alpine environment. 

The research was conducted in 2016 in two locations in Germany: urban 

Augsburg (494 m) and Schneefernerhaus (UFS) on Zugspitze mountain (2,656 

m). Monitoring of airborne pollen took place using Hirst-type volumetric 

traps. On UFS, both indoor and outdoor samples were taken. Grass pollen 

allergic human volunteers were monitored daily during the peak of the 

grass pollen season, in Augsburg, on UFS, then again in Augsburg. Nasal 

biosamples were obtained throughout the study to investigate immune 

responses. 

All symptoms decreased significantly during the stay on UFS and remained 

low even after the return to Augsburg. The same was observed for nasal 

total IgE and IgM levels and for nasal type 2 cytokines and chemokines. 

Augsburg showed higher pollen concentrations than those on UFS. At all 

sites, pollen were present throughout each day, but were more abundant in 

Augsburg during morning. On UFS, outdoor pollen levels were up to 6-fold 

higher than those indoors. Nasal, ocular and pulmonary symptoms 

correlated with current and previous days' pollen concentrations and 

relative humidity.  

Stays in low-exposure environments during the peak pollen season can be 

an efficient means of reducing allergic symptoms and immune responses. 

However, in alpine environments, even occasional pollen exposure during 

short intervals may still trigger symptoms because of the additional 

environmental stress posed onto allergics. This highlights the need for 

the consideration of additional environmental factors, apart from symptom 

diaries and immune responses, so as to efficiently predict high-risk 

allergy periods. 
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interesting and it would have been useful for this aspect of the study to 
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Abstract 28 

Pollen exposure is a major cause of respiratory allergies worldwide. However, 29 

it is still unclear how everyday exposure is related to symptoms and how allergic 30 

patients may be affected spatially and temporallyif there is a safe place or time that 31 

we can ‘switch off’ allergies. Hence, we investigated the relationship of pollen, 32 

symptoms and immune responses under a controlled regime of ‘high-low-moderate’ 33 

pollen exposure in urban versus alpine environment. 34 

The research was conducted in 2016 in two locations in Germany: city ofurban  35 

Augsburg (494 m) and Schneefernerhaus (UFS) on Zugspitze mountain (2,6560 m). 36 

Monitoring of airborne pollen took place using Hirst-type volumetric traps. On UFS, 37 

both indoor and outdoor samples were taken. Grass pollen allergic human volunteers 38 

were monitored daily during the peak of the grass pollen season (n=36 days), first, in 39 

Augsburg, then on UFS, then againback in Augsburg. Nasal biosamples were 40 

obtained throughout the study to investigateand immune responses were 41 

investigated. 42 

All symptoms decreased significantly during the stay on UFS and remained 43 

low even after the return to Augsburg. The same was observed for nasal total IgE 44 

and IgM levels and for nasal type 2 cytokines and chemokines. Urban Augsburg 45 

showed higher pollen concentrations than those on UFS. At all sites, pollen were 46 

present throughout each day, but were more abundant in Augsburg during morning. 47 

On UFS, pollen concentrations were constantly low and outdoor pollen levels were 48 

up to 6-fold higher than those indoors. Nasal, ocular and pulmonary symptoms 49 

correlated with current and previous days’ pollen concentrations and relative 50 

humidity.  51 

Stays in low-exposure environments during the peak pollen season such as 52 

alpine locations can be an efficient means of reducingof switching off allergic 53 
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symptoms and immune responses. However, in alpine environments, eHowever, 54 

even occasional pollen exposure during short intervals may still trigger symptoms in 55 

such locations because of the additional environmental stress posed onto allergics. 56 

This highlights the need for the consideration of additional environmental factors, 57 

apart from symptom diaries and immune responseserefore, so as to efficiently predict 58 

high-risk allergy periodsit is still under debate whether allergy safe environments do 59 

exist. 60 

 61 

Keywords 62 

Aerobiology; allergy; alpine environment; exposomenvironmental medicine; grass 63 

pollen, symptoms 64 

 65 

Highlights 66 

 Pollen concentrations and symptoms were monitored in urban vs alpine 67 

ecosystem 68 

 Higher pollen exposure led to higher severity of symptoms 69 

 Staying in an alpine environment lowered allergic symptoms and immune 70 

responses  71 

 Nasal or pulmonary symptoms and immune responses were retained low for 2 72 

weeks 73 

 Relative humidity >60% lowers to half the threshold of pollen triggering symptoms 74 

 75 

 76 

1. Introduction 77 

Clinical evidence reveals a general increase in both the incidence and the 78 

prevalence of respiratory allergies, including allergic rhinitis and asthma (e.g. Bunne 79 
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et al. 2017; Pawankar, 2014). According to The World Allergy Organization estimates 80 

(Pawankar et al., 2013), allergic rhinitis is currently affecting up to 30% of the 81 

population. This percentage varies among cities, countries and continents because of 82 

environmental and other factors and can even exceed 40% (e.g. Morais-Almeida et 83 

al., 2013; Sibbald and Strachen, 1995). Hence, allergies are a major public health 84 

problem that has worsened in recent decades and it is now recognised as a major 85 

global epidemic, also with considerable economic burden (Linneberg, 2016; Ring et 86 

al., 2014). 87 

Climate change, air pollution and urbanisation could indirectly favour 88 

respiratory allergies, as increasing temperatures bring about earlier flowering and 89 

pollination periods and concomitantly overall shorter allergen-free seasons (D’Amato 90 

et al., 2015; Fotiou et al., 2011; Schiavoni et al., 2017; Ziello et al., 2012; Ziska et al., 91 

2003). Long-term health impacts may be related not only to air pollution and changes 92 

in lifestyle, but also to an actual increase in the amount of airborne allergenic pollen 93 

(e.g. Fotiou et al., 2011; Ziello et al., 2012). Although local trends may vary greatly, 94 

climate change has already resulted in significant increases in the vegetation 95 

coverage or abundance of several pollen taxa, such as Ambrosia artemisiifolia in the 96 

USA and parts of Europe, especially in north Italy and on the Pannonian plain (e.g. 97 

Lake et al., 2017; Sikoparija et al., 2017; Storkey et al., 2014; Ziello et al., 2012).  98 

Pollen allergy can manifest itself as allergic rhinitis, allergic conjunctivitis 99 

and/or allergic bronchial asthma (e.g. Erbas et al., 2018). International literature 100 

identifies grass pollen as the leading aeroallergen worldwide (e.g. García-Mozo, 101 

2017; Weeke and Spieksma, 1991; Wu et al., 1999). Allergenic grasses consist of 102 

both annual and perennial species, many of which are highly cosmopolitan and, 103 

hence, they are found in a wide variety of latitudes and biogeographical regions and 104 

in natural as well as urban habitats (e.g. Pignatti 1982, Lewis et al. 1983). According 105 
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to epidemiological and clinical studies across the globe, sensitisation rates to grass 106 

pollen can reach up to 80% of the total atopic population (e.g. Belver et al., 2007; 107 

Erbas et al., 2018; Kobzar, 1999; Wu et al., 1999). 108 

What is currently lacking, however, is information on the real-life health 109 

impacts of pollen exposure and climate variability on the allergic population. Even 110 

though there have been recent attempts to elucidate this relationship from existing 111 

respiratory symptoms’ databases (e.g. Karatzas et al., 2014), there is still a 112 

significant knowledge gap. It is still not clear whether exposure to allergenic pollen 113 

induces symptoms in a direct and immediate way, what kind of symptoms it induces 114 

(ocular, nasal, pulmonary or combinations) and if the symptoms vary in severity 115 

depending on exposure-related behaviour and duration of the exposure. Also, it has 116 

never been documented whether symptoms can also be observed in non-atopic 117 

people. Moreover, to our knowledge, none of the above has been examined under 118 

differing environmental conditions (urban versus natural environment) or in extreme 119 

environments (e.g. high altitude). Finally, given that more 80% of our time is spent 120 

indoors (Klepeis et al., 2001), no conclusion has been drawn whether the indoor or 121 

the outdoor pollen load (where also pollen is mostly monitored worldwide) are most 122 

relevant for predicting the genuine human exposure and the resulting respiratory 123 

symptoms. 124 

Moreover, there is little information on the kinetics between exposure and 125 

reaction, i.e. if the relationship between pollen exposure and symptoms is linear or 126 

non-linear, if it varies depending on the duration of pollen exposure, or if there is time 127 

lag between the actual pollen exposure and the occurrence of allergic symptoms. 128 

The above questions make pollen season forecasting (and consequent symptom 129 

forecasting) rather complex, thus highlighting the need for additional research so as 130 
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to achieve accurate and operational predictive models, which comprises one of the 131 

first line allergy management tools. 132 

The aim of this study was, therefore, to assess how short-term changes in 133 

aeroallergen pollen exposure translate into changes in respiratory symptoms and 134 

nasal immune responses. To achieve this, we had to assess the symptom-related 135 

genuine exposure, by monitoring symptoms in two well-characterised cohorts of non-136 

allergic and pollen allergic subjects and in two different pollen exposure regimes, a 137 

high pollen one in an urban ecosystem and a low pollen one in an alpine, high-138 

altitude ecosystem. During peak grass pollen season, the subjects were transferred 139 

from an urban environment with high airborne pollen load to a natural, high-altitude, 140 

low pollen environment just below the summit of Zugspitze (elevation 2,650 m), and 141 

back again after a 12-day stay. The questions we asked were: Can What effect does 142 

lower pollen exposure have on one identify a ‘safe’ environment and time point, so as 143 

to reduce pollen allergic symptoms and immune responses and how can we quantify 144 

this? And if so, how long lasting is the potential health benefit and what are the 145 

environmental factors affecting the pollen-symptoms interaction? 146 

 147 

 148 

2. Material and Methods 149 

 150 

2.1. Study design and locations 151 

The entire study lasted from 1 June to 6 July 2016. The first 12-day interval, 152 

from 1 June to 13 June, took place in the region of Augsburg. On 13 June, all 153 

participants met at the railway station of the city of Garmisch-Partenkirchen, situated 154 

on the foothills of Zugspitze mountain in the Bavarian Alps, and jointly travelled by 155 

cog railroad up to the Schneefernerhaus [UFS (Umweltforschungsstation 156 
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Schneefernerhaus)], an environmental research station situated some 300m below 157 

the summit of Zugspitze mountain (elevation 2,6560m), where they stayed without 158 

interruption until 24 June (for a total of 12 days). During the whole stay, daily habits 159 

were recorded on an 8-hourly scale, i.e. hours spent outdoors versus indoors and 160 

hours spent on exercising, either indoors or outdoors. On 24 June, all participants 161 

collectively left the UFS by cog railroad and travelled back to their homes. The final 162 

12-day study interval, again in the Augsburg region, ended on 6 July 2016. 163 

 164 

2.2. Pollen monitoring 165 

Grass pollen was examined in 2016 for both sites, UFS and Augsburg. This 166 

pollen taxon was selected as because it is the most important outdoor aeroallergen 167 

worldwide and common in most environmental regimes across the world (e.g. 168 

García-Mozo, 2017). Biomonitoring took place at ground level, using Hirst-type 169 

volumetric traps (Burkard Manufacturing Co. Limited, Rickmansworth, Hertfordshire, 170 

England, UK) (Hirst, 1952). Grass pollen was identified (at the family level Poaceae) 171 

under light microscope and grains were counted per cubic metre of air, on two time 172 

resolutions, per day and per 8 hours, throughout the whole study (total duration of 36 173 

days). The biomonitoring techniques used (details in section 2.2.1) are typical for 174 

pollen data collection, followed by most scientists (e.g. British Aerobiology 175 

Federation, 1995). 176 

 177 

2.2.1. Pollen monitoring in Augsburg 178 

Airborne pollen in the city of Augsburg were collected by use of a 7-day 179 

recording Burkard volumetric trap located at the Bavarian Environmental Agency 180 

bureau, at ground level. The trap was equipped with a vacuum pump drawing 10 l of 181 

air min-1 through a narrow orifice. Air particles were trapped on an adhesive-coated 182 
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(Burkard gelvatol) transparent plastic tape (Melinex), supported on a clockwork-183 

driven drum, which moved at a speed of 2 mm hr-1 making a complete revolution in 184 

one1 week. The tape was then removed and cut in seven equal sections, each 185 

representing a day of sampling (viz. of 48 mm of tape per day). The tape sections 186 

were stained with a solution of saffranine, gelatine, glycerol and phenol and were 187 

mounted on microscope slides, each slide representing a 24 hr period. Grass pollen 188 

grains were counted in 12 transverse traverses per slide, each transect representing 189 

a 2-hourly interval, under a light microscope (Leica DM750) at a magnification of 190 

400. Counts were made on a bi-hourly basis and expressed as mean daily pollen 191 

concentrations (number of pollen grains per m3 of air d-1) or mean 8-hourly pollen 192 

concentrations, investigating for differences among morning (06:00-14:00), afternoon 193 

(14:00-22:00) and night (22:00-06:00) (so as to be comparable to the symptom 194 

registry time resolution).  195 

 196 

2.2.2. Pollen monitoring on the UFS 197 

On the UFS, pollen monitoring was performed using portable Burkard 198 

samplers. Sampling was conducted every 8 hours (morning, afternoon, night) and 199 

lasting for half an hour each time. Two portable samplers operated at the same time, 200 

both indoors and outdoors. The laboratory techniques including pollen identification 201 

and counting and the measurement units used were exactly the same as for the 202 

stationary devices described in section 2.2.1. 203 

 204 

2.3. Human cohort characteristics 205 

Healthy non-allergic and grass pollen allergic volunteers were recruited in the 206 

Augsburg region from February to May 2016. Candidates underwent an initial 207 

screening procedure to exclude perennial rhinitis, nasal polyps or chronic 208 
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rhinosinusitis, including a blood test for IgE measurement. An initial cohort of 10+10 209 

allergic and healthy participants was recruited. Based on the performed screening but 210 

also on the consistency and reliability of their participation (i.e. continuous presence 211 

in the required study sites, and regular registering of symptoms), finally six healthy, 212 

non-allergic volunteers and five pollen allergic (otherwise healthy) patients with self-213 

reported symptoms during the grass pollen season and CAP class ≥ 2 for grass 214 

pollen were included in the study. Healthy non-allergic volunteers had overall low 215 

total serum IgE levels (19.0 ± 8.1 IU/ml; mean ± SEM) and no specific IgE (<0.03 216 

IU/ml) against any seasonal or perennial aeroallergen, as tested by ImmunoCAP and 217 

ISAC (Phadia/Thermo Fisher). Allergic rhinitis patients included in the study had 218 

elevated total serum IgE (141.4 ± 70.1; mean ± SEM) and elevated grass pollen-219 

specific IgE levels (average CAP class 3), without co-sensitisation against house dust 220 

mite. For an overview ofver participanttients’ characteristics, see also Table 1. 221 

Sensitisations were additionally assessed by component-resolved IgE diagnostics 222 

(ISAC aeroallergen chip, Thermo Fisher; data not shown). The study was approved 223 

by the local ethics committee (code: 19/15) and conformed to the guidelines of 224 

Helsinki. Study participants were enrolled after written informed consent. 225 

 226 

2.4. Determination of immunoglobulins, cytokines and chemokines in nasal samples 227 

A total of 9 nasal secretions were collected per patients/subject throughout the 228 

study (as in Gilles-Stein et al., 2016). Briefly, a strip of absorbent filter paper (Pall, 229 

Leucosorb) was inserted ipsilaterally into the nostril and kept there for 45 seconds. 230 

The filter paper strip was then placed into the insert of a 1.5ml spinning filter tube 231 

(Costar). Secretion fluid was extracted by adding 100µl of double-distilled water to 232 

the paper strip and spinning it down in a pre-cooled centrifuge (4°C) for 5 minutes at 233 

10,000x g. Nasal secretion weights were assessed by weighing the tube plus filter 234 
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paper before and after sample collection. Local cytokine release was calculated by 235 

normalising cytokine concentration to nasal secretion volume. 236 

Chemokines, cytokines and immunoglobulins were measured in nasal 237 

secretions via multiplex magnetic bead-based detection kits (Bio-Plex Pro Human 238 

Isotyping Panel 6-plex for IgA, IgM, IgG1, IgG2, IgG3 and& IgG4; Human IgE Isotyping 239 

Assay for IgE and a custom 9-plex for IL-33, CCL24/Eotaxin-2, CCL4/MIP-1β, 240 

CCL2/MCP-1, CCL22/MDC, CXCL8/IL-8, IL-16, G-CSF and IL-1β) according to the 241 

manufacturer´s instructions. Optimal sample dilutions were examined beforehand. 242 

Nasal samples, standards and controls were analysed via Bio-Plex 200 System (Bio-243 

Rad Laboratories) with control and analysis software Bio-Plex Manager 6.1 (Bio-Rad 244 

Laboratories). Standard curves for each target were calculated to determine the 245 

concentration of immune mediators. 246 

 247 

2.5. Monitoring of symptoms 248 

Throughout the study, participants filled in a questionnaire daily on their 249 

smartphones or laptop computers, covering questions on general wellbeing, 250 

medication use and allergic symptoms. Symptoms included nasal, ocular and 251 

pulmonary symptoms, with severity ranging from 0 to 3 (0: none, 1: mild, 2: 252 

moderate, 3: severe). Participants were also asked about the time of day their 253 

symptoms occurred, as specified in 8-hour intervals (morning: 6-14h, afternoon: 14-254 

22h, night: 22-6h). Additionally, the questionnaire contained questions on exposure-255 

relevant behaviour, e.g. how many hours they had spent outdoors and when exactly 256 

or whether they had engaged in outdoor activities that predispose to potentially high 257 

pollen exposure, such as gardening, lawn mowing and outdoor sports, if they kept 258 

the windows open at night or if the participants had washed their hair before going to 259 

sleep.  260 
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 261 

2.6. Meteorological data 262 

Meteorological data (air temperature, precipitation and relative humidity) were 263 

obtained for Zugspitze and Augsburg for the respective time-periods from the open 264 

access database of the German Weather Service (DWD Climate Data Center, 2018). 265 

 266 

2.7. Data analysis 267 

All data were examined at two different timescales, per day and per 8-hourly 268 

intervals. Differences among sites (before UFS, during UFS, after UFS) and time 269 

intervals (morning, afternoon, night) were investigated in all possible combinations 270 

and interactions (t test for dependent samples, one-way, nested and full factorial 271 

ANOVA, 2-degree factorial ANCOVA). Moreover, Pearson correlations, and one-way, 272 

multiple and full factorial regressions were performed, along with time series analysis 273 

(cross-correlations), so as to examine the relationships of symptoms versus all other 274 

co-factors. All analyses were examined at the significance level of p=0.05. 275 

Differences were corrected after Bonferroni criterion and homogenous groups were 276 

identified and correlation coefficients were recorded in all cases. In the regressions, 277 

the Least Squares Distance fitting was adopted with a stiffness of 0.2, so as to detect 278 

local data peculiarities. In all factorial analysis (ANCOVA, regressions), the stepwise 279 

backward elimination method was applied, so as to determine which the main co-280 

factors are for the optimum forecasting model. All data analyses were carried out in 281 

Statistica 13. 282 

 283 

3. Results 284 

3.1. Time course of symptoms related to pollen exposure 285 
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In the first study interval (pre-UFS), which coincided with the peak of grass 286 

pollen season in Augsburg, airborne grass pollen concentrations reached up to 242 287 

pollen grains/m3 (average of 87 pollen grains/m3). During this time, mean symptom 288 

scores in non-allergic participants were low, whereas they were high in the allergic 289 

cohort. Peaks in symptoms of allergic patients coincided with peaks in pollen 290 

concentrations. In the second study interval on UFS, airborne grass pollen 291 

concentrations were low, reaching no more than 73 pollen grains/m3 (average of 18 292 

pollen grains/m3), and, likewise, symptoms were low. In the third interval, again in 293 

Augsburg, grass pollen counts were high again, but somewhat lower than during the 294 

first interval. In line with this, symptoms rose again but remained lower than before 295 

the UFS stay (Figure 1). Surprisingly, in the non-allergic cohort, (nasal) symptoms 296 

were observed throughout the study and regardless of the site and time interval. 297 

 298 

3.2. Site-specific differences in pollen exposure 299 

Pollen exposure was found to be significantly higher outdoors compared to 300 

indoors: outdoor grass pollen concentrations were up to 17 times higher than those 301 

measured indoors  (Figure 2A). In contrast, we found no significant differences 302 

depending on the time interval of pollen sampling (day, afternoon, nighttime pollen 303 

concentrations) on the UFS: pollen was present homogenously throughout the day. 304 

When comparing pollen concentrations for each site separately, though, we found 305 

that in Augsburg (and particularly in the first study period), pollen concentrations were 306 

significantly higher in the morning and afternoon compared to those during night 307 

(Figure 2B) and especially as compared to the UFS. 308 

 309 

3.3. Nasal immunoglobulin responses to different exposure regimes 310 
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AfterwardsTo, we examined whether the UFS stay had an influence on the 311 

nasal immune response of grass pollen allergic patients,. Wwe therefore determined 312 

levels of total nasal immunoglobulins as well proinflammatory cytokines and 313 

chemokines before, during and after the UFS stay, and correlated the results with the 314 

study interval (before, during or after UFS), including airborne pollen concentrations 315 

as covariate. It was found that total nasal IgE- (Figure 3A) as well as nasal IgM levels 316 

(Figure 3B) were significantly lower on UFS and after UFS as compared to before 317 

UFS. The other immunoglobulins did not differ between intervals in this model 318 

(Figures 3C-3G). IgA was the only immunoglobulin that did not show a down-319 

regulation but a tendency towards an up-regulation during the course of the study 320 

(pre UFS < UFS < post UFS; Figure 3G), even though not statistically significant. 321 

 322 

3.4. Nasal cytokine- und chemokine responses to different exposure regimes 323 

Levels of cytokines and chemokines in nasal secretions were found to differ 324 

between pre-, during and post-UFS, with most of the nasal cytokines studied 325 

decreasing during the UFS stay, as for IL-33 (Figure 4A), CCL24/Eotaxin-2 (Figure 326 

4B), CCL4/MIP-1β (Figure 4C), CCL2/MCP-1 (Figure 4D) and CXCL8/IL-8 (Figure 327 

4F). These were found to differ significantly between study intervals, being lowered 328 

on UFS and not statistically altering and staying decreased for the whole post-UFS 329 

period. CCL22/MDC, IL-16, G-CSF and IL-1β (Figures 4E, 4G, 4H and 4I, 330 

respectively) did not differ significantly between study intervals. 331 

 332 

3.5. Symptoms in response to pollen exposure levels and environmental 333 

factors 334 

To assess the relationship between pollen concentrations and symptoms, we 335 

first performed time series analysis (cross-correlation) of daily symptoms versus 336 
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airborne pollen concentrations. In the non-allergic cohort there was no significant 337 

correlation of any type of symptoms with airborne grass pollen concentrations 338 

(p>0.05) and regardless of the site under examination. In contrast, a significant 339 

cross-correlation was observed with all forms of symptoms with airborne grass pollen 340 

in the grass pollen-allergic cohort (p<0.01). There was a significant lag effect of 341 

ocular and pulmonary symptoms with pollen concentration of up to the previous day 342 

and up to 3 days before for nasal symptoms. The strongest cross-correlation was 343 

observed on the same date of pollen occurrence and symptom manifestation (lag=0) 344 

and for all forms of symptoms, with the ocular symptoms exhibiting a stronger and 345 

more immediate effect (r=0.71), compared to nasal (r=0.53) and pulmonary 346 

symptoms (r=0.62). 347 

We next tested whether the UFS stay had an immediate or on-going effect on 348 

nasal, ocular and pulmonary symptoms of grass pollen-allergic patients (Figure 5). 349 

We observed a significant down-regulation of ocular, nasal and pulmonary symptoms 350 

(p<0.001 in all cases) on the UFS (Figures 5A-5C). Both nasal and pulmonary 351 

symptoms continued to stay low also during the post-UFS interval (Figures 5B, 5C). 352 

Only ocular symptoms increased again during the post-UFS interval, again showing 353 

an immediate effect of pollen, but never exceeded the half of the values of the pre-354 

UFS levels (Figure 5A).  355 

 356 

3.6. Factorial model of symptoms, pollen and meteorological factors 357 

When checking the interaction effects of several meteorological factors with 358 

airborne grass pollen concentrations on the symptom scores of allergic patients, we 359 

found that only relative humidity consistently and significantly correlated with pollen 360 

levels and with symptoms (Figure 6). More specifically, in all three kinds of 361 

symptoms, higher pollen concentrations alone correlated with higher symptom 362 
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scores. However, when relative humidity increased beyond approximately 60%, the 363 

respective threshold of pollen responsible for triggering symptoms decreased, viz. 364 

symptoms occurred at similar magnitude but with only half the pollen abundance. 365 

Particularly for pulmonary symptoms (Figure 6C), when relative humidity exceeded 366 

around 70%, the positive correlation of pollen and symptom score ceased (as relative 367 

humidity exhibited a confounding effect on pollen abundance), but at the same time 368 

relative humidity alone caused increased pulmonary symptoms even without the co-369 

effect of pollen.  370 

When similar effects were investigated in the non-atopic cohort, it was found 371 

that nasal symptoms were positively correlated with relative humidity alone and 372 

regardless of pollen abundance (p=0.034, r=0.35; data not shown here). 373 

 374 

3.7. Circadian patterns of ocular, nasal and pulmonary symptoms 375 

At the 8-hourly timescale, ocular and nasal symptoms were significantly higher 376 

in the afternoon (p=0.012, ocular symptoms; p=0.014, nasal symptoms; t tests for 377 

dependent samples), but this was true only for the pre-UFS stay of allergic patients; 378 

the same diurnal pattern was found also in airborne pollen concentration (see also 379 

Fig. 2B for comparisons). A delay effect of pollen was found on allergic symptoms of 380 

up to 16 hours (p<0.01 for both symptom forms, r=0.33-0.38 for ocular symptoms, 381 

r=0.29-0.36 for nasal symptoms; data not shown). This delay effect of several hours 382 

was also evident by correlating the symptom scores against the number of hours 383 

spent outdoors per day, including exercising hours: the most significant correlation, 384 

and positive, was again seen in the afternoon symptoms, both ocular and nasal 385 

(r=0.53 and r=0.59, respectively; data not shown).  386 

 387 

4. Discussion 388 
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In this study, we compared spatiotemporal patterns of airborne grass pollen 389 

during peak flowering season between two fundamentally different geoclimatic 390 

environments, urban Augsburg and alpine Zugspitze, and then correlated thesem 391 

patterns with pollen allergic symptoms and immune mediators in a patient cohort. Our 392 

original hypothesis was that by lowering pollen exposure we would reduce symptom 393 

severity. Our hypothesis proved was indeed supported by our findingsto be correct, 394 

similarly to previous results (e.g. Bastl et al., 2014; Berger et al., 2013, Karatzas et 395 

al., 2014; Osborne et al., 2017; Voukantsis et al., 2015).  396 

We additionally found that this relationship was valid for all symptom forms 397 

(ocular, nasal pulmonary). It was true for different bioclimatic regions (urban vs. 398 

alpine), with both a direct relationship plus a delayed effect, with a repeated circadian 399 

pollen-symptom interaction pattern relying on the pollen abundance pattern but with a 400 

lag effect, and, finally, relative humidity decreasing the pollen threshold value beyond 401 

which symptoms are triggered. To our knowledge, such relationships for different 402 

forms of symptoms, lag effects with pollen and particularly meteorological parameters 403 

and, especially, at finer timescales have never been investigated. 404 

Pollen abundance was lower on the alpine environment, as has been 405 

documented in other studies before (i.e. Charalampopoulos et al., 2013). However, 406 

on higher elevations there is also a higher mixing of the atmosphere and hence we 407 

still observed pollen, even while snowing, probably as an indication of long-distance 408 

transport. Such incidents have been recently reported for several different pollen 409 

taxa, including grass pollen, and for up to 2 km above ground level (Damialis et al., 410 

2017). For this reason, pollen exposure is not probable to be eliminated completely 411 

even in the most ‘unhospitable’ environment, which also means that the potential 412 

allergy risk cannot be eliminated either. Moreover, outdoor pollen abundance was 413 
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consistently higher than indoors up to a 6-fold magnitude, which also makes pollen 414 

allergies more relevant for outdoor exposure.  415 

Allergic symptoms were found to correlate most significantly with airborne 416 

pollen concentrations of the same day, suggesting that immediate type immune 417 

responses, such as IgE-mediated activation of mast cells and eosinophils, were 418 

important contributors to the symptom load in our cohort (Janeway et al., 2001). Our 419 

time series analysis additionally revealed the ability to significantly reducekeep 420 

symptoms ‘switched off’ after low pollen exposure, and keep them mild for up to two 421 

weeks, mainly for nasal or pulmonary symptoms. However, ocular symptoms (Figure 422 

5A) and combination of symptoms (viz. total symptom score, Figure 1) displayed a 423 

more immediate type response to increasing again pollen exposure. 424 

The sustained reduction in symptoms is most likely explained by low pollen 425 

exposure during the first ten days of the UFS stay. Pollen counts as well as 426 

symptoms increased simultaneously after 10 June, even though still on the ‘low 427 

exposure’ UFS, as a result of the weather improving after a heavy snowfall. It has to 428 

be considered that prolonged exposure with elevated pollen levels could have 429 

caused the patients´ symptoms to rise again to baseline levels, even on UFS. In this 430 

case, the beneficial effect would have eventually been lost. This means that even 431 

low-exposure“safe” environments can potentially be unsafe because of isolated or 432 

extreme events per se might not exist. In fact, climatic variations can cause high 433 

atmospheric pollen occurrence even in high alpine locations, as we indeed observed 434 

for UFS within the last 3 days of the patients´ stay. To assess the true contribution of 435 

climatic co-factors to the effect of mere allergen withdrawal, further studies should be 436 

carried out under natural exposure conditions, comparing symptoms in the same 437 

cohort between successive stays in different climatic regions, including a high-438 

elevation, low humidity site. High altitude therapy regimes have been successfully 439 
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applied for the treatment of chronic inflammatory diseases of the skin and airways 440 

(e.g. Bersuch et al., 2017; Fieten et al., 2018; Jung et al., 2012). The effect of high-441 

altitude climate therapy on asthma was recently assessed in a systematic meta-442 

analysis (Vinnikov et al., 2016), showing overall beneficial effects of high-altitude 443 

treatment mainly in adults, which did not differ between altitudes of 1560 m and   444 

>2000 m above sea level. 445 

A unique feature of our current study design is the ability to monitor kinetics of 446 

symptoms and immune responses under an ‘on-off-on’ allergen exposure regime in 447 

the same patients. Consistent with a sustained reduction in symptoms, total nasal IgE 448 

and IgM levels decreased during the UFS stay and remained low, whereas total IgA 449 

levels tended to increase. IgA is found in large quantities in nasal fluid and is 450 

presumed to be crucial for immune exclusion at mucosal surfaces (Corthésy, 2013; 451 

Fujimoto et al., 2009). Nasal allergen-specific IgA2 production has been linked to 452 

successful allergen-specific immunotherapy against grass pollen, suggesting a 453 

protective role in pollen allergy (Pilette et al., 2007). Nasal Igs are mainly directed 454 

against commensal or pathogenic microbes (Fujimoto et al., 2012). During nasal 455 

allergen exposure, however, specific Ig levels can increase dramatically. Since our 456 

study was started during the main grass pollen season, it is likely that a large 457 

proportion of the total IgE measured in our allergic patients´ nasal samples was 458 

directed against pollen. This would explain the reduction following allergen 459 

withdrawal. The decrease in IgM likely reflects a generally reduced de novo 460 

maturation of B cell clones in local lymph nodes and nasopharynx-associated 461 

lymphoid tissues following lower pollen exposure (Brandtzaeg, 2011; Tamura et al., 462 

1998).  463 

Notably, levels of nasal IL-33, Eotaxin-2, MIP-1, MCP-1 and IL-8 were 464 

reduced during the UFS stay and remained so throughout the rest of the study. This 465 
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suggests sustainable effects of allergen withdrawal on the activation of type 2 innate 466 

lymphoid cells (ILC2) (Maggi et al., 2017) as well as on chemotaxis of eosinophils 467 

and neutrophils (Benson et al., 2006; Bocheńska-Marciniak et al., 2003; Erger and 468 

Casale, 1995), dendritic cell precursors (Robays et al., 2007) and T- and NK cells 469 

(Maghazachi et al., 1994). To our knowledge, this is the first study showing such 470 

profound changes in local immunoglobulin, cytokine and chemokine patterns under 471 

changing natural allergen exposure conditions. More extended studies designed in a 472 

similar way have the power to reveal novel kinetic features of the local immune 473 

response to natural aeroallergen exposure. They can also be designed to identify 474 

biomarkers in monitoring success of allergen-specific immunotherapy. The fact that 475 

nasal secretions are a completely non-traumatic, promising biomonitoring method 476 

could be of clinical relevance especially for the field of pediatric allergy. 477 

When examining for co-factors that could explain more efficiently the cause-478 

effect relationship between symptom severity and pollen abundance, we interestingly 479 

found that relative air humidity seems to lower the threshold concentration at which 480 

pollen cause symptoms. It was observed that relative humidity higher than 60% 481 

triggered symptoms with only half the amount of pollen normally needed, and this 482 

was particularly intense for pulmonary symptoms. Surprisingly, even non-atopic 483 

individuals exhibited nasal symptoms, irrespective of pollen, but dependent on 484 

increasing relative humidity. Further investigations would clarify this issue. Overall, 485 

below the approximate threshold of 70%, relative humidity alone does not play a 486 

dramatic role apart from favouring airborne pollen dispersion (Šaulienė and 487 

Veriankaitė, 2012). Such relationships with relative humidity were in the past found 488 

with respiratory symptoms in schoolteachers in classrooms, with either very low 489 

(<30%) or elevated relative humidity (>50%) correlating with increases in allergic and 490 

asthma-like symptoms (Angelon-Gaetz et al., 2016). On the other hand, an 491 
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epidemiological study from Busan, Korea (Jo et al., 2017), from three years of data of 492 

hospital admissions due to respiratory diseases and meteorological factors showed 493 

that hospitaliszations increased with rising air temperatures, rising PM10 494 

concentrations and decreasing relative humidity. Under outdoor allergen exposure, it 495 

is likely that relative humidity acts in combination with site-specific meteorological 496 

and/or environmental confounders, as well as with climatic adaptation characteristics 497 

specific for the studied population. Control of respiratory allergic symptoms has been 498 

linked to an optimum in air humidity, with both dampness and extremely dry air as 499 

aggravating co-factors (Manuyakorn et al., 2015). Overall, it is well known that the 500 

definition of such thresholds comprises a highly demanding and complicated task, 501 

with those values varying among sites, countries, geoclimatic regions, among years 502 

and per pollen type (de Weger et al., 2013). Integrating additional co-variables, like 503 

meteorological factors, could assist in resolving this issue. Indeed, our findings 504 

highlighted that the interaction of pollen and relative humidity was universal even 505 

when comparing as diverse ecosystems as alpine vs. urban. To our knowledge, the 506 

relationship between airborne pollen concentrations, relative humidity and respiratory 507 

symptoms has never been systematically analysed. The results of our pilot study 508 

point out the need for further studies, preferably controlled aerosol exposure chamber 509 

experiments testing the effect of pollen exposure under different air humidity regimes, 510 

mainly with respect to allergic asthma.  511 

 512 

5. Conclusion 513 

Low airborne pollen exposure can efficiently reducesswitch off the symptoms 514 

and immune responses of pollen allergic patients. This decrease is persistent for 515 

nasal or pulmonary symptoms and immune responses and is retained for up to two 516 

weeks even if pollen exposure increases again into moderate levels. However, we 517 
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need to emphasizse that in extreme environments people are at the same time set 518 

under environmental stress and, thus, become symptomatic more easily, even under 519 

occasional or lower pollen exposure during only short intervals. Our results suggest 520 

that medical recommendations on allergy management need to take into account the 521 

whole variety of environmental factors influencing the allergic disease rather than 522 

only immune responses or symptom registries. 523 
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Table and Figure legends 723 

 724 

Table 1: Overview over characteristics of study participants. 725 

Participants in the study, their age and gender and the initial screening results [serum total 726 

IgE and specific IgE against a set of common aeroallergens (perennial and seasonal) (by 727 

ImmunoCAP)]. 728 

*: Participant was not exposed to cats during the study. 729 

**: Participant was sensitized against bee and wasp venom (data now shown), hence the 730 

high total IgE value.  731 

 732 

Figure 1. Time course of daily total symptom scores in relation to pollen 733 

concentrations. 734 

Total symptom score of pollen-allergic patients and non-allergic subjects vs. airborne grass 735 

pollen concentrations over time (n=36 days). The shaded area marks the UFS stay. 736 

Before/after UFS: City of Augsburg. UFS: Zugspitze mountain. 737 

 738 

Figure 2. Differences in airborne grass pollen concentrations among study sites, 739 

dependent on outdoor vs. indoor sampling and sampling time per day. 740 

A. Spatial differences: Pollen indoors vs. outdoors on the UFS (t test for dependent samples: 741 

central marker stands for the average, box for the standard error and bars for standard 742 

deviation); B. Temporal differences: Outdoor pollen exposure comparison among morning 743 

vs. afternoon vs. night and between UFS vs. Augsburg (nested ANOVA: outdoor pollen 744 

concentration was the dependent variable, Time interval (nested parameter) and Site the 745 

categorical predictors). 746 

a, b: homogenous significant differencesgroups after Bonferroni correction (a>b). 747 

Significance level p is also indicated. 748 

 749 
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Figure 3: Differences in levels of total immunoglobulins among study sites and 750 

dependent on pollen abundance. 751 

A-G: Comparisons of levels of total nasal immunoglobulins (Ig) of different isotypes among 752 

sites (categorical predictor) and pollen concentration (covariate) (ANCOVA). 753 

a, b: significant differences homogenous groups after Bonferroni correction (a>b). 754 

Significance level p is also indicated for significant cases. 755 

 756 

Figure 4: Differences in levels of cytokines and chemokines among study sites and 757 

dependent on pollen abundance. 758 

A-I: Comparisons of levels of nasal proinflammatory cytokines and chemokines among sites 759 

(categorical predictor) and pollen concentration (covariate) (ANCOVA). 760 

a, b: significant differences homogenous groups after Bonferroni correction (a>b). 761 

Significance level p is also indicated for significant cases. 762 

 763 

Figure 5: Differences in symptom scores among study sites and dependent on pollen 764 

abundance. 765 

A-C: Comparisons of ocular, nasal and pulmonary symptom scores among sites (categorical 766 

predictor) and pollen concentration (covariate) (ANCOVA). 767 

a, b, c: significant differences homogenous groups after Bonferroni correction (a: the highest, 768 

c: the lowest). Significance level p is also indicated. 769 

 770 

Figure 6: Factorial models of symptoms, pollen concentrations and relative humidity. 771 

A: General Linear Models (factorial regression) of averaged symptom scores (A: ocular, B: 772 

nasal, C: pulmonary) (z-axis) against airborne grass pollen concentration (y-axis) and relative 773 

humidity (x-axis). 774 

Significance level p and Pearson correlation coefficient r are also given. 775 

The surface was fitted after the Least Square Difference method (stiffness = 0.2).   776 

 777 
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Abstract 25 

Pollen exposure is a major cause of respiratory allergies worldwide. However, 26 

it is unclear how everyday exposure is related to symptoms and how allergic patients 27 

may be affected spatially and temporally. Hence, we investigated the relationship of 28 

pollen, symptoms and immune responses under a controlled regime of ‘high-low-29 

moderate’ pollen exposure in urban versus alpine environment. 30 

The research was conducted in 2016 in two locations in Germany: urban 31 

Augsburg (494 m) and Schneefernerhaus (UFS) on Zugspitze mountain (2,656 m). 32 

Monitoring of airborne pollen took place using Hirst-type volumetric traps. On UFS, 33 

both indoor and outdoor samples were taken. Grass pollen allergic human volunteers 34 

were monitored daily during the peak of the grass pollen season, in Augsburg, on 35 

UFS, then again in Augsburg. Nasal biosamples were obtained throughout the study 36 

to investigate immune responses. 37 

All symptoms decreased significantly during the stay on UFS and remained 38 

low even after the return to Augsburg. The same was observed for nasal total IgE 39 

and IgM levels and for nasal type 2 cytokines and chemokines. Augsburg showed 40 

higher pollen concentrations than those on UFS. At all sites, pollen were present 41 

throughout each day, but were more abundant in Augsburg during morning. On UFS, 42 

outdoor pollen levels were up to 6-fold higher than those indoors. Nasal, ocular and 43 

pulmonary symptoms correlated with current and previous days’ pollen 44 

concentrations and relative humidity.  45 

Stays in low-exposure environments during the peak pollen season can be an 46 

efficient means of reducing allergic symptoms and immune responses. However, in 47 

alpine environments, even occasional pollen exposure during short intervals may still 48 

trigger symptoms because of the additional environmental stress posed onto 49 

allergics. This highlights the need for the consideration of additional environmental 50 
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factors, apart from symptom diaries and immune responses, so as to efficiently 51 

predict high-risk allergy periods. 52 

 53 

Keywords 54 

Aerobiology; allergy; alpine environment; exposome; grass pollen, symptoms 55 

 56 

Highlights 57 

 Pollen concentrations and symptoms were monitored in urban vs alpine 58 

ecosystem 59 

 Higher pollen exposure led to higher severity of symptoms 60 

 Staying in an alpine environment lowered allergic symptoms and immune 61 

responses  62 

 Nasal or pulmonary symptoms and immune responses were retained low for 2 63 

weeks 64 

 Relative humidity >60% lowers to half the threshold of pollen triggering symptoms 65 

 66 

 67 

1. Introduction 68 

Clinical evidence reveals a general increase in both the incidence and the 69 

prevalence of respiratory allergies, including allergic rhinitis and asthma (e.g. Bunne 70 

et al. 2017; Pawankar, 2014). According to The World Allergy Organization estimates 71 

(Pawankar et al., 2013), allergic rhinitis is currently affecting up to 30% of the 72 

population. This percentage varies among cities, countries and continents because of 73 

environmental and other factors and can even exceed 40% (e.g. Morais-Almeida et 74 

al., 2013; Sibbald and Strachen, 1995). Hence, allergies are a major public health 75 

problem that has worsened in recent decades and it is now recognised as a major 76 
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global epidemic, also with considerable economic burden (Linneberg, 2016; Ring et 77 

al., 2014). 78 

Climate change, air pollution and urbanisation could indirectly favour 79 

respiratory allergies, as increasing temperatures bring about earlier flowering and 80 

pollination periods and concomitantly overall shorter allergen-free seasons (D’Amato 81 

et al., 2015; Fotiou et al., 2011; Schiavoni et al., 2017; Ziello et al., 2012; Ziska et al., 82 

2003). Long-term health impacts may be related not only to air pollution and changes 83 

in lifestyle, but also to an actual increase in the amount of airborne allergenic pollen 84 

(e.g. Fotiou et al., 2011; Ziello et al., 2012). Although local trends may vary greatly, 85 

climate change has already resulted in significant increases in the vegetation 86 

coverage or abundance of several pollen taxa, such as Ambrosia artemisiifolia in the 87 

USA and parts of Europe, especially in north Italy and on the Pannonian plain (e.g. 88 

Lake et al., 2017; Sikoparija et al., 2017; Storkey et al., 2014; Ziello et al., 2012).  89 

Pollen allergy can manifest itself as allergic rhinitis, allergic conjunctivitis 90 

and/or allergic bronchial asthma (e.g. Erbas et al., 2018). International literature 91 

identifies grass pollen as the leading aeroallergen worldwide (e.g. García-Mozo, 92 

2017; Weeke and Spieksma, 1991; Wu et al., 1999). Allergenic grasses consist of 93 

both annual and perennial species, many of which are highly cosmopolitan and, 94 

hence, they are found in a wide variety of latitudes and biogeographical regions and 95 

in natural as well as urban habitats (e.g. Pignatti 1982, Lewis et al. 1983). According 96 

to epidemiological and clinical studies across the globe, sensitisation rates to grass 97 

pollen can reach up to 80% of the total atopic population (e.g. Belver et al., 2007; 98 

Erbas et al., 2018; Kobzar, 1999; Wu et al., 1999). 99 

What is currently lacking, however, is information on the real-life health 100 

impacts of pollen exposure and climate variability on the allergic population. Even 101 

though there have been recent attempts to elucidate this relationship from existing 102 
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respiratory symptoms’ databases (e.g. Karatzas et al., 2014), there is still a 103 

significant knowledge gap. It is still not clear whether exposure to allergenic pollen 104 

induces symptoms in a direct and immediate way, what kind of symptoms it induces 105 

(ocular, nasal, pulmonary or combinations) and if the symptoms vary in severity 106 

depending on exposure-related behaviour and duration of the exposure. Also, it has 107 

never been documented whether symptoms can also be observed in non-atopic 108 

people. Moreover, to our knowledge, none of the above has been examined under 109 

differing environmental conditions (urban versus natural environment) or in extreme 110 

environments (e.g. high altitude). Finally, given that more 80% of our time is spent 111 

indoors (Klepeis et al., 2001), no conclusion has been drawn whether the indoor or 112 

the outdoor pollen load (where also pollen is mostly monitored worldwide) are most 113 

relevant for predicting the genuine human exposure and the resulting respiratory 114 

symptoms. 115 

Moreover, there is little information on the kinetics between exposure and 116 

reaction, i.e. if the relationship between pollen exposure and symptoms is linear or 117 

non-linear, if it varies depending on the duration of pollen exposure, or if there is time 118 

lag between the actual pollen exposure and the occurrence of allergic symptoms. 119 

The above questions make pollen season forecasting (and consequent symptom 120 

forecasting) rather complex, thus highlighting the need for additional research so as 121 

to achieve accurate and operational predictive models, which comprises one of the 122 

first line allergy management tools. 123 

The aim of this study was, therefore, to assess how short-term changes in 124 

pollen exposure translate into changes in respiratory symptoms and nasal immune 125 

responses. To achieve this, we had to assess the symptom-related genuine 126 

exposure, by monitoring symptoms in two well-characterised cohorts of non-allergic 127 

and pollen allergic subjects and in two different pollen exposure regimes, a high 128 
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pollen one in an urban ecosystem and a low pollen one in an alpine, high-altitude 129 

ecosystem. During peak grass pollen season, the subjects were transferred from an 130 

urban environment with high airborne pollen load to a natural, high-altitude, low 131 

pollen environment, and back again after a 12-day stay. The questions we asked 132 

were: What effect does lower pollen exposure have on pollen allergic symptoms and 133 

immune responses and how can we quantify this? And how long lasting is the 134 

potential health benefit and what are the environmental factors affecting the pollen-135 

symptoms interaction? 136 

 137 

 138 

2. Material and Methods 139 

 140 

2.1. Study design and locations 141 

The study lasted from 1 June to 6 July 2016. The first 12-day interval, from 1 142 

June to 13 June, took place in the region of Augsburg. On 13 June, all participants 143 

met at the railway station of the city of Garmisch-Partenkirchen, situated on the 144 

foothills of Zugspitze mountain in the Bavarian Alps, and jointly travelled by cog 145 

railroad up to the Schneefernerhaus [UFS (Umweltforschungsstation 146 

Schneefernerhaus)], an environmental research station situated some 300m below 147 

the summit of Zugspitze mountain (elevation 2,656m), where they stayed without 148 

interruption until 24 June (for a total of 12 days). During the whole stay, daily habits 149 

were recorded on an 8-hourly scale, i.e. hours spent outdoors versus indoors and 150 

hours spent on exercising, either indoors or outdoors. On 24 June, all participants 151 

collectively left the UFS and travelled back to their homes. The final 12-day study 152 

interval, again in the Augsburg region, ended on 6 July 2016. 153 

 154 
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2.2. Pollen monitoring 155 

Grass pollen was examined in 2016 for both sites, UFS and Augsburg. This 156 

pollen taxon was selected because it is the most important outdoor aeroallergen and 157 

common in most environmental regimes across the world (e.g. García-Mozo, 2017). 158 

Biomonitoring took place at ground level, using Hirst-type volumetric traps (Burkard 159 

Manufacturing Co. Limited, Rickmansworth, Hertfordshire, England, UK) (Hirst, 160 

1952). Grass pollen was identified (at the family level Poaceae) under light 161 

microscope and grains were counted per cubic metre of air, on two time resolutions, 162 

per day and per 8 hours, throughout the whole study (total duration of 36 days). The 163 

biomonitoring techniques used (details in section 2.2.1) are typical for pollen data 164 

collection, followed by most scientists (e.g. British Aerobiology Federation, 1995). 165 

 166 

2.2.1. Pollen monitoring in Augsburg 167 

Airborne pollen in the city of Augsburg were collected by use of a 7-day 168 

recording Burkard volumetric trap located at the Bavarian Environmental Agency 169 

bureau, at ground level. The trap was equipped with a vacuum pump drawing 10 l of 170 

air min-1 through a narrow orifice. Air particles were trapped on an adhesive-coated 171 

(Burkard gelvatol) transparent plastic tape (Melinex), supported on a clockwork-172 

driven drum, which moved at a speed of 2 mm hr-1 making a complete revolution in 173 

one week. The tape was then removed and cut in seven equal sections, each 174 

representing a day of sampling (viz. of 48 mm of tape per day). The tape sections 175 

were stained with a solution of saffranine, gelatine, glycerol and phenol and were 176 

mounted on microscope slides, each slide representing a 24h period. Grass pollen 177 

grains were counted in 12 transverse traverses per slide, each transect representing 178 

a 2-hourly interval, under a light microscope (Leica DM750) at a magnification of 179 

400. Counts were made on a bi-hourly basis and expressed as mean daily pollen 180 
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concentrations (number of pollen grains per m3 of air d-1) or mean 8-hourly pollen 181 

concentrations, investigating for differences among morning (06:00-14:00), afternoon 182 

(14:00-22:00) and night (22:00-06:00) (so as to be comparable to the symptom 183 

registry time resolution).  184 

 185 

2.2.2. Pollen monitoring on the UFS 186 

On the UFS, pollen monitoring was performed using portable Burkard 187 

samplers. Sampling was conducted every 8 hours (morning, afternoon, night) and 188 

lasting for half an hour each time. Two portable samplers operated at the same time, 189 

both indoors and outdoors. The laboratory techniques including pollen identification 190 

and counting and the measurement units used were exactly the same as for the 191 

stationary devices described in section 2.2.1. 192 

 193 

2.3. Human cohort characteristics 194 

Healthy non-allergic and grass pollen allergic volunteers were recruited in the 195 

Augsburg region from February to May 2016. Candidates underwent an initial 196 

screening procedure to exclude perennial rhinitis, nasal polyps or chronic 197 

rhinosinusitis, including a blood test for IgE measurement. An initial cohort of 10+10 198 

allergic and healthy participants was recruited. Based on the performed screening but 199 

also on the consistency and reliability of their participation (i.e. continuous presence 200 

in the required study sites, and regular registering of symptoms), finally six healthy, 201 

non-allergic volunteers and five pollen allergic (otherwise healthy) patients with self-202 

reported symptoms during the grass pollen season and CAP class ≥ 2 for grass 203 

pollen were included in the study. Healthy non-allergic volunteers had overall low 204 

total serum IgE levels (19.0 ± 8.1 IU/ml; mean ± SEM) and no specific IgE (<0.03 205 

IU/ml) against any seasonal or perennial aeroallergen, as tested by ImmunoCAP and 206 
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ISAC (Phadia/Thermo Fisher). Allergic rhinitis patients included in the study had 207 

elevated total serum IgE (141.4 ± 70.1; mean ± SEM) and elevated grass pollen-208 

specific IgE levels (average CAP class 3), without co-sensitisation against house dust 209 

mite. For an overview of participants’ characteristics, see also Table 1. Sensitisations 210 

were additionally assessed by component-resolved IgE diagnostics (ISAC 211 

aeroallergen chip, Thermo Fisher; data not shown). The study was approved by the 212 

local ethics committee (code: 19/15) and conformed to the guidelines of Helsinki. 213 

Study participants were enrolled after written informed consent. 214 

 215 

2.4. Determination of immunoglobulins, cytokines and chemokines in nasal samples 216 

A total of 9 nasal secretions were collected per subject throughout the study 217 

(as in Gilles-Stein et al., 2016). Briefly, a strip of absorbent filter paper (Pall, 218 

Leucosorb) was inserted ipsilaterally into the nostril and kept there for 45 seconds. 219 

The filter paper strip was then placed into the insert of a 1.5ml spinning filter tube 220 

(Costar). Secretion fluid was extracted by adding 100µl of double-distilled water to 221 

the paper strip and spinning it down in a pre-cooled centrifuge (4°C) for 5 minutes at 222 

10,000x g. Nasal secretion weights were assessed by weighing the tube plus filter 223 

paper before and after sample collection. Local cytokine release was calculated by 224 

normalising cytokine concentration to nasal secretion volume. 225 

Chemokines, cytokines and immunoglobulins were measured in nasal 226 

secretions via multiplex magnetic bead-based detection kits (Bio-Plex Pro Human 227 

Isotyping Panel 6-plex for IgA, IgM, IgG1, IgG2, IgG3 and IgG4; Human IgE Isotyping 228 

Assay for IgE and a custom 9-plex for IL-33, CCL24/Eotaxin-2, CCL4/MIP-1β, 229 

CCL2/MCP-1, CCL22/MDC, CXCL8/IL-8, IL-16, G-CSF and IL-1β) according to the 230 

manufacturer´s instructions. Optimal sample dilutions were examined beforehand. 231 

Nasal samples, standards and controls were analysed via Bio-Plex 200 System (Bio-232 
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Rad Laboratories) with control and analysis software Bio-Plex Manager 6.1 (Bio-Rad 233 

Laboratories). Standard curves for each target were calculated to determine the 234 

concentration of immune mediators. 235 

 236 

2.5. Monitoring of symptoms 237 

Throughout the study, participants filled in a questionnaire daily on their 238 

smartphones or laptop computers, covering questions on general wellbeing, 239 

medication use and allergic symptoms. Symptoms included nasal, ocular and 240 

pulmonary symptoms, with severity ranging from 0 to 3 (0: none, 1: mild, 2: 241 

moderate, 3: severe). Participants were also asked about the time of day their 242 

symptoms occurred, as specified in 8-hour intervals (morning: 6-14h, afternoon: 14-243 

22h, night: 22-6h). Additionally, the questionnaire contained questions on exposure-244 

relevant behaviour, e.g. how many hours they had spent outdoors and when exactly 245 

or whether they had engaged in outdoor activities that predispose to potentially high 246 

pollen exposure, such as gardening, lawn mowing and outdoor sports, if they kept 247 

the windows open at night or if the participants had washed their hair before going to 248 

sleep.  249 

 250 

2.6. Meteorological data 251 

Meteorological data (air temperature, precipitation and relative humidity) were 252 

obtained for Zugspitze and Augsburg for the respective time-periods from the open 253 

access database of the German Weather Service (DWD Climate Data Center, 2018). 254 

 255 

2.7. Data analysis 256 

All data were examined at two different timescales, per day and per 8-hourly 257 

intervals. Differences among sites (before UFS, during UFS, after UFS) and time 258 



11 
 

intervals (morning, afternoon, night) were investigated in all possible combinations 259 

and interactions (t test for dependent samples, one-way, nested and full factorial 260 

ANOVA, 2-degree factorial ANCOVA). Moreover, Pearson correlations, and one-way, 261 

multiple and full factorial regressions were performed, along with time series analysis 262 

(cross-correlations), so as to examine the relationships of symptoms versus all other 263 

co-factors. All analyses were examined at the significance level of p=0.05. 264 

Differences were corrected after Bonferroni criterion and homogenous groups were 265 

identified in all cases. In the regressions, the Least Squares Distance fitting was 266 

adopted with a stiffness of 0.2, so as to detect local data peculiarities. In all factorial 267 

analysis (ANCOVA, regressions), the stepwise backward elimination method was 268 

applied, so as to determine which the main co-factors are for the optimum forecasting 269 

model. All data analyses were carried out in Statistica 13. 270 

 271 

3. Results 272 

3.1. Time course of symptoms related to pollen exposure 273 

In the first study interval (pre-UFS), which coincided with the peak of grass 274 

pollen season in Augsburg, airborne grass pollen concentrations reached up to 242 275 

pollen grains/m3 (average of 87 pollen grains/m3). During this time, mean symptom 276 

scores in non-allergic participants were low, whereas they were high in the allergic 277 

cohort. Peaks in symptoms of allergic patients coincided with peaks in pollen 278 

concentrations. In the second study interval on UFS, airborne grass pollen 279 

concentrations were low, reaching no more than 73 pollen grains/m3 (average of 18 280 

pollen grains/m3), and, likewise, symptoms were low. In the third interval, again in 281 

Augsburg, grass pollen counts were high again, but somewhat lower than during the 282 

first interval. In line with this, symptoms rose again but remained lower than before 283 
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the UFS stay (Figure 1). Surprisingly, in the non-allergic cohort, (nasal) symptoms 284 

were observed throughout the study and regardless of the site and time interval. 285 

 286 

3.2. Site-specific differences in pollen exposure 287 

Pollen exposure was found to be significantly higher outdoors compared to 288 

indoors: outdoor grass pollen concentrations were up to 17 times higher than those 289 

measured indoors (Figure 2A). In contrast, we found no significant differences 290 

depending on the time interval of pollen sampling (day, afternoon, nighttime pollen 291 

concentrations) on the UFS: pollen was present homogenously throughout the day. 292 

When comparing pollen concentrations for each site separately, though, we found 293 

that in Augsburg (and particularly in the first study period), pollen concentrations were 294 

significantly higher in the morning and afternoon compared to those during night 295 

(Figure 2B) and especially as compared to the UFS. 296 

 297 

3.3. Nasal immunoglobulin responses to different exposure regimes 298 

To examine whether the UFS stay had an influence on the nasal immune 299 

response of grass pollen allergic patients, we determined levels of total nasal 300 

immunoglobulins as well proinflammatory cytokines and chemokines before, during 301 

and after the UFS stay, and correlated the results with the study interval (before, 302 

during or after UFS), including airborne pollen concentrations as covariate. It was 303 

found that total nasal IgE- (Figure 3A) as well as nasal IgM levels (Figure 3B) were 304 

significantly lower on UFS and after UFS as compared to before UFS. The other 305 

immunoglobulins did not differ between intervals in this model (Figures 3C-3G). 306 

 307 

3.4. Nasal cytokine- und chemokine responses to different exposure regimes 308 
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Levels of cytokines and chemokines in nasal secretions were found to differ 309 

between pre-, during and post-UFS, with most of the nasal cytokines studied 310 

decreasing during the UFS stay, as for IL-33 (Figure 4A), CCL24/Eotaxin-2 (Figure 311 

4B), CCL4/MIP-1β (Figure 4C), CCL2/MCP-1 (Figure 4D) and CXCL8/IL-8 (Figure 312 

4F). These were found to differ significantly between study intervals, being lowered 313 

on UFS and not statistically altering and staying decreased for the whole post-UFS 314 

period. CCL22/MDC, IL-16, G-CSF and IL-1β (Figures 4E, 4G, 4H and 4I, 315 

respectively) did not differ significantly between study intervals. 316 

 317 

3.5. Symptoms in response to pollen exposure levels and environmental 318 

factors 319 

To assess the relationship between pollen concentrations and symptoms, we 320 

first performed time series analysis (cross-correlation) of daily symptoms versus 321 

airborne pollen concentrations. In the non-allergic cohort there was no significant 322 

correlation of any type of symptoms with airborne grass pollen concentrations 323 

(p>0.05) and regardless of the site under examination. In contrast, a significant 324 

cross-correlation was observed with all forms of symptoms with airborne grass pollen 325 

in the grass pollen-allergic cohort (p<0.01). There was a significant lag effect of 326 

ocular and pulmonary symptoms with pollen concentration of up to the previous day 327 

and up to 3 days before for nasal symptoms. The strongest cross-correlation was 328 

observed on the same date of pollen occurrence and symptom manifestation (lag=0) 329 

and for all forms of symptoms, with the ocular symptoms exhibiting a stronger and 330 

more immediate effect (r=0.71), compared to nasal (r=0.53) and pulmonary 331 

symptoms (r=0.62). 332 

We next tested whether the UFS stay had an immediate or on-going effect on 333 

nasal, ocular and pulmonary symptoms of grass pollen-allergic patients (Figure 5). 334 
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We observed a significant down-regulation of ocular, nasal and pulmonary symptoms 335 

(p<0.001 in all cases) on the UFS (Figures 5A-5C). Both nasal and pulmonary 336 

symptoms continued to stay low also during the post-UFS interval (Figures 5B, 5C). 337 

Only ocular symptoms increased again during the post-UFS interval, again showing 338 

an immediate effect of pollen, but never exceeded the half of the values of the pre-339 

UFS levels (Figure 5A).  340 

 341 

3.6. Factorial model of symptoms, pollen and meteorological factors 342 

When checking the interaction effects of several meteorological factors with 343 

airborne grass pollen concentrations on the symptom scores of allergic patients, we 344 

found that only relative humidity consistently and significantly correlated with pollen 345 

levels and with symptoms (Figure 6). More specifically, in all three kinds of 346 

symptoms, higher pollen concentrations alone correlated with higher symptom 347 

scores. However, when relative humidity increased beyond approximately 60%, the 348 

respective threshold of pollen responsible for triggering symptoms decreased, viz. 349 

symptoms occurred at similar magnitude but with only half the pollen abundance. 350 

Particularly for pulmonary symptoms (Figure 6C), when relative humidity exceeded 351 

around 70%, the positive correlation of pollen and symptom score ceased (as relative 352 

humidity exhibited a confounding effect on pollen abundance), but at the same time 353 

relative humidity alone caused increased pulmonary symptoms even without the co-354 

effect of pollen.  355 

When similar effects were investigated in the non-atopic cohort, it was found 356 

that nasal symptoms were positively correlated with relative humidity alone and 357 

regardless of pollen abundance (p=0.034, r=0.35; data not shown here). 358 

 359 

3.7. Circadian patterns of ocular, nasal and pulmonary symptoms 360 
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At the 8-hourly timescale, ocular and nasal symptoms were significantly higher 361 

in the afternoon (p=0.012, ocular symptoms; p=0.014, nasal symptoms; t tests for 362 

dependent samples), but this was true only for the pre-UFS stay of allergic patients; 363 

the same diurnal pattern was found also in airborne pollen concentration (see also 364 

Fig. 2B for comparisons). A delay effect of pollen was found on allergic symptoms of 365 

up to 16 hours (p<0.01 for both symptom forms, r=0.33-0.38 for ocular symptoms, 366 

r=0.29-0.36 for nasal symptoms; data not shown). This delay effect of several hours 367 

was also evident by correlating the symptom scores against the number of hours 368 

spent outdoors per day, including exercising hours: the most significant correlation, 369 

and positive, was again seen in the afternoon symptoms, both ocular and nasal 370 

(r=0.53 and r=0.59, respectively; data not shown).  371 

 372 

4. Discussion 373 

In this study, we compared spatiotemporal patterns of airborne grass pollen 374 

during peak flowering season between two fundamentally different geoclimatic 375 

environments, urban Augsburg and alpine Zugspitze, and then correlated these 376 

patterns with pollen allergic symptoms and immune mediators in a patient cohort. Our 377 

original hypothesis was that by lowering pollen exposure we would reduce symptom 378 

severity. Our hypothesis was indeed supported by our findings, similarly to previous 379 

results (e.g. Bastl et al., 2014; Berger et al., 2013, Karatzas et al., 2014; Osborne et 380 

al., 2017; Voukantsis et al., 2015).  381 

We additionally found that this relationship was valid for all symptom forms 382 

(ocular, nasal pulmonary). It was true for different bioclimatic regions (urban vs. 383 

alpine), with both a direct relationship plus a delayed effect, with a repeated circadian 384 

pollen-symptom interaction pattern relying on the pollen abundance pattern but with a 385 

lag effect, and, finally, relative humidity decreasing the pollen threshold value beyond 386 
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which symptoms are triggered. To our knowledge, such relationships for different 387 

forms of symptoms, lag effects with pollen and particularly meteorological parameters 388 

and, especially, at finer timescales have never been investigated. 389 

Pollen abundance was lower on the alpine environment, as has been 390 

documented in other studies before (i.e. Charalampopoulos et al., 2013). However, 391 

on higher elevations there is also a higher mixing of the atmosphere and hence we 392 

still observed pollen, even while snowing, probably as an indication of long-distance 393 

transport. Such incidents have been recently reported for several different pollen 394 

taxa, including grass pollen, and for up to 2 km above ground level (Damialis et al., 395 

2017). For this reason, pollen exposure is not probable to be eliminated completely 396 

even in the most ‘unhospitable’ environment, which also means that the potential 397 

allergy risk cannot be eliminated either. Moreover, outdoor pollen abundance was 398 

consistently higher than indoors up to a 6-fold magnitude, which also makes pollen 399 

allergies more relevant for outdoor exposure.  400 

Allergic symptoms were found to correlate most significantly with airborne 401 

pollen concentrations of the same day, suggesting that immediate type immune 402 

responses, such as IgE-mediated activation of mast cells and eosinophils, were 403 

important contributors to the symptom load in our cohort (Janeway et al., 2001). Our 404 

time series analysis additionally revealed the ability to significantly reduce symptoms 405 

after low pollen exposure, and keep them mild for up to two weeks, mainly for nasal 406 

or pulmonary symptoms. However, ocular symptoms (Figure 5A) and combination of 407 

symptoms (viz. total symptom score, Figure 1) displayed a more immediate type 408 

response to increasing again pollen exposure. 409 

The sustained reduction in symptoms is most likely explained by low pollen 410 

exposure during the first ten days of the UFS stay. Pollen counts as well as 411 

symptoms increased simultaneously after 10 June, even though still on the ‘low 412 
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exposure’ UFS, as a result of the weather improving after a snowfall. It has to be 413 

considered that prolonged exposure with elevated pollen levels could have caused 414 

the patients´ symptoms to rise again to baseline levels, even on UFS. In this case, 415 

the beneficial effect would have eventually been lost. This means that even low-416 

exposure environments can potentially be unsafe because of isolated or extreme 417 

events. In fact, climatic variations can cause high atmospheric pollen occurrence 418 

even in high alpine locations, as we indeed observed for UFS within the last 3 days of 419 

the patients´ stay. To assess the true contribution of climatic co-factors to the effect 420 

of mere allergen withdrawal, further studies should be carried out under natural 421 

exposure conditions, comparing symptoms in the same cohort between successive 422 

stays in different climatic regions, including a high-elevation, low humidity site. High 423 

altitude therapy regimes have been successfully applied for the treatment of chronic 424 

inflammatory diseases of the skin and airways (e.g. Bersuch et al., 2017; Fieten et 425 

al., 2018; Jung et al., 2012). The effect of high-altitude climate therapy on asthma 426 

was recently assessed in a systematic meta-analysis (Vinnikov et al., 2016), showing 427 

overall beneficial effects of high-altitude treatment mainly in adults, which did not 428 

differ between altitudes of 1560m and >2000m above sea level. 429 

A unique feature of our current study design is the ability to monitor kinetics of 430 

symptoms and immune responses under an ‘on-off-on’ allergen exposure regime in 431 

the same patients. Consistent with a sustained reduction in symptoms, total nasal IgE 432 

and IgM levels decreased during the UFS stay and remained low, whereas total IgA 433 

levels tended to increase. IgA is found in large quantities in nasal fluid and is 434 

presumed to be crucial for immune exclusion at mucosal surfaces (Corthésy, 2013; 435 

Fujimoto et al., 2009). Nasal allergen-specific IgA2 production has been linked to 436 

successful allergen-specific immunotherapy against grass pollen, suggesting a 437 

protective role in pollen allergy (Pilette et al., 2007). Nasal Igs are mainly directed 438 
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against commensal or pathogenic microbes (Fujimoto et al., 2012). During nasal 439 

allergen exposure, however, specific Ig levels can increase dramatically. Since our 440 

study started during the main grass pollen season, it is likely that a large proportion of 441 

the total IgE measured in our allergic patients´ nasal samples was directed against 442 

pollen. This would explain the reduction following allergen withdrawal. The decrease 443 

in IgM likely reflects a generally reduced de novo maturation of B cell clones in local 444 

lymph nodes and nasopharynx-associated lymphoid tissues following lower pollen 445 

exposure (Brandtzaeg, 2011; Tamura et al., 1998).  446 

Notably, levels of nasal IL-33, Eotaxin-2, MIP-1, MCP-1 and IL-8 were 447 

reduced during the UFS stay and remained so throughout the rest of the study. This 448 

suggests sustainable effects of allergen withdrawal on the activation of type 2 innate 449 

lymphoid cells (ILC2) (Maggi et al., 2017) as well as on chemotaxis of eosinophils 450 

and neutrophils (Benson et al., 2006; Bocheńska-Marciniak et al., 2003; Erger and 451 

Casale, 1995), dendritic cell precursors (Robays et al., 2007) and T- and NK cells 452 

(Maghazachi et al., 1994). To our knowledge, this is the first study showing such 453 

profound changes in local immunoglobulin, cytokine and chemokine patterns under 454 

changing natural allergen exposure conditions. More extended studies designed in a 455 

similar way have the power to reveal novel kinetic features of the local immune 456 

response to natural aeroallergen exposure. They can also be designed to identify 457 

biomarkers in monitoring success of allergen-specific immunotherapy. The fact that 458 

nasal secretions are a completely non-traumatic, promising biomonitoring method 459 

could be of clinical relevance especially for the field of pediatric allergy. 460 

When examining for co-factors that could explain more efficiently the cause-461 

effect relationship between symptom severity and pollen abundance, we found that 462 

relative air humidity seems to lower the threshold concentration at which pollen cause 463 

symptoms. It was observed that relative humidity higher than 60% triggered 464 
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symptoms with only half the amount of pollen normally needed, and this was 465 

particularly intense for pulmonary symptoms. Surprisingly, even non-atopic 466 

individuals exhibited nasal symptoms, irrespective of pollen, but dependent on 467 

increasing relative humidity. Further investigations would clarify this issue. Overall, 468 

below the approximate threshold of 70%, relative humidity alone does not play a 469 

dramatic role apart from favouring airborne pollen dispersion (Šaulienė and 470 

Veriankaitė, 2012). Such relationships with relative humidity were in the past found 471 

with respiratory symptoms in schoolteachers in classrooms, with either very low 472 

(<30%) or elevated relative humidity (>50%) correlating with increases in allergic and 473 

asthma-like symptoms (Angelon-Gaetz et al., 2016). On the other hand, an 474 

epidemiological study from Busan, Korea (Jo et al., 2017), from three years of data of 475 

hospital admissions due to respiratory diseases and meteorological factors showed 476 

that hospitalisations increased with rising air temperatures, rising PM10 477 

concentrations and decreasing relative humidity. Under outdoor allergen exposure, it 478 

is likely that relative humidity acts in combination with site-specific meteorological 479 

and/or environmental confounders, as well as with climatic adaptation characteristics 480 

specific for the studied population. Control of respiratory allergic symptoms has been 481 

linked to an optimum in air humidity, with both dampness and extremely dry air as 482 

aggravating co-factors (Manuyakorn et al., 2015). Overall, it is well known that the 483 

definition of such thresholds comprises a highly demanding and complicated task, 484 

with those values varying among sites, countries, geoclimatic regions, among years 485 

and per pollen type (de Weger et al., 2013). Integrating additional co-variables, like 486 

meteorological factors, could assist in resolving this issue. Indeed, our findings 487 

highlighted that the interaction of pollen and relative humidity was universal even 488 

when comparing as diverse ecosystems as alpine vs. urban. To our knowledge, the 489 

relationship between airborne pollen concentrations, relative humidity and respiratory 490 
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symptoms has never been systematically analysed. The results of our pilot study 491 

point out the need for further studies, preferably controlled aerosol exposure chamber 492 

experiments testing the effect of pollen exposure under different air humidity regimes, 493 

mainly with respect to allergic asthma.  494 

 495 

5. Conclusion 496 

Low airborne pollen exposure efficiently reduces the symptoms and immune 497 

responses of pollen allergic patients. This decrease is persistent for nasal or 498 

pulmonary symptoms and immune responses and is retained for up to two weeks 499 

even if pollen exposure increases again into moderate levels. However, we need to 500 

emphasise that in extreme environments people are at the same time set under 501 

environmental stress and, thus, become symptomatic more easily, even under 502 

occasional or lower pollen exposure during only short intervals. Our results suggest 503 

that medical recommendations on allergy management need to take into account the 504 

whole variety of environmental factors influencing the allergic disease rather than 505 

only immune responses or symptom registries. 506 
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Figure legends 705 

 706 

Figure 1. Time course of daily total symptom scores in relation to pollen 707 

concentrations. 708 

Total symptom score of pollen-allergic patients and non-allergic subjects vs. airborne grass 709 

pollen concentrations over time (n=36 days). The shaded area marks the UFS stay. 710 

Before/after UFS: City of Augsburg. UFS: Zugspitze mountain. 711 

 712 

Figure 2. Differences in airborne grass pollen concentrations among study sites, 713 

dependent on outdoor vs. indoor sampling and sampling time per day. 714 

A. Spatial differences: Pollen indoors vs. outdoors on the UFS (t test for dependent samples: 715 

central marker stands for the average, box for the standard error and bars for standard 716 

deviation); B. Temporal differences: Outdoor pollen exposure comparison among morning 717 

vs. afternoon vs. night and between UFS vs. Augsburg (nested ANOVA: outdoor pollen 718 

concentration was the dependent variable, Time interval (nested parameter) and Site the 719 

categorical predictors). 720 

a, b: significant differences after Bonferroni correction (a>b). 721 

Significance level p is indicated. 722 

 723 

Figure 3: Differences in levels of total immunoglobulins among study sites and 724 

dependent on pollen abundance. 725 

A-G: Comparisons of levels of total nasal immunoglobulins (Ig) of different isotypes among 726 

sites (categorical predictor) and pollen concentration (covariate) (ANCOVA). 727 

a, b: significant differences after Bonferroni correction (a>b). 728 

Significance level p is indicated for significant cases. 729 

 730 

Figure 4: Differences in levels of cytokines and chemokines among study sites and 731 

dependent on pollen abundance. 732 
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A-I: Comparisons of levels of nasal proinflammatory cytokines and chemokines among sites 733 

(categorical predictor) and pollen concentration (covariate) (ANCOVA). 734 

a, b: significant differences after Bonferroni correction (a>b). 735 

Significance level p is indicated for significant cases. 736 

 737 

Figure 5: Differences in symptom scores among study sites and dependent on pollen 738 

abundance. 739 

A-C: Comparisons of ocular, nasal and pulmonary symptom scores among sites (categorical 740 

predictor) and pollen concentration (covariate) (ANCOVA). 741 

a, b, c: significant differences after Bonferroni correction (a: the highest, c: the lowest). 742 

Significance level p is indicated. 743 

 744 

Figure 6: Factorial models of symptoms, pollen concentrations and relative humidity. 745 

A: General Linear Models (factorial regression) of averaged symptom scores (A: ocular, B: 746 

nasal, C: pulmonary) (z-axis) against airborne grass pollen concentration (y-axis) and relative 747 

humidity (x-axis). 748 

Significance level p and Pearson correlation coefficient r are also given. 749 

The surface was fitted after the Least Square Difference method (stiffness = 0.2).   750 

 751 



Table 1. Overview over characteristics of study participants. 

Participants in the study, their age and gender and the initial screening results [serum total IgE and specific IgE against a set of 

common aeroallergens (perennial and seasonal) (by ImmunoCAP)]. 

*: Participant was not exposed to cats during the study. 

**: Participant was sensitized against bee and wasp venom (data now shown), hence the high total IgE value.  

        Perennial allergens Pollen allergens 

Subject 
ID 

Gender 
(m/f) 

Age 
(years) 

Total IgE 
(IU/ml) 

HDM 
(IU/ml) 

Cat 
dander 
(IU/ml) 

Timothy 
grass 
(IU/ml) 

Rye 
(IU/ml) 

Birch 
(IU/ml) 

Hazel 
(IU/ml) 

Mugwort 
(IU/ml) 

A l l e r g i c 

A1 f 57 60.4 0.02 0.01 10.70 7.10 0.15 0.22 0.27 

A2 f 33 335.0 0.19 44.70 * 19.00 8.57 0.11 0.05 0.20 

A3 m 20 19.3 0.03 0.00 0.83 0.47 0.10 0.02 0.01 

A4 f 20 266.0 0.03 0.05 94.30 61.30 0.07 0.03 0.65 

A5 f 32 19.5 0.00 0.00 2.53 1.85 0.00 0.00 0.02 

N o n - a l l e r g i c 

NA1 f 28 93.4 ** 0.02 0.00 0.02 0.03 0.01 0.01 0.01 

NA2 m 29 7.7 0.01 0.00 0.02 0.02 0.00 0.00 0.00 

NA3 f 25 29.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NA4 m 65 14.0 0.01 0.00 0.01 0.01 0.00 0.00 0.00 

NA5 f 63 8.7 0.01 0.00 0.01 0.01 0.00 0.00 0.00 

NA6 m 26 7.8 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
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