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CHD3 helicase domain mutations cause a
neurodevelopmental syndrome with macrocephaly
and impaired speech and language
Lot Snijders Blok 1,2,3, Justine Rousseau4, Joanna Twist et al.#

Chromatin remodeling is of crucial importance during brain development. Pathogenic

alterations of several chromatin remodeling ATPases have been implicated in neurodeve-

lopmental disorders. We describe an index case with a de novo missense mutation in CHD3,

identified during whole genome sequencing of a cohort of children with rare speech disorders.

To gain a comprehensive view of features associated with disruption of this gene, we use a

genotype-driven approach, collecting and characterizing 35 individuals with de novo CHD3

mutations and overlapping phenotypes. Most mutations cluster within the ATPase/helicase

domain of the encoded protein. Modeling their impact on the three-dimensional structure

demonstrates disturbance of critical binding and interaction motifs. Experimental assays with

six of the identified mutations show that a subset directly affects ATPase activity, and all but

one yield alterations in chromatin remodeling. We implicate de novo CHD3 mutations in a

syndrome characterized by intellectual disability, macrocephaly, and impaired speech and

language.
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The Chromodomain Helicase DNA-binding (CHD) protein
family is a key class of ATP-dependent chromatin remo-
deling proteins, which utilize energy derived from ATP

hydrolysis to regulate chromatin structure, thereby modulating
gene expression1,2. CHD proteins are crucial for developmental
processes1,3, with various members implicated in major neuro-
developmental disorders including CHD2 in epileptic encepha-
lopathy4, CHD7 in CHARGE syndrome5, CHD8 in autism6,7,
and more recently CHD4 and CHD1 in neurodevelopmental
syndromes8,9. Three CHD proteins (CHD3, CHD4, and CHD5)
can exert their chromatin remodeling activity by forming the core
ATPase subunit of the NuRD complex1,10–12. The NuRD com-
plex is associated with various fundamental cellular mechanisms,
including genomic integrity and cell cycle progression13, and
plays important roles in embryonic stem cell differentiation14. A
recent study reports that the different CHD factors within the
NuRD complex (CHD3, CHD4, and CHD5) are developmentally
regulated in the mouse brain, each having distinct and mostly
non-redundant functions during cortical development15. In par-
ticular, the CHD3 protein has been implicated in late neural
radial migration and cortical layer specification.

In contrast to most other members of the CHD protein family,
a specific syndrome associated with mutations in CHD3 (MIM
602120) has not yet been characterized. In this study, based on an
index case from whole genome sequencing of children with rare
speech disorders, we assemble a set of 35 probands carrying de
novo mutations that disrupt CHD3. We characterize the over-
lapping phenotypic features of probands with CHD3 mutations,
including intellectual disability (with a wide range of severity),
developmental delays, macrocephaly, impaired speech and lan-
guage skills, and characteristic facial features. We identify mainly
missense mutations that cluster in and around the ATPase/heli-
case domain of the CHD3 protein, and are predicted to disturb
function, based on three-dimensional modeling. We use func-
tional assays to describe the effects of multiple different CHD3
mutations on ATPase activity and chromatin remodeling capa-
cities. Taken together, our data demonstrate that de novo mis-
sense mutations in CHD3 disturb chromatin remodeling activities
of the encoded protein, thereby causing a neurodevelopmental
disorder.

Results
De novo CHD3 mutations cause a neurodevelopmental phe-
notype. During whole genome sequencing of a cohort of 19
unrelated children with a primary diagnosis of Childhood
Apraxia of Speech (CAS)16, we discovered a de novo missense
mutation in CHD3, predicted to disrupt the helicase domain of
the encoded protein. CAS is a rare neurodevelopmental disorder
characterized by impairments in learning to produce the coor-
dinated sequences of mouth and face movements underlying
fluent speech. Remarkably, the CHD3 protein is one of the few
documented interaction partners of FOXP2 (see Supplementary
Table S1 in ref. 17), a transcription factor that has been implicated
in monogenic forms of CAS, accompanied by wide-ranging lan-
guage problems, in multiple families and unrelated cases18–20.

Discovery of the CHD3 mutation (NM_001005273.2, p.
Arg1169Trp) in our index case motivated a search for other de
novo mutations in this gene. Studies of large numbers of simplex
families with an autistic proband have documented just two single
non-synonymous de novo variants in CHD3 in probands21,22,
while eight additional non-synonymous variants were recently
recorded in a study of thousands of children with unexplained
developmental disorders from the UK23, with limited information
on phenotypic profiles of carriers of CHD3 variants. Via
GeneMatcher24 we assemble a cohort of 35 independently

diagnosed probands with de novo mutations disrupting CHD3,
to systematically assess the phenotypic consequences of damage
to this gene.

The 35 probands with de novo mutations in CHD3 show
overlapping phenotypes, summarized in Table 1 and in more
detail in Supplementary Data 1. All individuals have global
developmental delays and/or intellectual disability, with a total IQ
varying from 70–85 (borderline intellectual functioning) to below
35 (severe intellectual disability). Nine individuals (29%) show
autism or autism-like features, including stereotypic and hand-
flapping behavior. Interestingly, the majority of individuals (19
individuals; 58%) have macrocephaly, and in cases where
neuroimaging has been performed, widening of cerebrospinal
fluid spaces is noted in 10 out of 30 MRI reports (33%). One
individual (individual 5) has microcephaly. Hypotonia is reported
in 21 individuals (75%). The facial phenotype consists of widely
spaced eyes, a broad and bossing forehead, periorbital fullness
and narrow palpebral fissures, laterally sparse eyebrows, low-set
and often simple ears with thick helices, and a pointed chin
(Fig. 1). Joint dislocations and/or hyperlaxity are reported in 12
cases, and five individuals have inguinal or umbilical hernias. Five
of the 21 male individuals have undescended testes. Vision
problems are quite common and include hypermetropia (11
individuals), strabismus (10 individuals), and cerebral visual
impairment (three individuals). One individual (individual 34)
developed epilepsy, two additional individuals had neonatal
convulsions. In many individuals an abnormal and often

Table 1 Summary of phenotypes found in this cohort of
probands with CHD3 mutations

Amount Percentage

Development
ID/DD 35/35 100%
Degree of ID/DD

Borderline ID 3/35 9%
Mild or mild–moderate ID 9/35 26%
Moderate or moderate–severe ID 8/35 23%
Severe ID 7/35 20%
DD/level unknown 8/35 23%

Speech delay/disorder 33/33 100%
Autism or autism-like features 9/31 29%

Neurology
Hypotonia 21/28 75%
Macrocephaly 19/33 58%
Widened CSF spaces (MRI) 10/30 33%
Neonatal feeding problems 10/32 31%

Dysmorphisms
High, broad, and/or prominent forehead 28/33 85%
Widely spaced eyes 24/31 77%

Other
Joint laxity (generalized and/or local) 12/30 40%
Vision problems
Hypermetropia 11/29 38%
Strabism 10/33 30%
Cerebral visual impairment 3/33 9%

Genital abnormalities in males 6/17 35%
Hernia (inguinal, umbilical, hiatal) 5/28 18%

More extensive clinical information per individual is provided in Supplementary Data 1. As
information on the different features was not always applicable or known for each patient, the
denominator in the “Amount” column is different for different clinical characteristics
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Fig. 1 Photographs of affected individuals. Facial photographs showing dysmorphisms in 18 individuals with de novo CHD3 mutations. The majority of
individuals have macrocephaly with a prominent or bossing forehead, individual 5 has microcephaly. Hypertelorism or telecanthus is common, often
accompanied by narrow palpebral fissures, deep-set eyes, peri-orbital fullness, and/or epicanthal folds. The combination of macrocephaly and deep-set
eyes leads to a more prominent supra-orbital ridge. Some individuals show midface hypoplasia. Many individuals have low-set ears that can be posteriorly
rotated, and sometimes simple with thick helices. A broad nasal base, prominent nose, a bifid nasal tip, and characteristic pointy chin is also frequently
seen, as well as laterally sparse eyebrows
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unsteady gait is reported, and one individual (individual 13)
developed symptoms of Parkinsonism at a later age.

Given that our index case was ascertained on the basis of a
formal diagnosis of CAS, we pay special attention to the
association of CHD3 mutations with speech and language deficits.
The index case was diagnosed with severe speech apraxia at the
age of 3 years, and then used sign language to communicate
effectively. He has severe problems with expressive speech,
against relatively normal scores on language comprehension tests
and a composite IQ (KBIT) of 72. In all 33 subjects that were at
least 2 years old at the last evaluation, CHD3 disruptions are
associated with delayed milestones in the speech and language
domain. The average age for first spoken words in this cohort is 2
years and 10 months (range: 1.5–5.5 years, after excluding six
individuals that were non-verbal at the last evaluation). Our data
suggest that expressive language is more affected than receptive
language, and intelligibility is often impaired. Speech-related
problems identified in our cohort include dysarthria, speech
apraxia, oromotor problems, and stuttering.

De novo CHD3 mutations cluster in the helicase domain. The
35 unrelated probands have 23 different de novo mutations in
CHD3 (Fig. 2a, b). None of these mutations are present in the
GnomAD database (http://gnomad.broadinstitute.com). Except
for four individuals, all individuals have missense mutations.
Interestingly, within our cohort there are multiple cases of
recurrent identical de novo mutations, revealing mutational
hotspots. The most striking is p.Arg985Trp, found in six children
from five different families, while two additional individuals have
a different substitution affecting the same residue (p.Arg985Gln).

The CHD3 protein is characterized by a SNF2-like ATPase/
helicase domain, together with two plant homeodomain (PHD)
fingers and two chromodomains (Fig. 2b, c)1,11, which mediate
chromatin interactions and nucleosome remodeling1. The over-
whelming majority of missense mutations (17/19) cluster within
and around the ATPase/helicase motif, a functional domain that
consists of two subdomains: a Helicase ATP-binding lobe and a
Helicase C-terminal lobe. This domain provides energy for
nucleosome remodeling through its ATPase activity. All missense
mutations affect amino acids that are highly conserved, both in
different species and also in the other CHD proteins that can be
part of the NuRD complex (Supplementary Fig. 1), and clearly
cluster in and around highly conserved SF2-family helicase motifs
(Supplementary Fig. 1). All are predicted to be pathogenic by
Polyphen-2 and/or SIFT, and have CADD scores above 24
(Supplementary Data 1).

The identified de novo mutations also include one in-frame
deletion of one amino acid (p.Gly1109del) and two truncating
mutations (p.Glu457* and p.Phe1935Glufs*108), although the
latter causes a frameshift at the very end of the protein, leading to
a stop codon after 108 amino acids. RNA sequencing of
transcripts with and without cycloheximide showed that this
mutation escapes nonsense-mediated decay (Supplementary
Fig. 2). Finally, one case has a splice-site mutation (c.4073-
2A>G) which is predicted to yield skipping of exon 27, while
preserving the reading frame (Fig. 2a). Data from the ExAC
database (http://exac.broadinstitute.com) indicate that CHD3 is
extremely intolerant for loss-of-function mutations (loss-of-
function intolerance score of 1.0) and highly intolerant for
missense mutations (Z-score of +7.15)25, supporting the
pathogenicity of the mutations that we found.

All CHD3 mutations were determined to be the most likely
causal variant contributing to the disorder of the proband. In
proband 15 who has a de novo CHD3 p.Asp1120His mutation, a
de novo truncating mutation in CIC was also identified

(NM_015125.3:c.1444G>T; p.Glu482*). Since truncating muta-
tions in CIC were recently suggested as a potential cause of
intellectual disability (ID)26, both mutations might be involved in
the phenotype of this proband.

A subset of CHD3 mutations directly affects ATP hydrolysis.
The striking clustering of almost all missense mutations in the
ATPase/helicase domain of the CHD3 protein led us to hypo-
thesize that disturbance of ATPase and/or chromatin remodeling
activities of CHD3 could be potential pathogenic mechanisms.
Three-dimensional modeling and mutation analysis of all mis-
sense mutations, including analysis of the conserved SF2-
characteristic helicase motifs, demonstrates clear clustering of
mutations and disturbance of important binding and interaction
domains (Fig. 2d and Supplementary Note 1). Direct fluorescence
imaging of mCherry-tagged CHD3 mutations in cellular models
revealed no differences in subcellular localization for the mutated
proteins as compared to wild-type CHD3 (Supplementary Fig. 3).

We experimentally assessed ATPase activity of six representa-
tive mutations, selected to include one mutation in the Helicase
ATP-binding lobe and several mutations in the Helicase C-
terminal lobe. FLAG-tagged full-length wild-type CHD3 protein
and each of the six mutant proteins were transiently expressed in
mammalian HEK293 cells and purified (Supplementary Fig. 4).
Radiometric ATPase assays were performed to assess the activity
of these mutant proteins relative to wild-type, in the presence of
dsDNA (Fig. 3), recombinant nucleosomes (Fig. 3), or in the
absence of DNA substrates as a control (Supplementary Fig. 5).
ATPase activities of p.Arg1121Pro and p.Arg1172Gln were
significantly lower than wild-type for both substrate conditions.
These findings are consistent with the modeling data, since p.
Arg1121Pro is predicted to disrupt a helix integral to motif V,
while p.Arg1172Gln is located in helicase motif VI, and both
motifs are known to be critical in ATP hydrolysis. The activity of
p.Asn1159Lys was significantly lower only in the presence of
dsDNA, although the reason for the different activity depending
on the substrate is currently unknown. The protein with the p.
Leu915Phe mutation, located in conserved SNF2-motif III, is
significantly hyperactive under both conditions. The p.Arg1187-
Pro and p.Trp1158Arg mutations do not show statistically
significant differences from the wild-type protein in these ATPase
assays. According to the three-dimensional structure, the location
of p.Arg1187Pro is not close to the ATP-binding or interaction
surface. To assess whether mutant protein could impact activity
of wild-type enzyme, we mixed wild-type protein with equimolar
amounts of several mutant proteins, finding no biochemical
evidence in this assay for interference (Supplementary Fig. 6).

CHD3 mutations disturb chromatin remodeling capacities. We
measured the effects of six mutations on the chromatin remo-
deling activity of CHD3, by assessing restriction enzyme acces-
sibility to nucleosomal DNA27. Consistent with its reduced
activity in the ATPase assays, the p.Arg1172Gln mutant was
partially, but not fully, active at chromatin remodeling (Fig. 4). p.
Arg1121Pro, which showed severely reduced ATPase activity, was
highly compromised in the chromatin remodeling assay. More-
over, p.Leu915Phe demonstrated hyperactivity in this assay,
mirroring its elevated ATPase activity. Crucially, chromatin
remodeling assays can also detect functional defects beyond ATP
hydrolysis27. Two of the mutant proteins, p.Trp1158Arg and p.
Asn1159Lys, exhibited severely compromised ability to remodel
chromatin (Fig. 4) against a background of some preserved
ATPase activity (c.f. Fig. 3). In sum, with the sole exception of p.
Arg1187Pro, all the mutant versions of CHD3 that we tested
differ from wild-type protein in their ability to remodel
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Fig. 2 Schematic view of CHD3 transcript and protein with de novo mutations. a Schematic view of CHD3 exons (transcript 1, NM_001005273.2) with the
splice site mutation c.4073-2A>G shown that most likely leads to skipping of exon 27 (22 amino acids), while preserving the reading frame. Exon 27 is part
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Helicase C-terminal), domains of unknown function (DUF), and a C-terminal 2 domain. b Schematic view of linear CHD3 protein (transcript 1,
NM_001005273.2) with all mutations, except for the splice site mutation that is shown in a, found in our cohort. Almost all missense mutations cluster in
or around the Helicase domain of the CHD3 protein. c Overview of one of the two CHD3-models used in this study, based on the 3MWY protein structure.
This figure shows the different domains of the protein in their three-dimensional conformation: chromo domain 1 494–595 (magenta), chromo domain 2
631–673 (red), helicase ATP binding domain (yellow), helicase C-terminal domain (green), ATP binding residues 761–768 (cyan). ATP is orange, and gray
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yellow. This figure illustrates the clustering of mutations on specific sites within the Helicase ATP-binding domain and Helicase C-terminal domain. A more
detailed analysis of the different missense mutations in our cohort can be found in Supplementary Note 1
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chromatin, with some mutants exhibiting decreased activity while
one shows increased activity.

Discussion
In this study, we show that de novo CHD3 mutations cause a
neurodevelopmental disorder. We demonstrate defining clinical
features of this syndrome. The characteristic phenotype of indi-
viduals with CHD3 mutations overlaps with that reported for de
novo mutations in CHD4, in which intellectual disability, mac-
rocephaly, ventriculomegaly, undescended testes, and similar
facial features have been reported. However, comparisons to the
CHD4-related syndrome are currently limited because so far only
five individuals with CHD4 mutations have been clinically char-
acterized. Also interesting in this context is the fact that four of
the six recently described patients with missense mutations in
CHD1 have a diagnosis of speech apraxia9, a relatively rare
condition. Although CHD1 does not function in the same protein
complex as CHD3 and has different expression patterns9, there
might be shared pathogenic mechanisms leading to speech pro-
blems in patients with mutations in these chromatin remodelers.

Based on the molecular and phenotypic data of individuals in
our cohort, there is no obvious correlation between the precise
type or location of the mutation, and the severity of the variable
features of the resulting syndrome. However, the only individual
in our cohort with epilepsy is also the only case with a missense
mutation in the C-terminal domain of the protein. Future iden-
tification of more individuals with missense mutations in this
region of the protein will help resolve whether this reflects a
phenotype–genotype correlation.

In addition to defining the phenotype associated with CHD3
mutations, we aimed to characterize the effects of CHD3 mutations
at a molecular and functional level. ATPase assays with six different
mutant CHD3 constructs showed a clearly decreased ATPase
activity for two mutations (p.Arg1121Pro and p.Arg1172Gln) and
increased ATPase activity for one mutation (p.Leu915Phe). The
disturbed ATPase activities are associated with corresponding
effects on chromatin remodeling capacities for these three mutants,

as shown by the restriction enzyme accessibility assays. It is cur-
rently unclear how deactivating and activating mutations can both
yield similarly disruptive effects on neurodevelopmental outcomes.
However, a recent study of cancer-specific mutations in the chro-
matin remodeling ATPase SMARCA4 concluded that mutations in
the ATPase core of this enzyme had dominant-negative impacts on
the global chromatin landscape regardless of whether they displayed
increased or decreased dynamic recovery in fluorescence after
photobleaching28. By analogy, it seems plausible that perturbed
chromatin remodeling activity of CHD3, whether by gain or loss of
activity relative to wild-type or by affecting its interactions, might
likewise alter chromatin landscapes, to contribute to a neurodeve-
lopmental phenotype.

Two mutations (p.Trp1158Arg and p.Asn1159Lys) show
severely decreased chromatin remodeling capacities, despite
unaffected ATPase activity in the presence of recombinant
nucleosomes. In line with these findings, the highly conserved
tryptophan residue at a position analogous to CHD3 residue 1158
has recently been shown to be critical for chromatin remodeling,
but not for ATP hydrolysis, in the context of yeast SNF227.
Interestingly, the mutation in our cohort affecting this amino acid
(p.Trp1158Arg) directly matches the position of a previously
published mutation in CHD48 (Supplementary Fig. 1), while the
other previously published de novo missense mutations in
CHD4-related syndrome are also mainly affecting the ortholo-
gous Helicase domain of CHD4 (Supplementary Fig. 1)8,29.

To systematically assess whether the distribution of the mis-
sense mutations in CHD3 reflects mutational hotspots in the
gene, we performed a formal clustering analysis based on mutual
distances, as previously described30. This analysis revealed sig-
nificant clustering within the transcript (P= 0.0017), a finding
that argues against simple haploinsufficiency as an underlying
molecular mechanism. The paucity of patients with truncating
mutations compared to the 31 patients with missense mutations
in our cohort also supports this view, although the precise
mechanistic effects of CHD3 mutations during neurodevelop-
ment are a topic for future study.
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Taken together, with our research we identify a recognizable
neurodevelopmental disorder. We define the phenotypic spec-
trum associated with mutations in CHD3, and show the effects of
several different mutations on ATPase activity and chromatin
remodeling capacities. Our findings highlight the importance of
chromatin remodeling factors, and specifically the CHD3 protein,
in human brain development.

Methods
Individuals and consents. The authors affirm that (the legal representatives of) all
human research participants provided informed consent for publication of the
images in Fig. 1. Informed consent was also derived for the use of biological
materials from all individuals or their legal representative. Genetic testing and
research were performed in accordance with protocols approved by the local
Institutional Review Boards where the patients were followed. Specifically, research
exomes were performed after informed consent on protocols approved by the
Institutional Review Boards of the following institutions: University of British
Columbia, Augustana College, CHU Dijon, Mass General Hospital for Children,
University of Erlangen-Nuremberg, Hamburg Chamber of Physicians, Cambridge
South—UK Research Ethics Committee, University of Wisconsin-Madison Social
& Behavioral Sciences.

Annotation of mutations. All mutations in this report are annotated in GRCh37
(hg19) and CHD3 transcript variant 1 (NM_001005273.2).

Next-generation sequencing. For the index case (individual 22), whole genome
sequencing was performed using Illumina’s HiSeq X Ten technology, the
Burrows–Wheeler Aligner (BWA) software version 0.7.8-r45531 and GATK v.3.432.
In other individuals, exome or genome sequencing and data analysis were per-
formed as previously described33–44.

Expression and purification of FLAG-CHD3. CHD3 proteins were prepared as
previously described45, with the following modifications. FLAG-CHD3 constructs
were cloned into expression vectors (kindly provided by Guang Hu) using Gateway
Cloning technology. Primer sequences are provided in Supplementary Table 1.
HEK293-f (ThermoFisher, FreeStyle™ 293-F Cells) were grown in suspension cul-
ture using FreeStyle™ 293 Expression Medium (ThermoFisher) in optimum growth
flasks (Thomson) using a shaking incubator set at 8% CO2, 80% humidity, and 150
rpm shaker rate. The cell count was 106 cells/ml on the day of transfection. Cells
were transfected with 1 mg of expression vector using PEI max (Polysciences).
Cells were harvested 48 h after transfection by centrifugation at 400 × g for 6 min.
Cells were washed once with phosphate buffer saline solution prior to storage at
−80 °C or protein purification.

The cell pellet was resuspended in lysis buffer (20 mM HEPES, 1.5 mM MgCl2,
10 mM KCl, 1 mM DTT, 1 mM PMSF, and 1× cOmplete® protease-inhibitor
EDTA-free (Roche), pH 7.6). Cells were incubated on ice for 30 min, vortexed
briefly, and nuclei were collected by centrifugation (5 min, 3300 × g, 4 °C). The
supernatant was discarded and the nuclear pellet was resuspended in nuclear
extraction buffer (20 mM HEPES, 0.5 M KCl, 1.5 mM MgCl2, 0.2 mM EDTA, 20%
glycerol, 0.2% NP-40, 1 mM DTT, 1 mM PMSF, and 1× cOmplete® protease-
inhibitor EDTA-free (Roche), pH 7.6). The nuclear pellet was homogenized using a
Dounce homogenizer, incubated on ice for 30 min, and insoluble material was
removed by centrifugation (20 min, 110,000 × g, 4 °C). The supernatant (nuclear
extract) was incubated with α-FLAG M2 affinity gel (Sigma-Aldrich) and rotated
overnight at 4 °C. The α-FLAG beads were then washed twice with nuclear
extraction buffer, followed by 2 additional washes with wash buffer (20 mM
HEPES, 0.1 M KCl, 0.2% NP-40, 20% glycerol, and 1 mM DTT, pH 7.6). The
FLAG-CHD3 protein was eluted with 0.3 mg/ml 3XFLAG peptide (in 20 mM
HEPES, 0.1 M KCl, 0.05% NP-40, 20% glycerol, and 1 mM DTT, pH 7.6). Wild-
type and mutant protein samples were analyzed by SDS-PAGE and stained with
Coomassie Brilliant Blue (Supplementary Fig. 4). The concentration of the CHD3
proteins was estimated from BSA standards in SDS-PAGE gels stained with
Coomassie Brilliant Blue.

Radiometric ATPase assay. Each ATPase reaction (10 μL) contained 20 mM
Tris–HCl, pH 7.5, 1 mM MgCl2, 0.1 mg/ml BSA, 1 mM DTT, 100 μM ATP, 1 μCi
of [γ-32P]ATP as a tracer. 25 nM of each CHD3 purified protein was incubated
with 70 nM of recombinant nucleosomes or naked dsDNA. Nucleosome was
reconstituted by the salt gradient dialysis method using recombinant histone
octamer and 201 bp 601 DNA fragment46. The reactions were initiated by the
addition of nucleosome or DNA substrate and incubated at 37 °C for 40 min.
The reaction was quenched by the addition of EDTA to a final concentration of
100 mM. Aliquots (2.5 μL) were removed and spotted on PEI-cellulose thin-layer
chromatography plates and developed in 1M formic acid and 0.5 M LiCl. ATP
hydrolysis was quantified using a Phosphorimager with Image Quant Software. For
the mixing experiment, all reaction components except for CHD3 protein were
incubated for 10 min at 37 °C, and the CHD3 protein mixture was added last to
start the reaction. This experiment was performed 3 times per condition (N= 3)
for all conditions, except for the conditions “no CHD3”, “WT 12.5 nM” and “WT
25 nM” (N= 2).

For the quantification analysis, we performed 3 individual experiments for each
of the two biological replicates (total N= 6), except for the p.Trp1158Arg mutant
(one biological replicate, total N= 3). An unpaired t-test was used to determine
whether the activity of the mutant proteins differed significantly from wild-type
protein activity.

Restriction enzyme accessibility assay. Remodeling activities were measured
with a restriction enzyme accessibility assay as previously described27. 12.5 nM
nucleosomes (347 bp) were incubated with the indicated amounts of CHD3 pro-
teins at 37 °C for 60 min in the remodeling buffer (20 mM Tris–HCl pH 7.5, 1 mM
DTT, 1 mM MgCl2, 1 mM ATP, 0.1 mg/ml BSA, and 5 U HhaI). The reactions
were stopped by adding 2 µL of proteinase K buffer containing 6.7 mg/ml protei-
nase K, 167 mM EDTA, and 1.7% SDS. After incubation at 50 °C for 10 min, the
DNAs were analyzed by 6% native polyacrylamide gel electrophoresis. The sepa-
rated DNA fragments were visualized with UV light on the ChemiDox XRS system
(BIO-RAD). The band intensities were quantified by ImageJ.

Cloning constructs for immunofluorescence. Wild-type CHD3
(NM_001005273.2) was amplified by PCR and cloned into pCR2.1-TOPO (Invi-
trogen) as described47. CHD3 mutation constructs were generated using the
QuikChange II Site-Directed Mutagenesis Kit (Agilent), primer sequences are
provided in Supplementary Table 1. CHD3 cDNAs were subcloned using BamHI/
NheI restriction sites into a modified pmCherry-C1 vector (Clontech). All con-
structs were verified by Sanger sequencing.
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Fig. 4 Restriction enzyme accessibility assay. a Restriction enzyme
accessibility analysis of CHD3 wild-type and mutant proteins. 3.125, 6.25,
or 12.5 nM of CHD3 proteins were incubated with 347 bp mono-
nucleosomes. Digested fragments were analyzed by native polyacrylamide
gel. b Quantitative analysis of restriction enzyme accessibility. Three
individual experiments from two individual purifications (wild-type, p.
Leu915Phe, p.Arg1121Pro, p.Asn1159Lys, p.Arg1172Gln, and p.Arg1187Pro)
(N= 6) or one purification (p.Trp1158Arg) (N= 3) were conducted. The
experimental data are presented as means with standard deviations
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Immunofluorescence. HEK293 cells were obtained from ECACC (Catalogue
number 85120602) and grown in Dulbecco’s modified Eagle’s medium (Invitro-
gen), supplemented with 10% fetal bovine serum (Invitrogen). Transfection was
performed using GeneJuice (Merck-Millipore). The cells were seeded onto cover-
slips coated with poly-L-lysine (Sigma). At 36 h post-transfection, cells were fixed
using 4% paraformaldehyde solution (Electron Microscopy Sciences) for 10 min at
room temperature. The mCherry fusion proteins were visualized by direct fluor-
escence, nuclei were visualized with Hoechst 33342 (Invitrogen). Fluorescence
images were obtained using an Axiovert A-1 fluorescent microscope with ZEN
Image Software (Zeiss).

Three-dimensional modeling. As no experimentally solved 3D-structure of CHD3
exists, we performed homology modeling using the modeling option with standard
parameters in the YASARA48 & WHAT IF49 twinset. Several models of the
ATPase/helicase domain were created. The best scoring model was based on
template PDB-file 5JXR (sequence identity 41% over the aligned residues). We also
studied the model based on PDB-file 3MWY (sequence identity 45%), which shows
a more open conformation and contains an ATP substitute. These two models
provided information about the relative position of the mutated residues in the
different conformation of the protein complex.

Clustering analysis of missense mutations. The locations of observed de novo
missense mutations were permutated 1,000,000 times over the cDNA of the CHD3
gene (RefSeq transcript: NM_001005273.2). The distances between missense
mutations were adjusted to take into account the total size of the coding region of
CHD3 (6003 bp). Then, the geometric mean (the nth root of the product of n of all
distances separating the mutations) was calculated, giving an index of clustering, as
previously described30. To circumvent a mean distance of 0 as the result of
recurrent mutations, pseudocount (adding 1 to all distances and 1 to the gene size)
was used. To avoid artificial deflation of the clustering P-value, only one of the
recurrent mutations present in the sibling-pair (individuals 7 and 8) and twin-pair
(individuals 20 and 21) were included for the analysis.

Data availability
All genotypic and phenotypic data supporting the findings of this study are available
within the paper and supplementary files. Data are also freely available in the ClinVar
database, under accession numbers SCV000787629–SCV000787651. Raw data of func-
tional experiments are available from the corresponding authors (P.M.C. and S.E.F.)
upon request.
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