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Abstract 

Background: Genome-wide association studies have identified hundreds of loci that influence a wide variety of complex human traits; however, little is known 

regarding the biological mechanism of action of these loci. The recent accumulation of functional genomics (―omics‖), including metabolomics data, has created 

new opportunities for studying the functional role of specific changes in the genome. Functional genomic data are characterized by their high dimensionality, the 

presence of (strong) statistical dependency between traits, and—potentially—complex genetic control. Therefore, the analysis of such data requires specific statistical 

genetics methods. 

Results: To facilitate our understanding of the genetic control of omics phenotypes, we propose a trait-centered, network-based conditional genetic association 

(cGAS) approach for identifying the direct effects of genetic variants on omics-based traits. For each trait of interest, we selected from a biological network a set of 

other traits to be used as covariates in the cGAS. The network can be reconstructed either from biological pathway databases (a mechanistic approach) or directly 

from the data, using a Gaussian Graphical Model applied to the metabolome (a data-driven approach). We derived mathematical expressions which allow 

comparison of the power of univariate analyses with conditional genetic association analyses. We then tested our approach using data from a population-based 

KORA study (n=1784 subjects, 1.7 million SNPs) with measured data for 151 metabolites.  

Conclusions: We found that compared to single-trait analysis, performing a genetic association analysis that includes biologically relevant covariates can either gain 

or lose power, depending on specific pleiotropic scenarios, for which we provide empirical examples. In the context of analyzed metabolomics data, the mechanistic 

network approach had more power compared to the data-driven approach. Nevertheless, we believe that our analysis shows that neither a prior-knowledge-only 

approach nor a phenotypic-data-only approach is optimal, and we discuss possibilities for improvement.  

 

Short abstract 

We propose a trait-centric network-based conditional approach for performing a genetic association analysis of multivariate omics phenotypes. This approach can 

incorporate existing biological knowledge regarding biological pathways obtained from external sources and is designed to specifically test for direct genetic 

effects. We applied this approach to existing metabolomics data and found that it may have more power by having increased accuracy of genetic effect estimates 
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in the presence of specific “counterintuitive” pleiotropic scenarios in which locus-specific genetically induced and residual covariance are opposite, but it may lose 

power when genetically induced and residual covariance have a concordant sign. We provide empirical examples of different pleiotropic scenarios that we 

observed in metabolomics, and we discuss possible additional applications for this approach.   
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Background 

Genome-wide association studies (GWAS) are a highly popular method for identifying alleles that affect complex traits in humans, including the risk of common 

diseases. In the past decade, GWASs have enabled the identification of thousands of loci, significantly increasing our understanding of the genetic basis underlying 

the control of complex human traits [1]. On the other hand, this has had only a limited impact on the development of biomarkers and therapeutic agents; in most 

cases, any association found using GWAS approach can only serve as a starting point for future research, rather than providing a direct answer to the question of the 

genetic region’s precise biological function. The recent accumulation of functional genomics (or ―omics‖ for short) data—including information regarding the levels 

of gene expression (the transcriptome), metabolites (the metabolome), proteins (the proteome), and glycosylation (the glycome)—can provide new insight into the 

functional role of specific changes in the genome [2,3].  

Metabolomics is an emerging field that has been studied extensively in the past decade. A number of GWASs of metabolites have been performed using 

various platforms [4–8], revealing literally dozens of loci associated with variations in various lipid species, amino acids, and other small molecules. Linking the 

variants that underlie these variations in metabolomics with various diseases can provide functional insight into the many disease-related associations that were 

reported in previous studies, including cardiovascular and kidney disease, type 2 diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease [5].  

However, analyzing metabolomics data requires specialized statistical methods due to their characteristically high dimensionality and the presence of 

statistical dependencies that reflect biological relationships between different variables. Conventional univariate GWAS (uGAS) approaches ignore any possible 

dependencies between different omics traits, which can confound the biological interpretation of the results and may lead to a loss of statistical power. On the other 

hand, utilizing multivariate phenotype information increases the statistical power of the association tests compared to univariate analysis [9–12]. Despite a large 

number of methodological studies, however, only a few empirical multivariate GWASs have been published using data for humans. We recently demonstrated [13] 

that using a multivariate analysis can substantially increase the power of locus identification in the context of human N-glycomics; indeed, not only did our 

multivariate analysis double the number of loci identified in the analysis sample, but also all five novel loci were strongly replicated. With respect to metabolomics, 

Inouye et al. [6] performed a multivariate GWAS on 130 metabolites (grouped in 11 sets) measured in approximately 6600 individuals. They found that multivariate 

analysis doubled the number of loci detected in this sample; seven of these additional loci discovered were novel loci that had not been identified previously in other 

GWAS analyses of related traits. While no replication of novel loci was performed by Inouye et al., we compared the authors’ results with a recently published 

univariate GWAS of metabolomics derived from a cohort containing nearly 25,000 individuals [8]. We found that three of the seven SNPs reported by Inouye et al. 

have a p-value < 5 × 10
-11

 for at least one metabolite (i.e., are significant at the genome-wide level after Bonferroni correction for 130 analyses). These findings 

provide empirical evidence supporting the value of using multivariate methods to analyze the genomics of metabolic traits, at least in the context of locus discovery.  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy137/5214749 by G

SF Zentralbibliothek user on 30 N
ovem

ber 2018



 

 

 

It should be noted that these multivariate methods and tests were developed by statistical geneticists to specifically increase the power of gene identification. 

In such ―gene-centric‖ tests, the model that includes the effects of genotype on multiple traits is contrasted with the null model in which the gene has no effect on 

any trait analyzed. Although useful and powerful for genetic mapping, this approach may have limited interpretability in a context in which one is interested in the 

genetic control and biology of specific trait or a subset of traits (the ―trait-centered‖ view). Several statistical methods have been suggested to address the question of 

which specific traits are affected in an analyzed ensemble (see for example [10,14]). One such method is based on conditional analysis [15], in which a ―target trait‖ 

is analyzed as a genotype-dependent variable and related traits are included in the regression model as covariates. Such a modeling approach allows—at least in 

theory—one to rule out indirect genetic effects (e.g., effects that are in fact solely mediated through some other trait) and study only the genetic effects that directly 

affect the trait of interest.  

Here, we present a statistical model in which a given trait depends on a genetic polymorphism and in which a number of related traits are included in the 

model as covariates. In this model, the relationship between the genotype and the trait of interest is our primary focus. Analyzing such a model allows us to identify 

the direct effect of genetics on the trait of interest. Mathematically, the model is equivalent to the model used by Deng and Pan [15]. We first compare this 

conditional genetic association (cGAS) approach with the standard model in which a trait of interest depends solely on genotype, without other traits used as 

covariates (i.e., the univariate genetic association—or uGAS—model). We do so by mathematically deriving expressions that allow us to examine the relative power 

of the uGAS and cGAS approaches, and we identify the situations in which these models are expected to yield different results.  

As might be expected—and as demonstrated here—the choice of covariates plays a critical role in conditional analyses. First, we used the assumption that the 

covariates (i.e., biologically relevant traits) are known. Second, we explored the problem of selecting appropriate covariates, and we tested the approaches by 

performing a proof-of-principle study using metabolomics data consisting of 151 metabolites (Biocrates assay) obtained from the KORA F4 study (n=1785 

individuals). Specifically, we selected covariates based on existing knowledge from metabolite biochemical networks (BN-cGAS) and using a data-driven approach 

based on Gaussian Graphical Modeling (GGM-cGAS). Finally, we compare and discuss the obtained results, and we discuss possible applications for this analysis 

based on biologically and/or statistically relevant traits.   
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Results 

The power of performing a conditional analysis of genetic associations 

We start with the theoretical substantiation and identification of specific scenarios in which adjusting for biologically relevant covariates can modify the power of an 

association analysis.  

Let us consider a trait of interest, y, covariate c, and genotype g. We can formulate this problem in terms of a linear regression as follows:           

      , where    and    are the effects of the genotype and covariate, respectively, and   is the residual noise. Without a loss of generality, we assume that all 

random variables in this equation are distributed with a mean of zero and a standard deviation of 1, making (partial) regression coefficients equal to (partial) 

correlation coefficients. Given these assumptions made, the joint distribution of y, g, and c can be specified using a set of three correlation coefficients,     (the 

correlation between the trait and the genotype),     (the correlation between the covariate and the genotype), and     (the correlation between the trait and the 

covariate). To test the association between y and g, we use the Wald test, which is defined as the square of the ratio between the effect estimate and its standard error, 

with the latter estimated under the alternative hypothesis (see [16]). The value of the ―univariate‖ Wald test statistic is calculated as   
  

   ̂  
 

 ̂ 
 , where n is the 

sample size and  ̂ 
     ̂  

  is the estimated residual variance of y. For the conditional test, the Wald test is   
  

   ̂ 
 

 ̂ 
 , where   ̂  is the estimated partial 

correlation between the trait y and the genotype g (estimated from the conditional model) and  ̂ 
  is the estimated residual variance of y. Note that under the null 

hypothesis, when n is large, both   
  and   

  are well approximated by chi-square distribution with one degree of freedom. For genetic association studies, n is 

thousands or orders or magnitude more. 

For the conditional model,  ̂   ̂    ̂  ̂  ; thus, we can rewrite   
     ̂    ̂  ̂   

   ̂ 
 . Consequently, the log-ratio of the conditional and 

univariate test statistics can be partitioned into two components:  

   (
  

 

  
 )   og(

 ̂ 
 

 ̂ 
 )   og(*  

 ̂  ̂  

 ̂  
+

 

)                                                

Because the first term in Eq. (1) is dependent only upon residual variances of the two models, we call this term the ―noise‖ component. The second term 

depends upon the correlations between traits and between the traits and the genotype; we call this term the ―pleiotropic‖ component. Because the noise component 
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( ̂ 
 / ̂ 

 ) is always >1, any possible decrease in the ratio between univariate and conditional tests is determined by the sign and the magnitude of the term  ̂  ̂   

 ̂  . If this term is negative, there will always be an increase in the power of the conditional analysis.  

We can re-write  ̂  ̂    ̂   as  ̂  ̂  
 , where  ̂  

   ̂    ̂   is the component of the correlation between trait y and covariate c, which is induced by the 

variation in the genotype g. This quantity takes a central place in a Mendelian randomization analysis, which uses a genetic variation to anchor the causality arrow 

and consequently infers a causal relation between various traits (see for example [17]). Note that whereas  ̂  
  reflects the covariance between the trait and the 

covariate induced by the effect of the genotype,  ̂  is conditional on the genotype and is related to the residual sources of covariance between y and c.  

In general, the genetically induced covariance and the residual covariance are expected to have a concordant sign (see Discussion for details and relevant 

references). Thus, we conclude somewhat surprisingly that when genotype-induced and environmental correlations are similar in sign (i.e., both are positive or both 

are negative), the product  ̂  ̂  
  is positive and the contribution of the second term in Eq. (1) to the relative power is negative. Note that the contribution of the first 

term in Eq. (1) is always positive; therefore, even if  ̂  ̂  
  is positive, the power of a conditional analysis may still be higher than the power of a univariate analysis. 

In contrast, an ―unexpected‖ product (in which the signs are different and hence  ̂  ̂  
  is negative) contributes positively to the relative power of the conditional 

model. Note that in such a situation, the power of a conditional analysis will always be higher than the power of a univariate analysis.  

We can readily extend Eq. (1) to a situation in which k covariates are included in the conditional model. Denoting the estimated coefficients of correlation 

between g and covariate i as  ̂   and the estimated partial correlation between y and covariate i as  ̂  yields the following equation: 

   (
  

 

  
 )   og(

 ̂ 
 

 ̂ 
 )   og([  

 

 ̂  
∑ ̂  ̂  

 

   

]

 

)                                              

When appropriate covariates are selected, performing cGAS using individual-level data becomes rather trivial and can be achieved using standard statistical 

and software tools in which one estimates the effects of a SNP and covariates. However, cGAS becomes somewhat less trivial if one chooses to use summary-level 

univariate GWAS data such as data available from previously published studies. The formalization of cGAS in terms of summary univariate GWAS statistics is 

described in Supplementary Note 1. Here, we used methods based on analyzing summary-level data.  

 

Network-based selection of covariates 
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The ability to select appropriate covariates is extremely important, as it can have direct implications regarding the outcome of the analysis. If the 

biological/biochemical relationships between traits of interest are known and are summarized in a database(s), this knowledge can be used directly, for example by 

using all direct neighbors as covariates. We refer to this approach as a biochemical-network driven cGAS (BN-cGAS). Alternatively, the network can be 

reconstructed in a hypothesis-free, empirical manner from the data, for example using a Gaussian Graphical Model (GGM) [18]. We refer to this approach as a 

GGM-cGAS.  

We compared cGAS and uGAS by performing a genome-wide analysis of genetic effects using summary-level data obtained from the KORA F4 study. This 

study included 151 metabolites measured in 1784 individuals using the Biocrates assay and imputed at 1,717,498 SNPs.  

First, we examined the potential of using cGAS when the covariates are selected based on a known biochemical network (i.e., BN-cGAS). Thus, our analysis 

was restricted to a subset of 105 metabolites for which at least the one-reaction-step immediate biochemical neighbors are known [18]. This biochemical network 

incorporates only lipid metabolites, and the pathway reactions cover two groups of pathways: (1) fatty acid biosynthesis reactions, which apply to the metabolite 

classes lyso-PC, diacyl-PC, acyl-alkyl-PC, and sphingomyelins; and (2) β-oxidation reactions that reflect fatty acid degradation and apply to acylcarnitines. The 

β-oxidation model consists of a linear chain of C2 degradation steps (C10 to C8 to C6, etc.). The number of covariates ranged from 1 to 4, with mean and median 

values of 2.48 covariates and 2 covariates, respectively. 

Table 1 lists the 11 loci that were significant in either BN-cGAS or uGAS and fell into known associated regions (see Supplementary Note 2). Of these 11 

loci, ten and nine loci could be identified by BN-cGAS and uGAS, respectively. Compared to uGAS, BN-cGAS identified one fewer locus (ETFDH), but identified 

two more (ACSL1 for PC ae C42:5 and PKD2L1 for lyso-PC a C16:1). It is interesting to note that for ACSL1, the effect of SNP rs4862429 on PC ae C42:5 was 

highly significant (p=7e-11) with BN-cGAS, but was not significant (p=0.7) with uGAS; this outcome is to be expected under the model of unexpected pleiotropy.  

Next, to test whether using BN-cGAS increases the average power of the association analysis, we compared the BN-cGAS and uGAS chi-square test results 

for the loci listed in Table 1. Within a given locus, we compared the maximum test value. The average ratio of the maximum test statistic between BN-cGAS and 

uGAS was 1.47, indicating that on average, BN-cGAS led to higher test statistic values. However, when we used a paired-sample Wilcoxon test to compare the best 

chi-square test results between BN-cGAS and uGAS, the difference between the two methods was not significant (p=0.123) (see Supplementary Table S1A).  

For the SNPs listed in Table 1, we then used Eq. (2) to partition the log-ratio of the BN-cGAS and uGAS statistics values into ―noise‖ and ―pleiotropic‖ 

components. As shown in Figure 1, the regression s ope of the second (i.e., ―p eiotropic‖) component is considerab y higher than the s ope of the noise component; 

in other words, the ratio is determined primarily by the pleiotropic term in Eq. (2). Moreover, with the exception of the SLC22A4 locus, the SNP-trait pairs for which 

BN-cGAS had increased power are the pairs in which the second term in Eq. (2) is either positive or close to zero. In contrast, in the SNP-trait pairs that were not 

identified using BN-cGAS, the ―p eiotropic‖ term in Eq. (2) had a strong negative contribution.  
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Next, we investigated the variance-covariance structure of the loci with positive and negative pleiotropic terms. We therefore selected a locus in which the 

p eiotropic component’s contribution to power was positive (rs174547 at FADS1) and a  ocus in which the p eiotropic component’s contribution to power was 

negative (rs8396 at ETFDH). Figure 2 shows the corresponding correlations between the SNP, the trait, and the covariates involved, together with the partial 

coefficients for the conditional regression of the trait on the SNP and the covariates. With respect to FADS1 (Figure 2A), the correlations between the SNP and the 

trait (lyso-PC a C20:4) and between the SNP and the covariate (lyso-PC a C20:3) are in opposite directions, generating negative genetically induced covariance 

between lyso-PC a C20:4 and lyso-PC a C20:3. In contrast, the residual correlation between the trait and the covariate is positive. Therefore, the value of the partial 

regression coefficient between the SNP and lyso-PC a C20:4, conditional on lyso-PC a C20:3, is greater than that of the coefficient of regression without covariates.  

With respect to the second example, ETFDH (Figure 2B), we found that the conditional regression of C10 on rs8396 and two covariates (C8 and C12, two 

medium-chain acylcarnitines) led to a smaller SNP partial regression coefficient compared to an unconditional regression; this is because all of the terms in 

∑  ̂  ̂  
 
     ̂   are positive.  

 

 

Although using a known biochemical network to select covariates has many advantages, it may be somewhat unpractical and perhaps even harmful, as our 

biochemical knowledge is still relatively incomplete. Therefore, we explored the potential of performing a cGAS in which the covariates are selected using a data-

driven approach (GGM-cGAS). The network of metabolites was reconstructed using Gaussian Graphical Models based on partial correlations. For a given 

metabolite, we selected covariates based on significant partial correlations. Specifically, we used the following threshold as proposed previously [18]: a p-value < 

(0.01/number of calculated partial correlations), which corresponds to a cut-off at p <8.83 × 10
-7

. The network used in our analysis is shown in Supplementary 

Figure S1.  

To compare GGM-cGAS with BN-cGAS, we used the same set of metabolites that we used for BN-cGAS to run our GGM-cGAS analysis; these results are 

presented in Supplementary Table S1B. We found 15 SNP-trait pairs clustered at 10 known loci (see Supplementary Note 2) that were detected by either GGM-

cGAS or BN-cGAS. More covariates were included in the GGM-cGAS analysis (ranging from 1 to 18, with mean and median values of 7.6 covariates and 7 

covariates, respectively) than in the BN-cGAS analysis. Thus, we predicted that GGM-cGAS would have relatively more power than BN-cGAS due to reduced noise 

(term 1 in Eq. (2)); on the other hand, GGM-cGAS might lose power because of reduced occurrence of unexpected pleiotropy (term 2 in Eq. (2)).  

For the best SNP-trait pairs detected by GGM-cGAS or BN-cGAS, we computed the components in Eq. (2) and compared these components using a paired-

sample Wilcoxon test. We found that the noise component in Eq. (2) was always larger for GGM-cGAS, with a mean difference of 0.29 (p=6 × 10
-5

). Moreover, the 

second ―pleiotropic‖ component in Eq. (2) was generally smaller for GGM-cGAS than for BN-cGAS, with a mean difference of -0.47 (p=0.015); nevertheless, for 
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three out of 15 GGM-cGAS SNP-trait pairs, the pleiotropic component was positive. The average chi-square value was 25% smaller for GGM-cGAS than for BN-

cGAS, indicating an average loss of power (although this loss was not significant; p=0.5 based on a paired Wilcoxon test). 

Next, we investigated further the potential of using cGAS under realistic conditions to a full extent by analyzing all 151 available metabolites using GGM-

cGAS and comparing these results with the results of uGAS (Table 2 and Supplementary Figure S2). In total, uGAS detected 15 loci at the genome-wide 

significance level p<5 × 10
-8

/151 (i.e., p<3.3 × 10
-10

). On the other hand, GGM-cGAS identified 19 significant loci using the same threshold. As expected, the 

standard errors of the genetic effect estimates were smaller for GGM-cGAS than for uGAS (Table 2 and Supplementary Figure S3). A total of 14 loci were 

detected by both uGAS and GGM-cGAS. GGM-cGAS failed to identify one locus that was identified by uGAS (C5:1-DC at rs2943644), but identified five loci that 

were missed by uGAS. Three of the five loci identified solely by GGM-cGAS affect amino acids, and the remaining two loci affect acylcarnitines. It is important to 

note that the loci identified by BN-cGAS (when we analyzed 105 metabolites) are a subset of the 19 loci that were identified by GGM-cGAS (when we used all 151 

metabolites).  

Finally, we searched the available literature for the loci listed in Table 2 (see Supplementary Note 2 for details). From the 20 loci that we report here, 15 

were found to be significant at the genome-wide level in a recent large (n=7478) meta-analysis of Biocrates metabolomics data reported by Draisma et al. [7]. Some 

of the metabolites analyzed in our study were not analyzed by Draisma et al. [7]; nevertheless, for 11 out of these 15 loci, we observed a significant association for 

the same SNP-metabolite pair; for three loci, the strongest association was with a metabolite in the same class, and for one locus the strongest association was with a 

metabolite from a different lipid class (see Supplementary Table S2). For the other five loci that were not significant in the study by Draisma et al. [7], we 

determined whether these five loci were significant and replicated in a study by Tsepilov et al. [19]. It should be noted that Tsepilov et al. analyzed the ratios of 

metabolites and also used the KORA F4 data set in their discovery stage, although they used another cohort (TwinsUK) for replication. Of these five loci, two were 

also significant in the study by Tsepilov et al. [19]; moreover, for both of these loci the metabolite analyzed in our study was included in the ratios analyzed by 

Tsepilov et al. One of the five loci was associated with the same trait in two other studies [20,21]. Finally, we found no prior published evidence of any association 

with metabolites for rs2943644 (LOC646736) or rs17112944 (LOC728755). Taking into account that this association was not found in (much) bigger meta-analysis, 

we conclude the observed associations with rs17112944 and rs2943644 as likely false positives, and these two loci were excluded from further consideration.  

 

Discussion  

We report a new ―trait-centric‖ approach for analyzing genetic determinants of mu tivariate ―omics‖ traits by performing a network-based conditional genetic 

association analysis (cGAS). In the context of metabolomics, for each trait we selected a set of other metabolites to be used as covariates in our genetic association 
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analysis. The selection of covariates can be either mechanistic (e.g., based on known biological relationships between traits of interest) or data-driven (e.g., based on 

partial correlations). Importantly, this approach can use either individual-level or summary-level data. We first mathematically compared the power of conditional 

and standard single-trait genetic association analyses (univariate genetic association, uGAS), and we identified scenarios in which these analyses are expected to 

produce different results; next, we applied cGAS to 151 metabolomics traits (Biocrates panel) in a large (n=1784 individuals) population-based KORA cohort.  

We found that the log-ratio between the cGAS and uGAS test statistic can be decomposed in a ―noise‖ component (which depends on residual variance of 

the trait and is always positive) and a ―p eiotropic‖ component. The pleiotropic component is negative in cases in which genetically induced covariance (between the 

trait of interest and the trait used as the covariate) and the residual covariance have the same sign (i.e., act in the same direction). The pleiotropic component is 

positive in cases in which the genetically induced covariance and residual covariance act in opposite directions.  

Should one expect that genetically induced and residual covariance act in the same or opposite directions? In essence, this is a question about the architecture 

of pleiotropy: is a pleiotropic genetic variant expected to induce the same covariance as would be induced by non-genetic mechanisms? It has been reasoned that in 

randomly bred populations, the genetic correlations are expected to arise primarily from pleiotropic gene action [22]. In such populations, a study and comparison of 

genetic and environmental correlations—while unable to provide single-variant resolution—may provide a general notion of what may be expected for 

consistency/anti-consistency between genetic and residual covariance. Based on published literature, Cheverud [23] and Roff [24] concluded that genetic and 

environmental correlations normally have both the same sign and the same magnitude. This pattern is particularly clear for morphologic traits, as opposed to life-

history traits (see [25] for review and additional references). These observations are consistent with recent studies of genetic correlations between complex human 

polygenic traits (see [26]).  

Consequently, for complex traits, one may expect that the sign of the pleiotropic component of the log-ratio between the cGAS and uGAS tests (individual 

summands in the second term of the equation (2)) is generally negative. It should be noted, though, that a negative sign for the pleiotropic component does not 

necessarily indicate higher power of the uGAS, as the noise component (the first term in equation (2)) may still dominate the log-ratio between the cGAS and uGAS 

tests. This will happen, for example, when  ̂   (the effect of the genotype on the covariate) is small while  ̂   (partial residual regression between the trait and 

covariate) is relatively large, thereby reducing  ̂ 
 .  

Nevertheless, in the case of metabolomic traits, genetic and environmental sources do not necessarily generate consistent covariance. Moreover, for a given 

locus that affects the activity of an enzyme involved in a biochemical reaction, the unexpected inconsistency between genetically induced covariance and residual 

covariance may not be so unexpected after all. Indeed, consider an allele associated with an increased activity of an enzyme that converts substrate A into product B. 

One would expect that the levels of A and B are positively correlated; one would also expect that the allele is positively correlated with the level of product B and 
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negatively correlated with the level of substrate A. This is precisely the scenario that yields a positive value for the second term in Eq. (1), thus providing an 

additional increase in power above and beyond the power provided by the first term in Eq. (1) (noise reduction).  

Our empirical investigation of real data on the genetic association between the genome and metabolites confirmed the existence of both scenarios. An 

extreme example of concordance between genetic covariance and residual covariance is provided by the effects of rs8396 on C10, with C8 and C12 used as 

covariates (see Figure 2B). The ETFDH gene, which was prioritized by DEPICT software (see Materials and Methods) as the best candidate in this region (with a 

false-discover rate <5%), encodes the enzyme electron transfer flavoprotein (ETF) dehydrogenase, which plays a role in mitochondrial fatty acid oxidation. During 

this process, the acyl group is transferred from a long chain acylcarnitine to a long-chain acetyl-CoA, which is then catabolized. ETF dehydrogenase participates in 

the catabolic process by transferring electrons from acyl-CoA dehydrogenase to the oxidative phosphorylation pathway. Thus, the ETFDH gene should affect all 

forms of long-chain acylcarnitines in the same way, and we can expect that the pleotropic effect of this gene on the acylcarnitines in our example (C8, C10, C12, 

etc.) will be unidirectional. The presence of unidirectional genetic effects and the positive correlation between these acylcarnitines makes the second term in Eq. (2) 

negative, which determines that—in this situation—univariate GAS has more power than cGAS. 

An empirical example of discordance between genetically induced covariance and residual covariance is provided by the effects of the SNP rs174547 on 

lyso-PC a C20:4, with lyso-PC a C20:3 used as a covariate. This SNP exhibits opposite correlations with lyso-PC a C20:4 and lyso-PC a C20:3, resulting in negative 

genetically induced covariance between these traits. At the same time, the residual correlation between these traits is positive, resulting in steep increase in the power 

of conditional analysis. In this region, the FADS1/2/3 gene cluster is an attractive candidate, providing the detected model with biological relevance. The FADS1 

gene encodes the enzyme fatty acid desaturase 1, whereas the two traits differ by only one double bond. Thus, this example mimics perfectly the biochemical 

scenario in which we would expect a conditional analysis to have increased power. 

The trait-centric methods considered here provide an attractive framework to identify and study direct genetic effects on a trait of interest. Conditional 

analysis is an attractive option in cases in which we wish to clearly interpret the results in terms of the effect of the genotype on a particular trait. Such specific 

interpretation may be important when comparing genetic association results obtained for our trait of interest with results obtained for other traits (e.g., using the 

methods described in [27–29]). It should be noted, though, that a trait-centric approach is not intended to maximize the power of identifying genes that affect 

metabolomics as a whole. Such a gene-centric view would favor analysis using joint—and not conditional—modeling of sets of traits. Such an approach can maintain 

power across a wide range of scenarios, including the scenario of concordance between genetically induced and residual covariance [13]. In this gene-centric 

framework, other formulations of conditional analysis have also been proposed [30] in order to specifically increase power of gene identification by selecting 

covariates that—using our terminology—affect the ―noise reduction‖ component of the model while avoiding the problems associated with the pleiotropic 

component.  
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The proper selection of sets of biologically related traits is extremely important for the conditional genetic association analysis method described here, as 

well as for multivariate methods that model the joint effects of genotype on an ensemble of traits. Here, we considered two alternative approaches—knowledge 

based and data-driven—to finding the networks of related traits, with a subnetwork centered around a trait of interest used as the analyzed set. In principle, in the 

context of analyzed metabolomics data, the knowledge-based network approach has slightly higher power in the context of trait-centric genetic association analysis. 

However, we believe that our analysis revealed that both approaches are suboptimal. The knowledge-based network reconstruction has many advantages, but it may 

be somewhat unpractical, as our biochemical knowledge is still relatively incomplete. Secondly, by reconstructing the network while relying only on current 

knowledge, we may be missing new knowledge that may be revealed by the data. Finally, by including neighbors that are based only on biochemical information, we 

may miss covariance induced by technical confounders; adjusting for this may increase the power of analysis [30]. Learning the network from the same data that 

were used for genetic analysis has the disadvantages of potentially ignoring existing knowledge and being sensitive to sample size. Finally, we note that the total 

observed correlation between metabolites is determined by the balance between genetic and environmental sources of covariance; it is possible to imagine a situation 

in which total correlation is smaller than one or more of its components, and our analysis provides examples of such a situation. We may speculate that—ideally—

one should use a method that allows one to combine prior knowledge and new information obtained from the data, thereby allowing the simultaneous learning of the 

structure of dependencies between different metabolites and between the metabolites and the genome. Such learning from the data while allowing for the 

incorporation of previous knowledge (e.g., biochemical relations between traits) might be achieved (for example, by applying a machine-learning approach that 

allows for differential shrinkage). It is also important to note that the proper application of such an approach would require the availability of vast samples of data, 

thereby allowing for separate training, validation, verification, testing, and replication of detected dependencies and associations.  

Materials and Methods 

KORA study 

The KORA study (Cooperative Health Research in the region of Augsburg) is a series of population-based studies in the region of Augsburg in Southern Germany 

[31]. KORA F4 is a follow-up survey (conducted from 2006 through 2008) of the baseline KORA S4 survey, which was conducted from 1999 through 2001. All 

study protocols were approved by the ethics committee of the Bavarian Medical Chamber, and all participants provided written informed consent.  

The concentration of 163 metabolites were measured in 3061 serum samples obtained from KORA F4 participants using flow injection electrospray 

ionization tandem mass spectrometry and the AbsoluteIDQ p150 Kit (Biocrates Life Sciences AG, Innsbruck, Austria) [32]. After applying quality control screening, 

a total of 151 metabolite measurements were used in our analysis. Details regarding the methods and quality control of the metabolite measurements, as well as 

details regarding the metabolite nomenclature, have been published previously [32]. The nomenclature for the metabolites in this study is provided in 

Supplementary Table S3.  
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Genotyping was performed using the Affymetrix 6.0 SNP array (534,174 SNP markers after quality control), with further imputation using HapMap2 

(release 22) as a reference panel, resulting in a total of 1,717,498 SNPs (for details, see ref. [33]). Both the metabolite concentrations and genotype were available for 

1785 participants in the KORA F4 study. 

Statistical analysis  

Partial correlation coefficients and their p-values were calculated using the ―ppcor‖ package [34] in R. Graphical representations were generated using the ―ggm‖ 

[35] package in R. Consistent with previous studies [18], we considered a partial regression coefficient to be significant at p < 0.01/(151*150/2) (i.e., p<8.83 × 10
-7

). 

 For the GWAS analysis, we used OmicABEL software [36]. Prior to GWAS, all traits were first adjusted for the participant’s sex, age, and batch effect; 

subsequently, the residual traits were transformed using an inverse-normal transformation [37]. The genotypes from the KORA F4 cohort were used. Only SNPs that 

had a ca   rate ≥0.95, R
2
≥0.3, Hardy–Weinberg equi ibrium (HWE) p≥10

-6
, and MAF ≥0.1 (1,717,498 SNPs in total) were included in the analysis. The genomic 

control method was used to correct for any possible inflation of the test statistics. The genomic control [38] lambda value for all traits was between 1.00 and 1.03.  

In a specific analysis (i.e., cGAS or uGAS), we defined independent loci as groups of genome-wide significant associations that were separated by at least 

500 kb or were located on different chromosomes. The strongest association (i.e., the association with the lowest p-value) was selected to represent this locus. The 

cGAS and uGAS results were considered to reflect different loci if the strongest associations were in loci that were separated by at least 500 kb. The threshold for 

the genome-wide significance for 151 traits was set to p=5 × 10
-8

/151 (i.e., p=3.31 × 10
-10

). 

 When partitioning the log(cGAS/uGAS) test statistics into the noise and pleiotropic components (see Eq. (2) and Figure 1), we used all known loci that were 

significant in either the cGAS or uGAS analysis (see Table 1). If a locus included two SNPs associated with different traits, we included both associations during 

partitioning. If a locus included two SNPs associated with the same trait, to be conservative we included only the SNP with the lower uGAS p-value during 

partitioning. After partitioning, we determined whether the value of the pleiotropic and noise components were statistically different using the paired-samples 

Wilcoxon test. For comparing the chi-square test results for the two methods, for each locus we selected the largest chi-square value for selected SNP among all 

analyzed traits. If locus had two SNPs we selected for each method only the largest chi-square value. 

The code for BN-cGAS and GGM-cGAS analyses, and the code for producing the summary tables and graphs, was implemented in R and is available as a 

workflow from CodeOcean, a cloud-based computational reproducibility platform.  

In silico functional annotation  
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We conducted functional annotation for our findings. To prioritize genes in associated regions, gene set enrichment, and tissue/cell-type enrichment analyses, we 

used DEPICT (Data-driven Expression-Prioritized Integration for Complex Traits) software [39] (release 140721) with the following settings: flag_loci = 1; 

flag_genes = 1; flag_genesets = 1; flag_tissues = 1; param_ncores = 2; and further manual annotation (h37 assembly). All 27 SNPs (clustered in 20 loci) identified 

by cGAS or uGAS (see Table 2) were included in the analysis. If more than one gene was annotated for a SNP by DEPICT, we selected the gene with the lowest 

nominal DEPICT P-value. In most cases, the results of manual annotation matched the annotation results using DEPICT annotation (see Supplementary Note 2). In 

addition, we looked up each SNP using the Phenoscanner [40] database to check whether it was previously reported to be associated with metabolic traits at 

p<5 × 10
-8

 and proxy r
2
 <0.7.  

Abbreviations 

GWAS – genome-wide association study 

cGAS – conditional GWAS 

uGAS – univariate GWAS (trait-by-trait) 

BN-cGAS – cGAS based on biochemical networks 

GGM-cGAS – Gaussian Graphical Modeling cGAS based on partial correlations network 
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Figure 1. Decomposition of the log-T
2
 ratio for cGAS and uGAS into pleiotropic and noise components. Vertically grouped trios (each composed of a square, 

triangle, and asterisk) correspond to one of fourteen associations in Table 1. The position of a trio on the x-axis corresponds to the log-ratio between conditional and 

univariate test statistic. On the y-axis, the asterisk corresponds to the log-ratio of cGAS and uGAS T
2
 statistics. The value of the pleiotropic component is depicted 

by a square, and the value of the noise component is depicted by a triangle. Each trio is shown in gray, except the trios representing the ACADM, SLC22A4, and 

PLEKHH1 loci, for which we have two different associations. The three dotted lines correspond to the regression lines for the two components and their sum. The 
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four dark-green vertical lines indicate the associations that were significant in the cGAS analysis but not in the uGAS analysis, and the two dark-red lines indicates 

the associations that were significant only in the uGAS analysis. 

 

 

Figure 2. Matrix of correlations (above diagonal line) and the partial regression coefficients of the trait of interest on the SNP genotype and covariate(s) (the first 

column) for the FADS1 (A) and ETFDH (B) loci. The result of the univariate analysis of regression of the corresponding traits onto SNPs is presented in 

Supplementary Table S1C. Names of traits used as covariates are in red. The number in a cell indicates the value of correlation (partial regression coefficient). The 

area of a square is proportional to the absolute value of correlation (partial regression coefficient); the effect magnitude is a so ref ected by square’s co or (the sca e 

provided at the bottom of the graph). The FADS1 locus represents scenario in which the pleiotropic term in Eq. (2) is strongly positive, while for ETFDH this term is 

negative.  
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Table 1. Eleven loci identified by BN-cGAS and uGAS on metabolites for which at least one one-reaction-step neighbor was available.  
              uGAS cGAS  

Locus SNP Metabolite chr:pos Gene effA/refA EAF beta (se) P-value GC Beta (se) P-value GC Ncov Noise Pleiotropic 

uGAS & cGAS  

1 rs211718 C8 1:75879263 ACADM T/C 0.3 -0.45(0.034) 6.35E-39 -0.10(0.012) 4.45E-17 1 0.92 -1.29 

1 rs211718 C12 1:75879263 ACADM T/C 0.3 -0.04(0.036) 2.21E-01 0.20(0.014) 4.07E-42 3 0.80 1.29 

2 rs7705189 PC ae C42:5 5:131651257 SLC22A4 G/A 0.47 0.15(0.034) 8.83E-06 0.06(0.009) 9.63E-11 3 1.16 -0.83 

2 rs419291 C5 5:131661254 SLC22A4 T/C 0.38 0.26(0.035) 6.62E-14 0.17(0.029) 1.40E-08 1 0.16 -0.40 

3 rs9368564 PC aa C42:5 6:11168269 ELOVL2 G/A 0.25 -0.29(0.039) 4.64E-14 -0.15(0.024) 1.06E-10 3 0.45 -0.58 

4 rs12356193 C0 10:61083359 SLC16A9 G/A 0.17 -0.51(0.046) 4.93E-28 -0.42(0.042) 8.83E-23 1 0.07 -0.17 

5 rs174547 lyso-PC a C20:4 11:61327359 FADS1 C/T 0.7 0.61(0.033) 2.12E-75 0.66(0.024) 2.65E-169 1 0.29 0.07 

6 rs2066938 C4 12:119644998 ACADS G/A 0.27 0.73(0.033) 1.07E-104 0.72(0.031) 4.26E-116 1 0.05 0.00 

7 rs10873201 PC ae C36:5 14:67036352 PLEKHH1 T/C 0.45 -0.26(0.034) 6.34E-14 -0.21(0.018) 5.72E-31 2 0.55 -0.18 

7 rs1077989 PC ae C32:2 14:67045575 PLEKHH1 C/A 0.46 -0.30(0.034) 9.22E-19 -0.06(0.016) 5.39E-05 3 0.66 -1.34 

8 rs4814176 PC ae C40:2 20:12907398 SPTLC3 T/C 0.36 0.24(0.035) 5.60E-12 0.25(0.023) 1.28E-25 4 0.35 0.02 

Only uGAS  

9 rs8396 C10 4:159850267 ETFDH C/T 0.71 0.26(0.037) 1.32E-12 0.05(0.010) 5.08E-07 2 1.09 -1.39 

Only cGAS  

10 rs4862429 PC ae C42:5 4:186006834 ACSL1 T/C 0.31 0.02(0.037) 6.63E-01 -0.06(0.010) 7.01E-11 3 1.15 1.20 

11 rs603424 Lyso-PC a C16:1 10:102065469 PKD2L1 A/G 0.8 0.23(0.042) 4.83E-08 0.21(0.031) 1.76E-11 1 0.26 -0.07 

Notes: The best SNP-metabolite pair is shown for each locus. chr:pos refers to the physical position of the SNP; EAF, effect allele frequency; beta (se), the estimated effect and 

standard error of the SNP; effA/refA, effect allele/reference allele; P-value, the p-value of the additive model; Gene, the most likely (according to DEPICT) associated gene in the 

region; Ncov, the number of covariates used in cGAS; Noise/Pleiotropic, the values of noise and pleiotropic components of the log-ratio of cGAS and uGAS T
2
 statistics.  
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Table 2. Twenty loci identified by GGM-cGAS and uGAS.  
              uGAS  cGAS  

LOCUS SNP Metabolite chr:pos Gene effA/refA EAF beta (se) P-value GC beta (se) P-value GC Ncov Noise Pleiotropic 

uGAS & cGAS  

1 rs211718 C6 (C4:1-DC) 1:75879263 ACADM T/C 0.30 -0.48(0.034) 3.31E-44 -0.13(0.017) 1.21E-13 7 0.61 -1.16 

1 rs7552404 C6 (C4:1-DC) 1:75908534 ACADM G/A 0.30 -0.48(0.034) 2.14E-44 -0.12(0.017) 2.34E-13 7 0.61 -1.17 

2 rs483180 Ser 1:120069028 PHGDH G/C 0.30 -0.24(0.037) 2.26E-11 -0.24(0.028) 1.10E-17 2 0.24 -0.02 

2 rs477992 Ser 1:120059099 PHGDH A/G 0.70 0.24(0.037) 3.50E-11 0.24(0.028) 2.52E-18 2 0.24 0.00 

3 rs2286963 C9 2:210768295 ACADL G/T 0.63 -0.49(0.032) 4.76E-52 -0.48(0.027) 7.41E-73 3 0.16/ -0.01 

4 rs8396 C10 4:159850267 ETFDH C/T 0.71 0.26(0.037) 1.32E-12 0.04(0.010) 1.23E-05 8 1.11 -1.53 

4 rs8396 C7-DC 4:159850267 ETFDH C/T 0.71 -0.09(0.037) 1.67E-02 -0.13(0.019) 2.93E-11 8 0.56 0.33 

5 rs419291 C5 5:131661254 SLC22A4 T/C 0.38 0.26(0.035) 6.62E-14 0.17(0.026) 2.25E-10 3 0.25 -0.40 

5 rs270613 C5 5:131668482 SLC22A4 A/G 0.61 -0.26(0.035) 7.48E-14 -0.17(0.026) 8.24E-11 3 0.25 -0.38 

6 rs9393903 PC aa C42:5 6:11150895 ELOVL2 A/G 0.75 0.29(0.039) 9.13E-14 0.18(0.020) 1.32E-19 6 0.56 -0.38 

6 rs9368564 PC aa C42:5 6:11168269 ELOVL2 G/A 0.25 -0.29(0.039) 4.64E-14 -0.19(0.021) 3.04E-19 6 0.56 -0.40 

7 rs816411 Ser 7:56138983 PHKG1 C/T 0.51 -0.22(0.034) 1.53E-10 -0.19(0.026) 4.83E-13 2 0.23 -0.12 

7 rs1894832 Ser 7:56144740 PHKG1 C/T 0.51 0.21(0.034) 2.33E-10 0.19(0.026) 1.55E-13 2 0.23 -0.09 

8 rs12356193 C0 10:61083359 SLC16A9 G/A 0.17 -0.51(0.046) 4.93E-28 -0.27(0.034) 1.03E-15 3 0.26 -0.53 

9 rs174547 lyso-PC a C20:4 11:61327359 FADS1 C/T 0.70 0.61(0.033) 2.12E-75 0.07(0.011) 2.08E-10 9 0.98 -1.90 

9 rs174556 PC ae C44:4 11:61337211 FADS1 T/C 0.27 0.09(0.038) 1.61E-02 0.21(0.014) 1.17E-48 3 0.84 0.73 

10 rs2066938 C4 12:119644998 ACADS G/A 0.27 0.73(0.033) 1.07E-104 0.71(0.024) 6.95E-189 2 0.28 -0.02 

11 rs12879147 PC aa C28:1 14:63297349 SYNE2 A/G 0.85 -0.46(0.050) 1.83E-19 -0.12(0.019) 6.87E-11 14 0.86 -1.14 

11 rs17101394 SM(OH) C14:1 14:63302139 SYNE2 A/G 0.83 -0.32(0.050) 1.02E-10 -0.10(0.011) 9.23E-18 7 1.30 -1.05 

12 rs1077989 PC ae C36:5 14:67045575 PLEKHH1 C/A 0.46 -0.26(0.034) 4.96E-14 -0.08(0.010) 2.56E-15 10 1.05 -1.00 

12 rs1077989 PC ae C32.2 14:67045575 PLEKHH1 C/A 0.46 -0.30(0.034) 9.22E-19 -0.05(0.016) 1.35E-03 6 0.67 -1.55 

13 rs4814176 SM(OH).C22:1 20:12907398 SPTLC3 T/C 0.36 0.03(0.035) 4.53E-01 -0.07(0.009) 9.11E-17 10 1.22 0.87 

13 rs4814176 SM(OH) C24:1 20:12907398 SPTLC3 T/C 0.36 0.24(0.035) 4.29E-12 0.09(0.013) 2.85E-11 9 0.86 -0.90 

14 rs5746636 Pro 22:17276301 PRODH T/G 0.24 -0.31(0.039) 1.89E-15 -0.32(0.034) 5.05E-21 2 0.11 0.03 
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Only uGAS  

15 rs2943644 C5:1-DC 2:226754586 LOC646736 C/T 0.68 0.32(0.042) 3.99E-14 0.09(0.022) 3.97E-05 5 0.56 -1.08 

Only cGAS  

16 rs1374804 Gly 3:127391188 ALDH1L1 A/G 0.64 0.20(0.036) 1.46E-08 0.21(0.029) 3.65E-13 3 0.17 0.05 

17 rs4862429 PC ae C42:5 4:186006834 ACSL1 T/C 0.31 0.02(0.037) 6.63E-01 -0.06(0.008) 1.15E-12 8 1.34 1.09 

18 rs603424 C16:1 10:102065469 PKD2L1 A/G 0.80 0.16(0.042) 9.00E-05 0.14(0.018) 9.32E-14 9 0.71 -0.15 

19 rs2657879 Gln 12:55151605 GLS2 G/A 0.21 -0.24(0.042) 2.65E-08 -0.27(0.030) 5.88E-18 5 0.29 0.10 

20 rs17112944 C6:1 14:27179297 LOC728755 A/G 0.90 -0.28(0.059) 1.98E-06 -0.21(0.031) 3.74E-11 9 0.54 -0.26 

Notes: The best SNP-metabolite pair is shown for each locus. chr:pos refers to the physical position of the SNP; EAF, effect allele frequency; beta (se), the estimated effect and 

standard error of the SNP; effA/refA, effect allele/reference allele; P-value, the p-value of the additive model; Gene, the most likely (according to DEPICT) associated gene in the 

region; Ncov, the number of covariates used in cGAS; Noise/Pleiotropic, the values of noise and pleiotropic components of the log-ratio of cGAS and uGAS T
2
 statistics. 
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