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Abstract: Fatty liver is tightly associated with insulin resistance and the development of type 2
diabetes. I148M variant in patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene
is associated with high liver fat but normal insulin sensitivity. The underlying mechanism of the
disassociation between high liver fat but normal insulin sensitivity remains obscure. We investigated
the effect of I148M variant on hepatic lipidome of subjects with or without fatty liver, using the
Lipidyzer method. Liver samples of four groups of subjects consisting of normal liver fat with
wild-type PNPLA3 allele (group 1); normal liver fat with variant PNPLA3 allele (group 2); high liver
fat with wild-type PNPLA3 allele (group 3); high liver fat with variant PNPLA3 allele (group 4);
were analyzed. When high liver fat to normal liver fat groups were compared, wild-type carriers
(group 3 vs. group 1) showed similar lipid changes compared to I148M PNPLA3 carriers (group 4
vs. group 2). On the other hand, in wild-type carriers, increased liver fat significantly elevated
the proportion of specific DAGs (diacylglycerols), mostly DAG (FA18:1) which, however, remained
unchanged in I148M PNPLA3 carriers. Since DAG (FA18:1) has been implicated in hepatic insulin
resistance, the unaltered proportion of DAG (FA18:1) in I148M PNPLA3 carriers with fatty liver may
explain the normal insulin sensitivity in these subjects.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is characterized by elevated hepatic lipid content [1].
NAFLD is claimed to be a benign illness, however, it can further develop to nonalcoholic steatohepatitis
(NASH), liver fibrosis, cirrhosis and hepatocellular carcinoma [2]. The prevalence of NAFLD is
continuously increasing, and currently it is estimated to be higher than 20% in industrialized
countries [3]. Despite this high prevalence of NAFLD and its complication NASH, there is no
established effective drug therapy, which is generally approved for these illnesses [4]. NAFLD/NASH
patients are advised to lose weight with lifestyle intervention (mostly consisting of healthy diet and
exercise [4]), however, not all patients benefit from these interventions [5]. To treat NAFLD/NASH,
several drugs have been shown to be beneficial in animal models [6,7], and novel activators for
peroxisome proliferator-activated receptor (PPAR) (elafibranor) and farnesoid X receptor (FXR)
(obeticholic acid) are currently under phase 3 studies in human cohorts with promising results [4].
NAFLD is a strong determinant of insulin sensitivity and the development of type 2 diabetes, however,
some distinct genetic causes for the dissociation of liver fat content and insulin sensitivity have
been identified [1].

The rs738409 C>G single nucleotide polymorphism (SNP) in the patatin-like phospholipase
domain-containing protein 3 (PNPLA3) gene is a common inherited trait, which results in an amino
acid exchange I148M leading to a functional mutation of PNPLA3 [8]. At this position, both hetero-
(I148M) and homozygous (M148M) variants are described. The prevalence of PNPLA3 variants
vary due to ethnicity of the population [9] and 34–37% (I148M) and 4–9% (M148M) are described in
studies analyzing German or European-American populations, respectively [8,10]. Several studies
demonstrated that I148M PNPLA3 carriers showed an altered metabolic phenotype on nutritional
challenges compared to wild-type subjects. Dietary intake of carbohydrates was shown to modify
the association between PNPLA3 genotype and circulating triglyceride levels [11]. Carbohydrate
overfeeding led to an increased de-novo lipogenesis in proportion to the increase in liver fat and serum
triglycerides in subjects with I148I carriers, which however, was not observed in M148M carriers [12].
Furthermore, the M148M PNPLA3 variant influenced the changes in liver fat and docosahexaenoic
acid tissue enrichment during a 15–18 months addition of omega 3 fatty acids [13]. The presence of
rs738409 SNP was positively associated with elevated liver fat, however, carriers do not show insulin
resistance [8,10,14]. On the other hand, some subjects carrying the I148M variant show normal liver fat
content, and the function of PNPLA3 in these subjects is not studied yet. PNPLA3 has several enzyme
activities, it was reported to be involved in lipid hydrolysis (as a triacylglycerol lipase) and synthesis
(as a lysophosphatidic acyltransferase) [15]. The I148M variant is claimed to show lower lipolysis of
hepatic triacylglycerols (TAGs) [16] and elevated hepatic TAG synthesis [17]. However, for subjects
carrying I148M PNPLA3 variant a lower de novo lipogenesis is also reported [18]. The discrepancy
between high liver TAG level and normal insulin sensitivity in I148M carriers is not resolved yet [19],
but altered hepatic TAG pattern, especially long-chain polyunsaturated fatty acid content, is reported
in rodent and human studies analyzing I148M PNPLA3 carriers [14,15,20]. Several lipid species are
implicated in the state of insulin resistance in patients with NAFLD [21]. Elevated ceramide [15] or
high diacylglycerol (DAG) content [22,23] have been found in the liver of rodents and human subjects
with insulin resistance. Furthermore, quantitative measurements of unique lipid species have been
previously shown to broaden our knowledge to understand complex diseases, such as cystic fibrosis,
NAFLD and type 1 diabetes and pave the way for identifying new lipid biomarkers [24–27].

In order (i) to study the function of I148M PNPLA3 variant in subjects with normal and high liver
fat and, (ii) to analyze the key metabolic lipids (also including detailed measurements of individual
ceramide and diacylglycerol lipid species) possibly evoking insulin resistance in wild-type but not
in I148M PNPLA3 carriers, we studied the liver of subjects with normal and high hepatic TAG
content with wild-type or I148M (heterozygous), as well as M148M (homozygous) PNPLA3 variants.
To examine the lipid profiles, we decided to perform an unbiased lipidomic analysis using the Lipidyzer
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platform, which was originally established for plasma samples [28], therefore, we applied it with an
adapted protocol for solid tissue lysates.

2. Materials and Methods

2.1. Human Liver Samples, Total Liver TAG Measurement, and PNPLA3 Genotyping

For the analysis of liver tissue samples, a cohort of European descendent men and women
undergoing liver surgery at the Department of General, Visceral, and Transplant Surgery at the
University Hospital of Tübingen was included in the present study. None of the patients were
diagnosed with an abuse of alcohol, however, no detailed data on alcohol consumption was
consistently collected. The liver tissue was collected during hepatic surgery that was performed
for different reasons, e.g., hepatic hemangioma, curative resection of hepatic metastases of colorectal
malignancies or hepatocellular carcinoma. Patients fasted overnight before collection of liver samples.
Exclusion criteria were viral hepatitis infection and liver cirrhosis. Informed, written consent was
obtained from all participants, and the Ethics Committee of the University of Tübingen approved the
protocol (239/2013BO1) according to the Declaration of Helsinki. Liver samples taken from normal,
non-diseased tissue, were quickly frozen in liquid nitrogen and stored at−80 ◦C. To measure total TAG
content, liver tissue samples were homogenized in phosphate buffered saline containing 1% Triton
X-100 with a TissueLyser (Qiagen, Hilden, Germany) and determined as described previously [29,30].
In order to match subjects for similar body weight, BMI (body mass index) and age as well as for
different liver TAG content, subjects showing less than 3.0% liver TAG content were classified as
normal TAG group and subjects showing more than 4.3% liver TAG were classified as high TAG
group. For PNPLA3 genotyping, total DNA was isolated from whole blood using a DNA isolation kit
(NucleoSpin, Macherey and Nagel, Düren, Germany). The I148M PNPLA3 variations were genotyped
using Sequenom’s massARRAY System with iPLEX software (Sequenom, Hamburg, Germany) as
described previously [14]. Plasma ALT levels were measured with routine clinical chemistry [10].

2.2. Lipidyzer Platform

The Lipidyzer™ platform (SCIEX, Darmstadt, Germany) was used for the whole lipid analysis
work flow. Briefly, 10 mg liver was solubilized in 100 µL internal standards (IS, Avanti Polar Lipids,
Inc., AL, USA) and 200 µL of 75% methanol was added and hepatic lipids were extracted using methyl
tert-butyl ether (MTBE) as described previously [31]. The following isotopes labeled internal standards
were used dCER(d16:0), dCE(16:0), dCE(16:1), dCE(18:1), dCE(18:2), dCE(20:3), dCE(20:4), dCE(20:5),
dCE(22:6), dDAG(16:0/16:0), dDAG(16:0/18:0), dDAG(16:0/18:1), dDAG(16:0/18:2), dDAG(16:0/18:3),
dDAG(16:0/20:4), dDAG(16:0/20:5), dDAG(16:0/22:6), dFFA(16:0), dFFA(17:1), dLPC(16:0),
dLPE(18:0), dPC(16:0/16:1), dPC(16:0/18:1), dPC(16:0/18:2), dPC(16:0/18:3), dPC(16:0/20:3),
dPC(16:0/20:4), dPC(16:0/20:5), dPC(16:0/22:4), dPC(16:0/22:5), dPC(16:0/22:6), dPE(18:0/18:1),
dPE(18:0/18:2), dPE(18:0/18:3), dPE(18:0/20:3), dPE(18:0/20:4), dPE(18:0/20:5), dPE(18:0/22:5),
dPE(18:0/22:6), dSM(16:0), dSM(18:1), dSM(24:0), dSM(24:1), dTAG50:1-FA16:0, dTAG52:1-FA18:0,
dTAG52:2-FA18:1, dTAG52:3-FA18:2, dTAG52:4-FA18:3, dTAG54:4-FA20:3, dTAG54:5-FA20:4,
dTAG56:7-FA22:6, dDCER(16:0), dHCER(16:0), and dLCER(16:0). For each injection, 50 µL of extracted
lipid sample was introduced by flow injection (FIA) using a Nexera X2 system (Shimadzu Germany
GmbH, Duisburg, Germany), equipped with a 50 µL-sample loop. A Lipidyzer™ included
750 × 0.05 mm PEEKsil™ (Trajan Scientific Europe Ltd., Milton Keynes, UK) sample tubing was
used to connect the autosampler valve with the grounding union on the electrospray ionization (ESI)
source, and a 350 × 0.05 mm PEEKsil™ (Trajan Scientific Europe Ltd, Milton Keynes, UK) sample
tubing was used to connect the grounding union with the ESI electrode having 65 µm inner diameter.
The flow profile for the flow injection was determined by the Lipidyzer™ acquisition method with
a flow rate during the data acquisition period being 7 µL/min. The mass spectrometry analysis was
performed on a Lipidyzer™ Platform, including the Sciex QTRAP® (SCIEX, Darmstadt, Germany) 5500
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system equipped with SelexION® (SCIEX, Darmstadt, Germany) Technology (differential mobility
separation, DMS). Multiple reaction monitoring (MRM) was used to target and quantitate several
hundreds of lipid molecular species from 13 different lipid classes. All samples were first measured in
positive and negative polarity with SelexION separation, followed by measurement without SelexION
separation. The acquisition time per sample took approximately 25 min for the complete acquisition.
All data was acquired and processed automatically using the Lipid Manager Workflow software
(SCIEX, Darmstadt, Germany). This provides the following data tables: (i) quantitative results for each
lipid class as a sum of individual species; (ii) mole percent composition obtained computationally from
lipid molecular species data; and (iii) accurate lipid species compositions.

2.3. Data Evaluation

Missing values, which were not possible to measure and showed zero values, were handled as
follows: From the complete data set, lipids, which showed higher values than zero at least in 50% of
any group were kept, otherwise they were discarded. To determine whether the groups separate from
each other according to PNPLA3 genotype or hepatic TAG content, multivariate partial least squares
discriminant analysis (PLS-DA) were performed using soft independent modeling of class analogy
(SIMCA, Umetrics, Umea, Sweden). The 761 individual lipid species and the 84 sum of lipid classes
were summed up and these 845 lipid values were logarithmic transformed and were statistically
evaluated, as written below.

2.4. Statistics

To determine statistical different lipid species caused by increased liver fat, group 3 (high liver fat,
wild-type PNPLA3 allele) was compared to group 1 (normal liver fat, wild-type PNPLA3 allele) as well
as group 4 (high liver fat, variant PNPLA3 allele) was compared to group 2 (normal liver fat, variant
PNPLA3 allele) using GraphPad Prism (7.03). Multiple t-tests were applied with Benjamini-Hochberg
correction and false discovery rate (FDR) was set <5%. Furthermore, analysis of variance (ANOVA)
with Holm-Sidak´s post hoc test were applied as it is indicated.

3. Results

3.1. Characteristics of Study Groups

To distinguish between the effect of increased liver TAG content and PNPLA3 genotype, subjects
were matched for body weight, BMI and age and divided into the following four groups: subjects
showing normal liver fat with wild-type PNPLA3 (group 1); normal liver fat with I148M PNPLA3
variant (group 2); high liver fat with wild-type PNPLA3 (group 3) and high liver fat with I148M
PNPLA3 variant (group 4) (Table 1).

Our study groups consisted of overweight subjects with similar age, weight, BMI and ALT levels
(Table 1). Liver fat was significantly higher in high TAG groups compared to normal groups (group 3
vs. 1 and group 4 vs. 2), but was not different in I148M PNPLA3 carriers compared to wild-type
carriers (Table 1). Both variant PNPLA3 groups (groups 2 and 4) consisted of one homozygous M148M
(MM) carrier and the rest of the subjects were heterozygous I148M (IM) carriers (Table 1).

In order to study the effect of I148M PNPLA3 variant on hepatic lipid species in subjects with
normal and high liver fat, a complete lipid profile was measured using a novel Lipidyzer approach.
The following 13 lipid classes were analyzed: triacylglycerols (TAG), diacylglycerols (DAG), free fatty
acids (FFA), ceramides (CER), dihydroceramides (DCER), hexosylceramides (HCER), lactosylceramides
(LCER), phosphatidylcholines (PC), lysophosphatidylcholines (LPC), phosphatidylethanolamines (PE),
lysophosphatidylethanolamines (LPE), cholesterol esters (CE), and sphingomyelins (SM). Among these
lipid classes, 761 individual lipid species were measured and 84 sums of individual classes were
calculated. In order to investigate whether the hepatic lipid profile of groups with different PNPLA3
genotype or various liver TAG content was different from each other, we first analyzed the data with
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multivariate partial least squares discriminant analysis (PLS-DA). PLS-DA showed that normal TAG,
wt PNPLA3 (group 1) and high TAG, wt PNPLA3 (group 3) formed distinct groups, however, normal
TAG, var PNPLA3 (group 2) and high TAG, var PNPLA3 (group 4) groups were rather similar taking
into account all 761 individual lipid species (Figure 1).

Table 1. Characteristics of study groups.

Characteristic
Group 1

Normal TAG,
wt PNPLA3

Group 2
Normal TAG,
var PNPLA3

Group 3
High TAG,

wt PNPLA3

Group 4
High TAG,

var PNPLA3

Age (years) 59.3 ± 12.6 60.6 ± 16.4 64.0 ± 11.8 65.1 ± 14.5
Body weight (kg) 79.3 ± 9.9 80.3 ± 13.5 86.2 ± 11.1 87.1 ± 13.1

BMI (kg/m2) 26.1 ± 3.2 28.0 ± 5.3 31.0 ± 3.4 28.6 ± 4.0
ALT (U/L) 24.5 ± 6.5 22.0 ± 5.2 31.1 ± 9.3 35.7 ± 18.6

Liver fat (%) 1.1 ± 0.8 1.5 ± 0.7 5.9 ± 2.0 *** 7.6 ± 2.9 ***
PNPLA3 148 (II/IM/MM) (n) 8/0/0 0/7/1 8/0/0 0/6/1

Sex (m/f) (n) 6/2 4/4 5/3 5/2
Number of subjects (n) 8 8 8 7

TAG: liver triacylglycerol content; PNPLA3: patatin-like phospholipase domain-containing protein 3; wt: wild-type
allele with I148I; var: I148M variants, which encode I148M (heterozygous) or M148M (homozygous) variants,
respectively. ALT: alanine aminotransferase, BMI: body mass index. Numbers denote averages ± standard
deviations in the first five lines. *** denotes significant differences between group 3 vs. 1 or group 4 vs. 2 illustrating
the effect of liver TAG content; p < 0.001. Significance was calculated using ANOVA with Holm-Sidak’s post-hoc
test and assumed as p < 0.05. By the comparisons of group 2 vs. 1 and group 4 vs. 3 no significant differences were
found for I148M PNPLA3 variant vs. wild-type carriers.
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Figure 1. Partial least squares discriminant analysis (PLS-DA) score plot. Each spot represents one
liver sample of the denoted group according to component 1 (x axis) and 2 (y axis). Dashed lines
denote possible separation of the groups taking into account all 761 individual lipid species. TAG:
liver triacylglycerol content; wt: wild-type allele with I148I; var: I148M variants, which encode I148M
(heterozygous) or M148M (homozygous) variants, respectively.

3.2. I148M PNPLA3 Variant Does Not Change Relative Total Lipid Contents

As a next step, the sum of 13 lipid classes was evaluated. With increased liver TAG content,
we observed significantly higher relative levels of TAG and DAG lipids (calculated as % of total lipid
content, Table 2). On the other hand, the relative content of FFA, CER, DCER, HCER, PC, LPC, PE,
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LPE, and SM were significantly lower in high TAG vs. normal TAG groups (Table 2). The presence of
I148M PNPLA3 variant did not significantly influence the sum of lipid classes (Table 2).

Table 2. Relative lipid contents of individual classes in percent.

Lipid Class
%

Group 1
Normal TAG,
wt PNPLA3

Group 2
Normal TAG,
var PNPLA3

Group 3
High TAG,

wt PNPLA3

Group 4
High TAG,

var PNPLA3

TAG 25.63 ± 12.49 35.22 ± 15.30 68.64 ± 11.26 *** 69.82 ± 11.86 ***
DAG 0.60 ± 0.30 0.57 ± 0.17 0.92 ± 0.12 * 1.02 ± 0.20 **
FFA 7.23 ± 3.57 6.07 ± 1.71 2.60 ± 1.12 *** 2.37 ± 1.01 **
CER 0.26 ± 0.04 0.25 ± 0.08 0.10 ± 0.03 *** 0.10 ± 0.05 ***

DCER 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 *** 0.01 ± 0.01 ***
HCER 0.07 ± 0.02 0.05 ± 0.02 0.03 ± 0.01 *** 0.02 ± 0.01 **
LCER 0.06 ± 0.01 0.06 ± 0.03 0.04 ± 0.02 0.03 ± 0.01

PC 38.51 ± 9.74 33.06 ± 8.63 14.86 ± 6.41 *** 14.75 ± 7.83 ***
LPC 0.66 ± 0.22 0.60 ± 0.14 0.24 ± 0.14 *** 0.28 ± 0.17 **
PE 20.43 ± 5.80 17.84 ± 5.82 8.19 ± 3.24 *** 7.29 ± 3.10 ***

LPE 0.16 ± 0.05 0.15 ± 0.03 0.06 ± 0.03 *** 0.07 ± 0.04 ***
CE 2.45 ± 0.34 2.84 ± 0.45 2.73 ± 0.60 2.86 ± 0.48
SM 3.91 ± 0.81 3.28 ± 0.81 1.59 ± 0.67 *** 1.37 ± 0.60 ***

TAG: triacylglycerols, DAG: diacylglycerols, FFA: free fatty acids, CER: ceramides, DCER: dihydroceramides,
HCER: hexosylceramides, LCER: lactosylceramides, PC: phosphatidylcholines, LPC: lysophosphatidylcholines,
PE: phosphatidylethanolamines, LPE: lysophosphatidylethanolamines, CE: cholesterol esters, SM: sphingomyelins;
wt: wild-type allele with I148I; var: I148M variants, which encode I148M (heterozygous) or M148M (homozygous)
variants, respectively. Numbers denote averages ± standard deviations. * denotes significant differences between
group 3 vs. 1 or group 4 vs. 2 illustrating the effect of liver TAG content; * p < 0.05, ** p < 0.01, *** p < 0.001.
Significance was calculated using ANOVA with Holm-Sidak´s post-hoc test and assumed as p < 0.05. By the
comparisons of group 2 vs. 1 and group 4 vs. 3 no significant differences were found for I148M PNPLA3 variant vs.
wild-type carriers.

3.3. Increased Liver Fat Content Is Associated with High Proportion of DAG (FA18:1) Species in Subjects
with Wild-Type PNPLA3, However, DAG (FA18:1) Remains Unchanged in I148M PNPLA3 Carriers

In order to study the combination effect of increased liver fat content and PNPLA3 variant on
hepatic lipid profile, we next compared the relative proportion of lipid species in high liver fat to
normal liver fat groups from subjects with wild-type (group 3 vs. 1) or with I148M PNPLA3 carriers
(group 4 vs. 2) (Figure 2 and Supplementary Table S1).

Although in wild-type carriers many individual DAGs decreased with increased hepatic TAG
content, the proportion of DAG (C16:0/C18:1), DAG (C18:0/C18:1), DAG (C18:1/C18:1) as well as the
sum of DAG (FA18:1) were increased (Figure 2, first diagram, grey arrows). These FA18:1 containing
DAGs remained however, unaltered in I148M PNPLA3 variant carriers (Figure 2, second diagram,
grey arrows). Furthermore, various individual CE lipids decreased and many individual shorter TAG
lipids were elevated in wild-type subjects due to increased liver TAG content; however, these lipid
species remained unaltered in I148M PNPLA3 carriers (Supplementary Table S1). These results indicate
that subjects, who carry the I148M PNPLA3 variant do not increase the proportion of DAG (FA18:1)
lipid levels upon increased hepatic TAG, although many other lipid species altered similarly compared
to wild-type carriers.
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diagram). Column diagrams depict linear fold changes calculated from the proportion of relative
individual lipid species and sums, which were significantly altered due to increased liver TAG content
in wild-type carriers (first diagram) or in I148M PNPLA3 carriers (second diagram). Positive ratios
denote lipids, which are higher in subjects with high liver TAG content compared to normal TAG group,
whereas negative ratios denote lipids, which are lower in subjects with high liver TAG content compared
to normal TAG group. For DAGs, both fatty acid chains were determined (see as DAG(XX:X/YY:Y).
First numbers denote the length of fatty acid chain and second number after “:” denote the number
of double bounds. DAG(FAXX:X) depict the sum of DAGs with the denoted fatty acid chain (FA).
Bold lipids depict DAG(FA18:1) lipid species, which are significantly increased in wild-type PNPLA3
carriers, but remained unchanged in I148M PNPLA3 carriers. TAG: liver triacylglycerol content;
wt: wild-type allele with I148I; var: I148M variants, which encode I148M (heterozygous) or M148M
(homozygous) variants, respectively. ns: non-significant differences.

4. Discussion and Conclusions

The I148M PNPLA3 variant is the best characterized and most influential determinant of
NAFLD [19]. Patients with this PNPLA3 variant are also characterized with higher prevalence
of NASH and hepatocellular carcinoma [19], however, they show normal insulin sensitivity [8,14].
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The underlying mechanism of the dissociation between high liver fat and normal insulin sensitivity
remains obscure.

To study the key lipid species, which are known to be involved in hepatic insulin resistance [21],
we performed an unbiased lipidomics analysis from subjects with high and normal liver fat content
with wild-type or I148M PNPLA3 variants. Our data showed, that DAG (FA18:1) lipid species were
elevated in the liver of wild-type carriers upon increased liver fat content, however, these lipids
remained unaltered in subjects, who carry I148M PNPLA3 variant. When the enzyme activity of
wild-type PNPLA3 was characterized, PNPLA3 (as a lipase) showed hydrolytic activity against mono-
(MAG), di- and triacylglycerols [16]. Interestingly, Huang et al. also observed that the wild-type
PNPLA3 strongly prefers oleic acid (C18:1)-containing lipids as a substrate [16]. The I148M PNPLA3
variant was not studied for substrate preference, but it showed diminished hydrolytic activity against
MAG, DAG, and TAG. Since PNPLA3 owns substrate specificity against C18:1 containing lipids and
the I148M variant show diminished TAG hydrolytic activity, it is conceivable that in patients carrying
I148M variant, liver TAG(FA18:1) species could be recognized by PNPLA3 in a lower extent than
in wild-type carriers, hindering accumulation of DAG (FA18:1). On the other hand, PNPLA3 is not
the only lipase metabolizing TAGs and some TAG(FA18:1) lipid species showed lower, but some
others showed higher levels in the I148M PNPLA3 variants upon increased liver TAG content when
compared to wild-type carriers (Supplementary Table S1).

Rodent studies suggested that PNPLA3 deficiency is associated with reduced hepatic DAG
(FA18:1) content. High sucrose diet fed PNPLA3 knock-out mice showed only a decreased DAG
(34:1) lipid content (probably consisting of DAG (C16:0/C18:1)), however, all other lipid species
(phosphatidic acid, lysophosphatidic acid, TAG or other DAGs) remained unchanged compared
to wild-type controls [17]. Knock-down of PNPLA3 with antisense oligonucleotides in high fat
diet fed rats resulted in ameliorated hepatic steatosis, which was associated with lower total DAG,
DAG (C16:0/C18:1) and DAG (C18:1/C18:1) lipid species [32]. The authors suggested that the lower
levels of these DAGs led to reduction of membrane localized (activated) protein kinase C epsilon
(PKCε) level, which could not interfere with insulin signaling and this mechanism was postulated
to be the reason for the improved hepatic insulin sensitivity found in these PNPLA3 knock-down
animals [32]. Jelenik et al. demonstrated that mice with hepatic insulin resistance showed elevated
hepatic content of DAG (C16:0/C18:1) and DAG (C18:1/C18:1) lipid species, which was associated with
higher PKCε activation and reduced tyrosine phosphorylation of insulin receptor substrate 2 (IRS2),
which is a hallmark of impaired insulin signaling [22]. Furthermore, there are several studies [33],
which reported an elevated DAG (FA18:1) content in skeletal muscle of insulin resistant patients with
obesity [34] and type 2 diabetes [35]. The authors claimed that the elevated DAG levels could activate
PKC theta (PKCΘ) in skeletal muscle, which in turn leads to impaired insulin signaling causing insulin
resistance [35]. Moreover, elevated DAG species were also found in the liver of subjects, who showed
hepatic insulin resistance [23]. From all DAG species, hepatic cytosolic level of DAG (C16:0/C18:1)
and DAG (C18:1/C18:1) were two out of the three most abundant DAGs, which showed the strongest
negative correlation with suppression of endogenous glucose production (EGP) [23]. Impairment
in the suppression of EGP is a sign for hepatic insulin resistance [36,37]. These results indicate that
elevation of DAG (FA18:1) lipid species is a characteristic of insulin resistance and impairment in
PNPLA3 function is associated with lower content of hepatic DAG (FA18:1). Whether DAG (FA18:1)
is attributed to specific functions in comparison with other DAG species is not clarified yet, but it
is possible. Dziewulska et al. reported that mice fed with triolein diet (TAG (C18:1/C18:1/C18:1))
resulted in elevation of DAG (FA18:1) in skeletal muscle, which was associated with higher PKCΘ
activation but lower serine phosphorylation of protein kinase B and diminished glucose transporter 4
translocation [38], which are signs for insulin resistance [39]. The authors also observed, that tristearin
diet (TAG (C18:0/C18:0/C18:0)) feeding did not exert the former effects [38]. These results suggest that
DAG (FA18:1) possibly owns a specific function among DAGs and it could serve as a strong activator
of PKCs (PKCε in the liver and PKCΘ in the muscle), which, in turn, could diminish insulin signaling.
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The PNPLA3 variant cohorts consisted of mainly heterozygous (I148M) and only one homozygous
(M148M) carrier in each group. Previous studies also combined hetero- and homozygous
carriers of the PNPLA3 variant and did not report differences in lipid composition or insulin
sensitivity [8,10,15,40] suggesting that these variants are comparable. We, therefore, also analyzed
all carriers of the PNPLA3 I148M/M148M genotype together in this study. The limitations of this
study are the comorbidities of the subjects and the small study size, however, surgical samples were
necessary to obtain sufficient tissue for the lipid analyses. Since we did not have detailed information
on alcohol intake of the patients, it cannot be ruled out that some of the patients had an alcohol related
cause of fatty liver rather than NAFLD. Furthermore, liver samples fulfilling the criteria of the defined
groups were very limited. Therefore, further sub-analyses exceeding the initially selected groups are
not possible in this study.

We found that fatty liver in subjects carrying wild-type PNPLA3 is associated with elevated
hepatic DAG (FA18:1) content. These DAG (FA18:1) species were shown to disturb insulin signaling
in the liver [22,23]. However, hepatic DAG (FA18:1) species remained unaltered in subjects carrying
I148M PNPLA3 allele with fatty liver. Therefore, we hypothesize that I148M PNPLA3 carriers may be
protected from insulin resistance via the unaltered content of DAG (FA18:1) species due to impaired
PNPLA3 TAG lipase activity (Figure 3).
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positively associated with hepatic mRNA expression of PNPLA3, which was not altered in subjects
carrying I148M PNPLA3 variant [10,14,32]. Our lipid data showed that hepatic DAG (FA18:1) species
were elevated in fatty liver of wild-type PNPLA3 carriers (A), which was not observed in I148M PNPLA3
carriers (B). Elevated DAG (FA18:1) in the liver was shown to activate protein kinase c epsilon (PKCε),
which, in turn, reduces tyrosin phosphorylation of insulin receptor substrate 2 (P-Tyr-IRS2) [22,23], a key
molecule transmitting insulin signaling in the liver [39]. Due to the attenuated tyrosin phosphorylation
of IRS2, insulin sensitivity could be impaired (as postulated earlier [22,23]) in subjects carrying wild-type
PNPLA3 allele, but not in I148M PNPLA3 carriers.
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Abbreviations

DAG Diacylglycerol
FA Fatty acid
group 1 Subjects with normal liver fat and wild-type PNPLA3
group 2 Subjects with normal liver fat and I148M/M148M PNPLA3 variants
group 3 Subjects with high TAG and wild-type PNPLA3
group 4 Subjects with high TAG and I148M/M148M PNPLA3 variants
MAG Monoacylglycerol
NAFLD Nonalcoholic fatty liver disease
NASH Nonalcoholic steatohepatitis
PKC Protein kinase C
PNPLA3 Patatin-like phospholipase domain-containing protein 3
TAG Triacylglycerol
var I148M/M148M PNPLA3 variants
wt Wild-type PNPLA3 allele
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