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Abstract 38 

Background: Genome-wide association studies (GWAS) have identified hundreds of loci 39 

influencing complex human traits, however, their biological mechanism of action remains mostly 40 

unknown. Recent accumulation of functional genomics (‘omics’) including metabolomics data 41 

opens up opportunities to provide a new insight into the functional role of specific changes in the 42 

genome. Functional genomic data are characterized by high dimensionality, presence of (strong) 43 

statistical dependencies between traits, and, potentially, complex genetic control. Therefore, 44 

analysis of such data asks for development of specific statistical genetic methods. 45 

Results: We propose a network-based, conditional approach to evaluate the impact of genetic 46 

variants on omics phenotypes (conditional GWAS, cGWAS). For each trait of interest, based on 47 

biological network, we select a set of other traits to be used as covariates in GWAS. The network 48 

could be reconstructed either from biological pathway databases or directly from the data. We 49 

evaluated our approach using data from a population-based KORA study (n=1,784, 1.7 M SNPs) 50 

with measured metabolomics data (151 metabolites) and demonstrated that our approach allows 51 

for identification of up to five additional loci not detected by conventional GWAS. We show that 52 

this gain in power is achieved through increased precision of genetic effect estimates, and in 53 

presence of specific ‘contra-intuitive’ pleiotropic scenarios (when genetic and environmental 54 

sources of covariance are acting in opposite manner). We justify existence of such scenarios, and 55 

discuss possible applications of our method beyond metabolomics.  56 

Conclusions: We demonstrate that in context of metabolomics network-based, conditional 57 

genome-wide association analysis is able to dramatically increase power of identification of loci 58 

with specific ‘contra-intuitive’ pleiotropic architecture. Our method has modest computational 59 

costs, can utilize summary level GWAS data, and is applicable to other omics data types. We 60 

anticipate that application of our method to new and existing data sets will facilitate progress in 61 

understanding genetic bases of control of molecular and complex phenotypes.  62 
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Short abstract 64 

We propose a network-based, conditional approach for genome-wide analysis of multivariate 65 

omics phenotypes. Our methods can incorporate prior biological knowledge about biological 66 

pathways from external sources. We evaluated our approach using metabolomics data and 67 

demonstrated that our approach has bigger power and allows for identification of additional loci. 68 

We show that gain in power is achieved through increased precision of genetic effect estimates, 69 

and in presence of specific ‘contra-intuitive’ pleiotropic scenarios (when genetic and 70 

environmental sources of covariance are acting in opposite manner). We justify existence of such 71 

scenarios, and discuss possible applications of our method beyond metabolomics.   72 
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Background 73 

Genome-wide association studies (GWAS) is one of the most popular methods of identification of 74 

alleles that affect complex traits, including risk of common human diseases. In the past decade, 75 

GWAS allowed identification of thousands of loci, leading to a significant progress in 76 

understanding of genetic bases of control of complex human traits [1]. However, this had limited 77 

impact onto development of biomarkers and therapeutic agents, as most of the time the observation 78 

of association to a genomic region provides a starting point, but not yet a direct answer to the 79 

question of biological function affected by variation in the identified region. Recent accumulation 80 

of functional genomics data, which includes information on levels of gene expression 81 

(transcriptome), metabolites (metabolome), proteins (proteome) and glycosylation (glycome), 82 

could give a new insight into the functional role of specific changes in the genome [2,3]. Such data 83 

require special statistical methods for their analysis, because of their characteristically high 84 

dimensionality (ranging from few dozens to thousands and even to millions of measurements for 85 

each person), and presence of statistical dependencies reflecting biological relationships between 86 

individual omics components. Development of methods for omics data analysis is of current 87 

importance as the progress of molecular biology techniques continues and new types of functional 88 

genomic data become available.  89 

Conventional univariate GWAS (uGWAS) ignore dependencies between different omics traits, 90 

which confounds biological interpretation of results and may lead to loss of statistical power. It 91 

was shown that utilizing multivariate phenotype representation increases statistical power, and 92 

leads to richer findings in the association tests compared to the univariate analysis [4–7]. Despite 93 

large number of methodological works, only few empirical multivariate GWAS have been 94 

published for humans. Among these which should be noted in relation to our work, Inouye et al. 95 

[8] performed multivariate GWAS of 130 NMR metabolites (grouped in 11 sets) in ~6600 96 

individuals. The study demonstrated that multivariate analysis doubles the number of loci detected 97 

in this sample; among loci discovered via multivariate analysis seven were novel and did not 98 

appear before in other GWAS of related traits. While no replication of novel loci was performed 99 

in the original study, we compared results reported by Inouye et al. with recently published 100 

univariate GWAS of NMR metabolomics, which used sample size of up to 24,925 individuals [9]. 101 

We found that for three out of seven SNPs reported in the original work, p-value was < 5x10-11 for 102 

at least one metabolite. This provides empirical evidence for the value of multivariate methods in 103 

genomics of metabolic traits.  104 

 Here we propose a (knowledge-based) network-driven conditional genome-wide 105 

association analysis that exploits information from biologically related traits. To demonstrate our 106 
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methodology, we performed proof-of-principle study directly comparing the power of univariate 107 

GWAS and the proposed method using metabolomics data (151 metabolites, Biocrates assay) from 108 

the KORA F4 study (n=1785).  109 

 110 

  111 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/096982doi: bioRxiv preprint first posted online Dec. 27, 2016; 

http://dx.doi.org/10.1101/096982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

Results and Discussion 112 

Network-based conditional analysis of genetic associations 113 

We start with theoretical justification and identification of specific scenarios under which 114 

adjustment for a biologically relevant covariate increases power of association analysis. Let us 115 

consider a trait of interest, y, covariate c and genotype g. Without loss of generality, assume that 116 

they are distributed with mean zero and standard deviation of one. Their joint distribution is 117 

specified by a set of three correlation coefficients, 𝜌. Given specific parameter values, the value 118 

of “univariate” test statistic for association between y and g has the value 𝑇𝑐
2 = 𝑛 𝜌𝑦𝑔

2 /𝜎𝑢
2, where 119 

n is the sample size and 𝜎𝑢
2 = 1 − 𝜌𝑦𝑔

2  is the residual variance of y. For the conditional test, 𝑇𝑐
2 =120 

𝑛 𝛽𝑦𝑔
2 /𝜎𝑐

2 = 𝑛(𝜌𝑦𝑔 − 𝛽𝑦𝑐𝜌𝑐𝑔)/𝜎𝑐
2, where 𝛽 denote partial coefficients of regression from the 121 

conditional model and 𝜎𝑐
2 is the residual variance of y. Consequently, the log-ratio of these test 122 

statistics can be partitioned into two components  123 

log (
𝑇𝑐

2

𝑇𝑢
2

) = log (
𝜎𝑢

2

𝜎𝑐
2

) + log ([1 −
𝛽𝑦𝑐𝜌𝑐𝑔

𝜌𝑦𝑔
]

2

)                                            (1) 124 

We shall call the first summand of (1) as ‘noise’ component and the second summand as 125 

the ‘pleiotropic’ component. Because the noise component (𝜎𝑢
2/𝜎𝑐

2)>1 always, any possible 126 

reduction in the ratio between univariate and conditional test is determined by the sign and the 127 

magnitude of the term 𝛽𝑦𝑐𝜌𝑐𝑔/𝜌𝑦𝑔. When this product is negative, there is always increase in 128 

power of conditional analysis.  129 

We can re-write 𝛽𝑦𝑐𝜌𝑐𝑔/𝜌𝑦𝑔 as 𝛽𝑦𝑐𝜌𝑦𝑐
∗ , where 𝜌𝑦𝑐

∗ = 𝜌𝑔𝑐/𝜌𝑦𝑔 is a quantity which in a 130 

Mendelian randomization analysis is interpreted as the effect of the covariate on the trait free of 131 

non-genetic confounders [10]. Note that while 𝜌𝑦𝑐
∗  is reflecting the covariance between the trait 132 

and the covariate, which is induced by the effect of the genotype, 𝛽𝑦𝑐 is related to ‘purely 133 

environmental’ sources of covariance between y and c. We can conclude that when genotype-134 

induced and environmental correlations are consistent in sign, the product 𝛽𝑦𝑐𝜌𝑦𝑐
∗  is positive and 135 

hence the contribution of the second term of (1) into relative power is negative. On the contrary, a 136 

‘surprising’ product (where the sign is inconsistent and hence 𝛽𝑦𝑐𝜌𝑦𝑐
∗  is negative) contribute 137 

positively to the relative power of conditional model.  138 

In the context of complex polygenic traits, one expects that genetic and environmental 139 

correlations are consistent in sign. This is well reflected in animal breeding literature, and for a 140 

recent human example, one can see [11]. Under this scenario it would be desirable that 𝜌𝑐𝑔 (effect 141 

of genotype onto covariate) is very small, while 𝛽𝑦𝑐 (which makes contribution into reduction of 142 
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𝜎𝑐
2 compared to 𝜎𝑢

2) is large. However, in the context of specific locus affecting an activity of an 143 

enzyme involved in a biochemical reaction, the ‘surprising’ inconsistency between 𝛽𝑦𝑐 and 𝜌𝑦𝑐
∗  144 

may be not so surprising. Indeed, consider an allele, which is associated with increased activity of 145 

an enzyme converting substrate A into product B. It is expected that A and B are positively 146 

correlated, and that the allele is in positive correlation with level of product B and in negative 147 

correlation with the substrate A. This is exactly a scenario which would lead to the positive value 148 

of the second term in (1), hence providing additional increase in power on the top of noise 149 

reduction.  150 

We can readily extend the formula (1) to a case when k covariates are included in the 151 

conditional model. Denoting coefficients of correlation between g and covariate i as 𝜌𝑔𝑖 and partial 152 

coefficients of regression of y onto covariate i as 𝛽𝑖, we have 153 

log (
𝑇𝑐

2

𝑇𝑢
2

) = log (
𝜎𝑢

2

𝜎𝑐
2

) + log ([1 −
1

𝜌𝑦𝑔
∑ 𝛽𝑖𝜌𝑔𝑖

𝑘

𝑖=1

]

2

)                                          (2) 154 

Above considerations allow us to hypothesize that a conditional GWAS (cGWAS), where 155 

covariates selected are biochemical, one-reaction-step neighbors of the target trait may provide 156 

increased power by exploiting both noise reduction and possible ‘surprising’ pleiotropy. In this 157 

work, we set off to empirically verify this hypothesis by investigating of human metabolomics 158 

data.  159 

When proper covariates are selected, the methodology of cGWAS using individual-level 160 

data becomes rather trivial, and boils down to running a GWAS in which one jointly estimates the 161 

effect of an SNP and of specific covariates. The cGWAS method is less trivial in case one would 162 

like to exploit summary-level univariate GWAS data, for example these data which are available 163 

from previously published studies. Formulation of cGWAS on the level of summary GWAS 164 

statistics is possible, and we describe this method in Supplementary Note 1.  165 

The question of selection of proper covariates is very important because it has direct consequences 166 

on the chances of finding the ‘surprising’ pleiotropic scenarios. In case biological/biochemical 167 

relations between the traits of interest are known and summarized in some database(s), this 168 

knowledge can be used directly by e.g. taking all direct neighbors as covariates. Alternatively, the 169 

network may be reconstructed in a hypothesis-free, empirical manner from the same or external 170 

data by e.g. using Gaussian graphical models (GGM) approach [12]; then some threshold may be 171 

applied to select the covariates.  172 

 173 

Comparison between cGWAS and uGWAS using human metabolomics data 174 
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We compared cGWAS and uGWAS methods using individual-level genetic and metabolomics 175 

data from KORA F4 study (1,784 individuals measured for 151 metabolite, Biocrates assay, and 176 

imputed at 1,717,498 SNPs).  177 

First, we explored the potential of cGWAS where covariates were selected based on known 178 

biochemical network. Thus our analysis was restricted to a subset of 105 metabolites for which the 179 

one-reaction-step immediate biochemical neighbors were available [12]. This biochemical 180 

network incorporates only lipid metabolites, and pathway reactions cover two groups of pathways: 181 

(1) Fatty acid biosynthesis reactions which apply to the metabolite classes lyso-PC, diacyl-PC, 182 

acyl-alkyl-PC and sphingomyelins; (2) β-oxidation reactions representing fatty acid degradation 183 

to model reactions between the acyl-carnitines. The β-oxidation model consists of a linear chain 184 

of C2 degradation steps (C10-C8-C6 etc.). Number of covariates varied from one to four with 185 

mean of 2.48 and median 2. 186 

Table 1 shows 11 loci which were significant in either cGWAS or uGWAS analysis and 187 

fall into known regions (see Supplementary Note 2). Of these, ten loci were identifiable by 188 

cGWAS and nine were identifiable by uGWAS. Compared to uGWAS, one locus (ETFDH) was 189 

lost, but two additional loci were identified (ACSL1 for PC ae C42:5, and PKD2L1 for 190 

lysoPC a C16:1). It is interesting to note that for ACSL1 (SNP rs4862429 effect onto PC ae C42:5, 191 

with cGWAS p=7e-11), the uGWAS p-value was 0.7. This is expected under the model of 192 

‘surprising’ pleiotropy.  193 

To test whether use of cGWAS increases average power of association analysis, we 194 

contrasted the average of cGWAS and uGWAS maximal chi-squared test statistics for loci from 195 

Table 1. The ratio of average maximal test statistic between cGWAS and uGWAS was 1.59. 196 

However, the Wilcoxon paired sample test contrasting the best cGWAS vs. the best uGWAS 197 

values of chi-squared test statistic, was only marginally significant (p=0.067).  198 

For the SNPs listed in Table 1, we applied formula (2) to partition the log-ratio of the 199 

cGWAS and uGWAS test statistics into ‘noise’ and ‘pleiotropic’ components. Figure 1 shows that 200 

the trend in the ratio is mainly determined by the second (‘pleiotropic’) summand. One can see 201 

that, with the exception of locus SLC22A4, SNP-trait pairs for which cGWAS had increased power 202 

are these where the second term of (1) is positive or close to zero. In contrast, the SNP-trait 203 

combinations which were lost in cGWAS, had strong negative contribution from the ‘pleiotropic’ 204 

term of (2).  205 

It is interesting to investigate the variance-covariance structure of loci with positive and 206 

negative pleiotropic term. We selected two loci where the pleiotropic component’s contribution to 207 

power was positive (rs174547 at FADS1 locus) and negative (rs8396 at ETFDH). We show 208 

corresponding correlations between SNP and trait and covariates involved, together with partial 209 
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coefficients from conditional regression of the trait onto SNP and covariates in Figure 2. For 210 

FADS1 locus (Figure 2A), the correlation between SNP and the trait (lysoPC a C20:4) and the 211 

covariate (lysoPC a C20:3) are in opposite directions, while the trait and the covariate are 212 

positively correlated (both based on correlation and partial correlation). As a consequence, we can 213 

see that the value of partial regression coefficient between the SNP and lysoPC a C20:4, 214 

conditional on lysoPC a C20:3 is greater than coefficient of regression without covariates. This 215 

makes biological sense as FADS1 is coding the fatty acid desaturase enzyme, while these two traits 216 

differ from each other by one double bond. It appears that this case suits perfectly the biochemical 217 

scenario under which we expect increased power of conditional analysis.  218 

In the second example (Figure 2B, ETFDH), we observe that conditional regression of C10 219 

onto rs8396 and two covariates (C8 and C12, medium-chain acylcarnitines) leads to smaller SNP 220 

coefficient compared to unconditional regression; this happens because all terms of 221 

∑ 𝛽𝑖𝜌𝑔𝑖
𝑘
𝑖=1 /𝜌𝑦𝑔 are positive. The ETFDH gene, prioritised as the best candidate by DEPICT 222 

(FDR<5%), encodes for electron transfer flavoprotein dehydrogenase that is involved into fatty 223 

acid oxidation in the mitochondria. During this process the acyl group is transferred from long 224 

chain acylcarnitines to form long-chain acetyl-CoA, which is then catabolized. ETF 225 

dehydrogenase takes part in the catabolic process by transferring electrons from Acyl-CoA 226 

dehydrogenase into the oxidative phosphorylation pathway. Thus, the ETFDH gene should act on 227 

all kinds of long-chain acylcarnitines in the same direction and we can expect that pleotropic 228 

influence of this gene onto the acylcarnitines in our example (C8, C10, C12) will be unidirectional. 229 

Presence unidirectional genetic effects and positive correlations between these acylcarnitines 230 

makes second term of equation (2) negative, which leads to the decreased power of genetic 231 

association analysis. 232 

Above analysis provide a real-life example that use of biochemical neighbors to adjust 233 

genetic association analysis of target trait allows for (sometimes very sharp) increase of power for 234 

the genetic variants which act in ‘surprising’ pleiotropic manner; our analysis also suggests that 235 

cGWAS may increase GWAS power on average, although this increase is not uniform and heavily 236 

depends on pleiotropic relations between involved locus and the traits.  237 

While use of known biochemical network for covariate selection has many attractive 238 

properties, it may be somewhat unpractical, because our biochemical knowledge is yet fragmented. 239 

Therefore, next we have investigated the potential of cGWAS method where covariates are 240 

selected using data-driven approach. The metabolites network was reconstructed using Gaussian 241 

Graphical Models based on partial correlations. For a target metabolite, covariates were selected 242 

based on significant partial correlations. For that, we have chosen threshold proposed previously 243 

in [12]: p-value<(0.01/Number of calculated partial correlations), which corresponds to a cut-off 244 
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p-value<8.83x10-7. The network used in our analysis is presented in Supplementary Figure 1. 245 

For the clarity of notation, hereafter we will call cGWAS using known biochemical network as 246 

BN-cGWAS, and cGWAS which is based on GGM selection of covariates as GGM-cGWAS. 247 

 248 

 249 

Figure 1. Decomposition of Chi-squared ratio for cGWAS and uGWAS method into 250 

pleiotropic and noise components. The stars correspond to the sum of components that is Chi-251 

squared ratio (y=x line). Pleiotropic component is represented by squares, noise component –  by 252 

triangles. Dashed lines correspond to regression lines for the two component. Dark green vertical 253 

lines indicate SNP-trait combinations that were significant in cGWAS and not significant in 254 

uGWAS; dark red line indicates the SNP-trait combinations which was significant in uGWAS 255 

only.  256 

 257 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/096982doi: bioRxiv preprint first posted online Dec. 27, 2016; 

http://dx.doi.org/10.1101/096982
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 11 

 258 

Figure 2. Correlations (above diagonal) and partial coefficients of regression of the trait of interest 259 

(below diagonal) for FADS1 and ETFDH loci, representing scenarios in which pleiotropic term of 260 

(2) is strongly positive and negative respectively.  261 

 262 

To contrast GGM-cGWAS and BN-cGWAS, we first used the same set of metabolites which was 263 

utilized by BN-cGWAS to run GGM-cGWAS. The results are presented in Supplementary Table 264 

1. We found 16 SNP-trait pairs clustered to 10 loci that could be detected by GGM-cGWAS or 265 

BN-cGWAS. The number of covariates included into GGM-cGWAS analysis, was larger (from 2 266 

to 18, with mean of 8.5) than that in BN-cGWAS. Therefore, we expected that GGM-cGWAS 267 

may gain relative power compared to BN-cGWAS because of noise reduction (term 1 of equation 268 

(2)); however, we it may also be expected that GGM-cGWAS may lose power because of less 269 

likely occurrence of ‘surprise’ pleiotropy (term 2 of equation (2)).  270 

For the best SNP-trait pairs detected by GGM-cGWAS or BN-cGWAS, we computed the 271 

components of equation (2) and contrasted them using Wilcoxon paired samples test. The noise 272 

component of (2) was always greater for GGM-cGWAS (mean difference of 0.66, p=3x10-5). For 273 

GGM-cGWAS, the second ‘pleiotropic’ component of equation (2) was on average smaller than 274 

that for the BN-cGWAS (mean difference -0.54, p=0.013); still, for three GGM-cGWAS SNP-275 

trait pairs out of 16 the pleiotropic component was positive. Average Chi-squared statistics was 276 

33% smaller for GGM-cGWAS that for BN-cGWAS indicating average loss of power (although 277 

this loss was not significant, Wilcoxon paired test p=0.5), but at the same time it still was 22% 278 

bigger than uGWAS (Wilcoxon paired test p=0.8). We conclude that while GGM-cGWAS is in a 279 

way imperfect proxy to use of real biochemical network, it may still have increased power because 280 
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of even further reduced target trait residual variance, and some potential to detect ‘surprising’ 281 

pleiotropy.  282 

To explore the potential of cGWAS under realistic conditions to a full extent, we analyzed 283 

all 151 available metabolites using GGM-cGWAS and contrasted the results to uGWAS (Table 2 284 

and Supplementary Figure 2). In total, uGWAS was able to detect 15 loci at genome-wide 285 

significance level defined as p<5x10-8/151 = 3.3x10-10. Applying GGM-cGWAS, we identified 19 286 

significant loci at the same threshold. Expectedly, we observed that compared to uGWAS the 287 

precision of genetic effect estimation increased (Table 2, Supplementary Figure 3). The overlap 288 

between uGWAS and GGM-cGWAS findings was 14 loci, with GGM-cGWAS losing one locus 289 

(for C5:1-DC at rs2943644), but identifying five new loci not identified by uGWAS. Three of the 290 

five new loci were affecting amino acids, and two – acylcarnitines. Note that loci identified by 291 

BN-cGWAS (covariates selected via biochemical network) are a subset of 19 loci identified by 292 

GGM-cGWAS.  293 

We have investigated the literature results available for the loci described in Table 2 (see 294 

Supplementary Note 2 for details). From 20 loci we report in this study, 15 were genome-wide 295 

significant in recent large (n=7,478) meta-analysis of Biocrates metabolomics data by Draisma et 296 

al. [13]. For 11 of 15 loci, we observed significant association for exactly the same SNP-metabolite 297 

pair. However, not all metabolites analyzed in this study were analyzed by Draisma et al. [13]; 298 

still, for the residual three loci the top association was with a metabolite within the same class as 299 

in our study and one from different lipid classes (see Supplementary Table 2). For the other five 300 

loci, which did not show significant association in work of Draisma et al. [13], we have checked 301 

if these were significant and replicated in work of Tsepilov et al. [14]. It should be noted though 302 

that in work [14], the same KORA F4 data set was used as discovery, and the analysis concerned 303 

the ratios of metabolites. Out of five loci, two were significant and replicated in [14], and in all 304 

two cases, the metabolite analyzed in this work was the part of the ratio analyzed by Tsepilov et 305 

al.. One of five was published before for the same trait in other studies [15,16].  We did not find 306 

previous evidence for association with metabolites for rs2943644 (LOC646736) and rs17112944 307 

(LOC728755). Therefore, we are inclined to consider observed associations with rs17112944 and 308 

rs2943644 as potential false positives; these two loci are excluded from further consideration.  309 

 310 

 311 
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Table 1. Eleven loci found by cGWAS and uGWAS on metabolites for which at least one one-reaction-step neighbor was available. Best SNP - 312 

Metabolite pair is shown for each locus. chr:pos corresponds to the physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect 313 

and standard error of the SNP; effA/refA - effect/reference alleles; P-value - p-value of the additive model; Gene - the most probable (according to 314 

DEPICT) associated gene in the region; Ncov – number of covariates used in cGWAS. 315 

              uGWAS cGWAS 

Locus SNP Metabolite chr:pos Gene effA/refA EAF beta(se) P-value beta(se) P-value Ncov 

uGWAS & cGWAS 

1 rs211718 C8 1:75879263 ACADM T/C 0,30 -0.45(0.034) 3,26E-37 -0.10(0.012) 4,83E-17 1 

1 rs211718 C12 1:75879263 ACADM T/C 0,30 -0.04(0.036) 2,19E-01 0.20(0.014) 1,67E-40 3 

2 rs7705189 PC ae C42:5 5:131651257 SLC22A4 G/A 0,47 0.15(0.034) 8,65E-06 0.06(0.009) 1,49E-10 3 

2 rs419291 C5 5:131661254 SLC22A4 T/C 0,38 0.26(0.035) 7,03E-14 0.17(0.029) 1,01E-08 1 

3 rs9368564 PC aa C42:5 6:11168269 ELOVL2 G/A 0,25 -0.29(0.039) 1,14E-13 -0.15(0.024) 1,63E-10 3 

4 rs12356193 C0 10:61083359 SLC16A9 G/A 0,17 -0.51(0.046) 1,84E-27 -0.42(0.042) 1,67E-22 1 

5 rs174547 lysoPC a C20:4 11:61327359 FADS1 C/T 0,70 0.61(0.033) 1,24E-69 0.66(0.024) 2,96E-141 1 

6 rs2066938 C4 12:119644998 ACADS G/A 0,27 0.73(0.033) 2,42E-93 0.72(0.032) 2,13E-100 1 

7 rs10873201 PC ae C36:5 14:67036352 PLEKHH1 T/C 0,45 -0.26(0.034) 4,37E-14 -0.21(0.018) 2,38E-30 2 

7 rs1077989 PC ae C32:2 14:67045575 PLEKHH1 C/A 0,46 -0.30(0.034) 2,23E-18 -0.06(0.016) 5,33E-05 3 

8 rs4814176 PC ae C40:2 20:12907398 SPTLC3 T/C 0,36 0.24(0.035) 5,74E-12 0.25(0.023) 1,58E-25 4 

Only uGWAS 

9 rs8396 C10 4:159850267 ETFDH C/T 0,71 0.26(0.037) 2,11E-12 0.05(0.011) 6,67E-07 2 

Only cGWAS 

10 rs4862429 PC ae C42:5 4:186006834 ACSL1 T/C 0,31 0.02(0.037) 6,62E-01 -0.06(0.010) 6,57E-11 3 

11 rs603424 lysoPC a C16:1 10:102065469 PKD2L1 A/G 0,80 0.23(0.042) 5,34E-08 0.21(0.031) 1,39E-11 1 

 316 

  317 
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Table 2. Twenty loci found by cGWAS and uGWAS approaches. Best SNP - Metabolite pair is shown for each locus. chr:pos corresponds to the 318 

physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect and standard error of SNP; effA/refA - effect/reference alleles; P-319 

value - p-value of the additive model; Gene - the most probable (according to DEPICT) associated gene in the region; Ncov – number of covariates for 320 

cGWAS. 321 

       uGWAS cGWAS 

Locus SNP Metabolite chr:pos Gene effA/refA EAF beta(se) P-value beta(se) P-value Ncov 

uGWAS & cGWAS 

1 rs211718 C6 (C4:1-DC) 1:75,879,263 ACADM T/C 0.30 -0.48(0.034) 4.64E-42 -0.13(0.017) 2.00E-13 7 

1 rs7552404 C6 (C4:1-DC) 1:75,908,534 ACADM G/A 0.30 -0.48(0.034) 3.10E-42 -0.12(0.017) 3.25E-13 7 

2 rs483180 Ser 1:120,069,028 PHGDH G/C 0.30 -0.24(0.037) 3.34E-11 -0.24(0.028) 1.50E-17 2 

2 rs477992 Ser 1:120,059,099 PHGDH A/G 0.70 0.24(0.037) 5.15E-11 0.24(0.028) 5.82E-18 2 

3 rs2286963 C9 2:210,768,295 ACADL G/T 0.63 -0.49(0.032) 1.10E-49 -0.48(0.027) 1.48E-67 3 

4 rs8396 C10 4:159,850,267 ETFDH C/T 0.71 0.26(0.037) 2.02E-12 0.04(0.010) 1.49E-05 8 

4 rs8396 C7-DC 4:159,850,267 ETFDH C/T 0.71 -0.09(0.037) 1.67E-02 -0.13(0.020) 3.29E-11 8 

5 rs419291 C5 5:131,661,254 SLC22A4 T/C 0.38 0.26(0.035) 7.03E-14 0.17(0.026) 2.28E-10 3 

5 rs270613 C5 5:131,668,482 SLC22A4 A/G 0.61 -0.26(0.035) 7.93E-14 -0.17(0.026) 8.48E-11 3 

6 rs9393903 PC aa C42:5 6:11,150,895 ELOVL2 A/G 0.75 0.29(0.039) 2.19E-13 0.18(0.020) 4.51E-19 6 

6 rs9368564 PC aa C42:5 6:11,168,269 ELOVL2 G/A 0.25 -0.29(0.039) 1.14E-13 -0.19(0.021) 7.84E-19 6 

7 rs816411 Ser 7:56,138,983 PHKG1 C/T 0.51 -0.22(0.034) 2.15E-10 -0.19(0.026) 5.16E-13 2 

7 rs1894832 Ser 7:56,144,740 PHKG1 C/T 0.51 0.21(0.034) 3.23E-10 0.19(0.026) 1.69E-13 2 

8 rs12356193 C0 10:61,083,359 SLC16A9 G/A 0.17 -0.51(0.046) 1.84E-27 -0.27(0.034) 9.72E-16 3 

9 rs174547 lysoPC a C20:4 11:61,327,359 FADS1 C/T 0.70 0.61(0.033) 1.44E-69 0.07(0.011) 1.41E-10 9 

9 rs174556 PC ae C44:4 11:61,337,211 FADS1 T/C 0.27 0.09(0.038) 1.55E-02 0.21(0.014) 3.16E-46 3 

10 rs2066938 C4 12:119,644,998 ACADS G/A 0.27 0.73(0.033) 5.87E-94 0.71(0.025) 1.31E-151 2 

11 rs12879147 PC aa C28:1 14:63,297,349 SYNE2 A/G 0.85 -0.46(0.050) 2.07E-19 -0.12(0.019) 5.94E-11 14 
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11 rs17101394 SM(OH) C14:1 14:63,302,139 SYNE2 A/G 0.83 -0.32(0.050) 1.00E-10 -0.10(0.011) 1.17E-17 7 

12 rs1077989 PC ae C36:5 14:67,045,575 PLEKHH1 C/A 0.46 -0.26(0.034) 3.42E-14 -0.08(0.010) 8.25E-16 10 

12 rs1077989 PC ae C32.2 14:67,045,575 PLEKHH1 C/A 0.46 -0.30(0.034) 2.23E-18 -0.05(0.016) 1.31E-03 6 

13 rs4814176 SM(OH).C22:1 20:12,907,398 SPTLC3 T/C 0.36 0.03(0.035) 4.51E-01 -0.07(0.009) 1.10E-16 10 

13 rs4814176 SM(OH) C24:1 20:12,907,398 SPTLC3 T/C 0.36 0.24(0.035) 5.40E-12 0.09(0.013) 3.04E-11 9 

14 rs5746636 Pro 22:17,276,301 PRODH T/G 0.24 -0.31(0.039) 3.00E-15 -0.32(0.034) 1.91E-20 2 

Only uGWAS 

15 rs2943644 C5:1-DC 2:226,754,586 LOC646736 C/T 0.68 0.32(0.042) 5.14E-14 0.09(0.022) 3.58E-05 5 

Only cGWAS 

16 rs1374804 Gly 3:127,391,188 ALDH1L1 A/G 0.64 0.20(0.036) 1.88E-08 0.21(0.030) 8.08E-13 3 

17 rs4862429 PC ae C42:5 4:186,006,834 ACSL1 T/C 0.31 0.02(0.037) 6.62E-01 -0.06(0.008) 1.25E-12 8 

18 rs603424 C16:1 10:102,065,469 PKD2L1 A/G 0.80 0.16(0.042) 9.51E-05 0.14(0.018) 1.32E-13 9 

19 rs2657879 Gln 12:55,151,605 GLS2 G/A 0.21 -0.24(0.042) 2.82E-08 -0.27(0.031) 9.37E-18 5 

20 rs17112944 C6:1 14:27,179,297 LOC728755 A/G 0.90 -0.28(0.059) 2.09E-06 -0.21(0.032) 1.38E-10 9 

 322 

 323 
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Conclusions 324 

We have developed a new approach for network-based conditional genome-wide association study 325 

for metabolomics data (conditional GWAS, cGWAS). For each metabolite trait, we select a set of 326 

other metabolites, to be used as covariates in GWAS. The selection of covariates could be done in 327 

a mechanistic way, e.g. based on known biological relations between traits of interest; or in a data-328 

driven way, e.g. based on partial correlations. The method has modest computational costs and can 329 

exploit either individual- or summary-level GWAS data. It has a potential to increase the power 330 

of genetic association analysis because of reduced noise and ability to detect specific pleiotropic 331 

scenarios, hardly detectable via standard single-trait GWAS.  332 

We have applied cGWAS approach to analysis of 151 metabolomics traits (Biocrates 333 

panel) in large (n=1,784) population-based KORA cohort. While conventional uGWAS identified 334 

15 loci in this data set, cGWAS was able to identify up to 5 additional loci. At the same time, we 335 

have observed that for some loci the power of cGWAS was decreased. We found that in cGWAS 336 

power is always gained because of increased precision of genetic effect estimation, but it may be 337 

decreased or increased in presence of specific pleiotropic association scenarios.  338 

We show that conditional analysis has especially high power under scenarios when locus-339 

specific genotypic and environmental sources of covariance between the trait and its covariates 340 

are ‘surprising’ (acting in opposite direction). This type of pleiotropy is not unexpected for 341 

metabolic traits, and we provide an empirical demonstration of existence of such scenarios in this 342 

work. This is further demonstrated by the fact that the power gain from the pleiotropic component 343 

was higher when we used a mechanistic way of covariate selection (one-reaction-step neighbors 344 

from a biochemical network), as opposed to data-driven network (based on Gaussian Graphical 345 

Model). We may expect that with increased knowledge of biological networks the mechanistic 346 

way of covariate selection may become preferable.  347 

However, when genotypic and environmental sources of covariance are consistent, 348 

cGWAS may lose power even compared with standard GWAS without biological covariates. One 349 

may argue that a joint analysis testing effects of genotype on the set of traits simultaneously may 350 

be a better solution, which maintains power across wide range of scenarios. While we are not 351 

arguing with this viewpoint, we must emphasize one aspect which makes conditional analysis 352 

attractive; namely, better interpretability of the obtained results in terms of effect of genotype on 353 

specific trait. The latter may be important in the next step when we may try to relate obtained 354 

results with these obtained previously for other traits in other GWAS, e.g. using methods described 355 

by [17–19]. 356 
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Presence of highly correlated traits and different pleiotropic scenarios are not unique for 357 

metabolomics. Therefore, we expect that cGWAS may be a powerful approach for investigation 358 

of other omics traits. Low computational costs and possibility of analysis based on summary-level 359 

data makes cGWAS a promising approach to investigate new and re-analyze existing omics data 360 

sets in order to provide deeper understanding of functional genomics. 361 

  362 
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Materials and Methods 363 

KORA study 364 

The KORA cohort (Cooperative Health Research in the region of Augsburg) are population-based 365 

studies from the region of Augsburg in Southern Germany [20]. The KORA F4 is the follow-up 366 

survey (from 2006 to 2008) of the base line survey KORA S4 that was conducted from 1999 to 367 

2001. All study protocols were approved by the ethics committee of the Bavarian Medical 368 

Chamber (Bayerische Landesärztekammer), and all participants gave written informed consent.  369 

Concentrations of 163 metabolites were quantified in 3,061 serum samples of KORA F4 370 

participants using flow injection electrospray ionization tandem mass spectrometry and the 371 

AbsoluteIDQTM p150 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) [21]. After quality 372 

control 151 metabolite measurements were used in analysis. Details of the methods and quality 373 

control of the metabolite measurements and details of the metabolite nomenclatures were given 374 

previously [21]. Metabolite nomenclatures could be found in Supplementary Table 3.  375 

Genotyping was performed with the Affymetrix 6.0 SNP array (534,174 SNP markers after 376 

quality control) with further imputation using HapMap2 (release 22) as reference panel resulting 377 

in a total of 1,717,498 SNPs (details given in KOLZ et al. 2009 [22]). For 1,785 individuals both 378 

metabolite concentrations and genotypes were available in the KORA F4 study. 379 

 380 

Statistical analysis  381 

Calculation of partial correlations and their p-values were performed using “ppcor” [23] R library. 382 

Graphical representations were made by “ggm” [24] R library. Similar to previous work [12], we 383 

considered partial correlation coefficient as significant if correlation’s p-value was less than 384 

0.01/(151*150/2) (8.83x10-7). 385 

 For the GWAS analysis we used OmicABEL software [25]. All traits were first adjusted 386 

for sex, age and batch effect, and then residuals were transformed using inverse-normal 387 

transformation [26] prior to GWAS. The genotypes from KORA F4 were used. Only SNPs that 388 

had a call rate ≥ 0.95, R2 ≥ 0.3, Hardy–Weinberg equilibrium (HWE) p ≥ 10-6 and MAF ≥ 0.1 389 

(1,717,498 SNPs in total) were considered in analysis. The genomic control method was applied 390 

to correct for a possible inflation of the test statistics. Lambda for all traits was between 1.00 and 391 

1.03. To define independent loci, we have selected all genome-wide significant SNP-trait pairs, 392 

and identified the groups which were separated by >500kb. For regions of association, the most 393 

associated SNP-trait pair (as indicated by the lowest p-value) was selected to represent this locus. 394 

cGWAS and uGWAS results were considered to come from different loci if top SNPs were 395 
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separated by >500kb. The threshold for GWAS analysis for 151 traits was p-value=5e-396 

8/151=3.31x10-10. 397 

 When partitioning log(cGWAS/uGWAS) test statistic into noise and pleiotropic 398 

components (equation (2), Figure 1), we used all known loci that were significant in either cGWAS 399 

or uGWAS analyses. If locus included two SNP-trait pairs and traits were different we included 400 

both. If locus consisted two SNP-trait pairs and traits were the same, we included the one with 401 

lowest uGWAS p-value. When comparing the pleiotropic and noise components, the Wilcoxon 402 

paired samples test was used to perform statistical significance testing. For contrasting values of 403 

chi-squared test statistics, we employed similar procedure, with the exception that if results from 404 

specific analysis for specific locus were not genome-wide significant, for this method we have 405 

selected the maximal chi-squared test statistic from the +/-500kb region centered at the top 406 

association detected by the alternative method.  407 

 408 

In silico functional annotation  409 

We conducted functional annotation of the novel discoveries. For prioritizing genes in associated 410 

regions, gene set enrichment and tissue/cell type enrichment analyses, we used the DEPICT 411 

software v. 140721 [27] with following parameters: flag_loci = 1; flag_genes = 1; flag_genesets 412 

= 1; flag_tissues = 1; param_ncores = 2 , and further manual annotation (h37 assembly). All 27 413 

SNPs clustered in 20 loci found by cGWAS and uGWAS (Table 2) were included into analysis. If 414 

several genes were proposed for a SNP by DEPICT we selected the gene with the lowest nominal 415 

DEPICT P-value. In most of the cases the results of manual annotation matched with the results 416 

of DEPICT annotation (see Supplementary Note 2). Additionally, we have looked up each SNP 417 

using the Phenoscanner [28] database to check whether it was previously reported to be associated 418 

with metabolic traits with p-value lower than 5x10-8 and proxy r2 =0.7.  419 

  420 
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Abbreviations 433 

GWAS – genome wide association study 434 

cGWAS – conditional GWAS 435 

uGWAS – univariate GWAS (trait-by-trait) 436 

BN-cGWAS – cGWAS based on biochemical networks 437 

GGM-cGWAS – cGWAS based on partial correlations network 438 
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