1	Network based conditional genome wide association analysis of human
2	metabolomics
3	
4	
5	
6	Tsepilov Y.A. ¹ , Sharapov S.Zh. ^{1,2} , Zaytseva O.O. ^{1,2} , Krumsek J. ³ , Prehn C. ⁴ , Adamski J. ^{4,5,6} ,
7	Kastenmüller G. ⁷ , Wang-Sattler R. ^{6,8,9} , Strauch K. ^{10,11} , Gieger C. ^{6,8,9} , Aulchenko Y.S. ^{1,2,*}
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	 Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia Novosibirsk State University, 630090 Novosibirsk, Russia Institute of Computational Biology, Helmholtz Zentrum München -German Research Center for Environmental Health, 85764 Neuherberg, Germany. Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany. Institute of Experimental Genetics, Life and Food Science Center Weihenstephan, Technische Universität München, 85354 Freising-Weihenstephan, Germany German Center for Diabetes Research, 85764 Neuherberg, Germany. Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany. Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany. Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany Institute of Genetic Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, Ludwig-Maximilians-Universität, 80539, Munich, Germany
30	* Correspondence to
31	Aulchenko S. Yurii
32	Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
33	yurii@bionet.nsc.ru
34	
35	Keywords: genome-wide association studies; multivariate model; metabolomics; conditional
36	analysis, pleiotropy

38 Abstract

Background: Genome-wide association studies (GWAS) have identified hundreds of loci influencing complex human traits, however, their biological mechanism of action remains mostly unknown. Recent accumulation of functional genomics ('omics') including metabolomics data opens up opportunities to provide a new insight into the functional role of specific changes in the genome. Functional genomic data are characterized by high dimensionality, presence of (strong) statistical dependencies between traits, and, potentially, complex genetic control. Therefore, analysis of such data asks for development of specific statistical genetic methods.

46 **Results:** We propose a network-based, conditional approach to evaluate the impact of genetic 47 variants on omics phenotypes (conditional GWAS, cGWAS). For each trait of interest, based on biological network, we select a set of other traits to be used as covariates in GWAS. The network 48 49 could be reconstructed either from biological pathway databases or directly from the data. We 50 evaluated our approach using data from a population-based KORA study (n=1.784, 1.7 M SNPs) 51 with measured metabolomics data (151 metabolites) and demonstrated that our approach allows 52 for identification of up to five additional loci not detected by conventional GWAS. We show that this gain in power is achieved through increased precision of genetic effect estimates, and in 53 54 presence of specific 'contra-intuitive' pleiotropic scenarios (when genetic and environmental 55 sources of covariance are acting in opposite manner). We justify existence of such scenarios, and discuss possible applications of our method beyond metabolomics. 56

57 **Conclusions:** We demonstrate that in context of metabolomics network-based, conditional 58 genome-wide association analysis is able to dramatically increase power of identification of loci 59 with specific 'contra-intuitive' pleiotropic architecture. Our method has modest computational 60 costs, can utilize summary level GWAS data, and is applicable to other omics data types. We 61 anticipate that application of our method to new and existing data sets will facilitate progress in 62 understanding genetic bases of control of molecular and complex phenotypes.

64 Short abstract

65 We propose a network-based, conditional approach for genome-wide analysis of multivariate omics phenotypes. Our methods can incorporate prior biological knowledge about biological 66 pathways from external sources. We evaluated our approach using metabolomics data and 67 68 demonstrated that our approach has bigger power and allows for identification of additional loci. 69 We show that gain in power is achieved through increased precision of genetic effect estimates, 70 and in presence of specific 'contra-intuitive' pleiotropic scenarios (when genetic and 71 environmental sources of covariance are acting in opposite manner). We justify existence of such 72 scenarios, and discuss possible applications of our method beyond metabolomics.

73 Background

74 Genome-wide association studies (GWAS) is one of the most popular methods of identification of alleles that affect complex traits, including risk of common human diseases. In the past decade, 75 76 GWAS allowed identification of thousands of loci, leading to a significant progress in 77 understanding of genetic bases of control of complex human traits [1]. However, this had limited 78 impact onto development of biomarkers and therapeutic agents, as most of the time the observation 79 of association to a genomic region provides a starting point, but not yet a direct answer to the question of biological function affected by variation in the identified region. Recent accumulation 80 81 of functional genomics data, which includes information on levels of gene expression 82 (transcriptome), metabolites (metabolome), proteins (proteome) and glycosylation (glycome), 83 could give a new insight into the functional role of specific changes in the genome [2,3]. Such data require special statistical methods for their analysis, because of their characteristically high 84 85 dimensionality (ranging from few dozens to thousands and even to millions of measurements for 86 each person), and presence of statistical dependencies reflecting biological relationships between 87 individual omics components. Development of methods for omics data analysis is of current importance as the progress of molecular biology techniques continues and new types of functional 88 89 genomic data become available.

90 Conventional univariate GWAS (uGWAS) ignore dependencies between different omics traits, 91 which confounds biological interpretation of results and may lead to loss of statistical power. It 92 was shown that utilizing multivariate phenotype representation increases statistical power, and 93 leads to richer findings in the association tests compared to the univariate analysis [4–7]. Despite large number of methodological works, only few empirical multivariate GWAS have been 94 95 published for humans. Among these which should be noted in relation to our work, Inouve et al. [8] performed multivariate GWAS of 130 NMR metabolites (grouped in 11 sets) in ~6600 96 97 individuals. The study demonstrated that multivariate analysis doubles the number of loci detected 98 in this sample; among loci discovered via multivariate analysis seven were novel and did not 99 appear before in other GWAS of related traits. While no replication of novel loci was performed 100 in the original study, we compared results reported by Inouye et al. with recently published 101 univariate GWAS of NMR metabolomics, which used sample size of up to 24,925 individuals [9]. We found that for three out of seven SNPs reported in the original work, p-value was $< 5 \times 10^{-11}$ for 102 103 at least one metabolite. This provides empirical evidence for the value of multivariate methods in 104 genomics of metabolic traits.

105 Here we propose a (knowledge-based) network-driven conditional genome-wide 106 association analysis that exploits information from biologically related traits. To demonstrate our

- 107 methodology, we performed proof-of-principle study directly comparing the power of univariate
- 108 GWAS and the proposed method using metabolomics data (151 metabolites, Biocrates assay) from
- 109 the KORA F4 study (n=1785).
- 110
- 111

112 **Results and Discussion**

113 Network-based conditional analysis of genetic associations

114 We start with theoretical justification and identification of specific scenarios under which 115 adjustment for a biologically relevant covariate increases power of association analysis. Let us 116 consider a trait of interest, y, covariate c and genotype g. Without loss of generality, assume that 117 they are distributed with mean zero and standard deviation of one. Their joint distribution is 118 specified by a set of three correlation coefficients, ρ . Given specific parameter values, the value of "univariate" test statistic for association between y and g has the value $T_c^2 = n \rho_{yg}^2 / \sigma_u^2$, where 119 *n* is the sample size and $\sigma_u^2 = 1 - \rho_{yg}^2$ is the residual variance of *y*. For the conditional test, $T_c^2 =$ 120 $n \beta_{yg}^2 / \sigma_c^2 = n(\rho_{yg} - \beta_{yc}\rho_{cg}) / \sigma_c^2$, where β denote partial coefficients of regression from the 121 conditional model and σ_c^2 is the residual variance of y. Consequently, the log-ratio of these test 122 123 statistics can be partitioned into two components

124
$$\log\left(\frac{T_c^2}{T_u^2}\right) = \log\left(\frac{\sigma_u^2}{\sigma_c^2}\right) + \log\left(\left[1 - \frac{\beta_{yc}\rho_{cg}}{\rho_{yg}}\right]^2\right) \tag{1}$$

We shall call the first summand of (1) as 'noise' component and the second summand as the 'pleiotropic' component. Because the noise component $(\sigma_u^2/\sigma_c^2) \ge 1$ always, any possible reduction in the ratio between univariate and conditional test is determined by the sign and the magnitude of the term $\beta_{yc}\rho_{cg}/\rho_{yg}$. When this product is negative, there is always increase in power of conditional analysis.

We can re-write $\beta_{yc}\rho_{cg}/\rho_{yg}$ as $\beta_{yc}\rho_{yc}^*$, where $\rho_{yc}^* = \rho_{gc}/\rho_{yg}$ is a quantity which in a 130 131 Mendelian randomization analysis is interpreted as the effect of the covariate on the trait free of 132 non-genetic confounders [10]. Note that while ρ_{yc}^* is reflecting the covariance between the trait and the covariate, which is induced by the effect of the genotype, β_{yc} is related to 'purely 133 134 environmental' sources of covariance between y and c. We can conclude that when genotypeinduced and environmental correlations are consistent in sign, the product $\beta_{yc}\rho_{yc}^*$ is positive and 135 136 hence the contribution of the second term of (1) into relative power is negative. On the contrary, a 137 'surprising' product (where the sign is inconsistent and hence $\beta_{yc}\rho_{yc}^*$ is negative) contribute 138 positively to the relative power of conditional model.

In the context of complex polygenic traits, one expects that genetic and environmental correlations are consistent in sign. This is well reflected in animal breeding literature, and for a recent human example, one can see [11]. Under this scenario it would be desirable that ρ_{cg} (effect of genotype onto covariate) is very small, while β_{yc} (which makes contribution into reduction of

 σ_c^2 compared to σ_u^2) is large. However, in the context of specific locus affecting an activity of an 143 144 enzyme involved in a biochemical reaction, the 'surprising' inconsistency between β_{vc} and ρ_{vc}^* may be not so surprising. Indeed, consider an allele, which is associated with increased activity of 145 146 an enzyme converting substrate A into product B. It is expected that A and B are positively 147 correlated, and that the allele is in positive correlation with level of product B and in negative 148 correlation with the substrate A. This is exactly a scenario which would lead to the positive value 149 of the second term in (1), hence providing additional increase in power on the top of noise 150 reduction.

151 We can readily extend the formula (1) to a case when *k* covariates are included in the 152 conditional model. Denoting coefficients of correlation between *g* and covariate *i* as ρ_{gi} and partial 153 coefficients of regression of *y* onto covariate *i* as β_i , we have

154
$$\log\left(\frac{T_c^2}{T_u^2}\right) = \log\left(\frac{\sigma_u^2}{\sigma_c^2}\right) + \log\left(\left[1 - \frac{1}{\rho_{yg}}\sum_{i=1}^k \beta_i \rho_{gi}\right]^2\right)$$
(2)

Above considerations allow us to hypothesize that a conditional GWAS (cGWAS), where covariates selected are biochemical, one-reaction-step neighbors of the target trait may provide increased power by exploiting both noise reduction and possible 'surprising' pleiotropy. In this work, we set off to empirically verify this hypothesis by investigating of human metabolomics data.

When proper covariates are selected, the methodology of cGWAS using individual-level data becomes rather trivial, and boils down to running a GWAS in which one jointly estimates the effect of an SNP and of specific covariates. The cGWAS method is less trivial in case one would like to exploit summary-level univariate GWAS data, for example these data which are available from previously published studies. Formulation of cGWAS on the level of summary GWAS statistics is possible, and we describe this method in Supplementary Note 1.

The question of selection of proper covariates is very important because it has direct consequences on the chances of finding the 'surprising' pleiotropic scenarios. In case biological/biochemical relations between the traits of interest are known and summarized in some database(s), this knowledge can be used directly by e.g. taking all direct neighbors as covariates. Alternatively, the network may be reconstructed in a hypothesis-free, empirical manner from the same or external data by e.g. using Gaussian graphical models (GGM) approach [12]; then some threshold may be applied to select the covariates.

173

174 Comparison between cGWAS and uGWAS using human metabolomics data

We compared cGWAS and uGWAS methods using individual-level genetic and metabolomics
data from KORA F4 study (1,784 individuals measured for 151 metabolite, Biocrates assay, and
imputed at 1,717,498 SNPs).

178 First, we explored the potential of cGWAS where covariates were selected based on known 179 biochemical network. Thus our analysis was restricted to a subset of 105 metabolites for which the 180 one-reaction-step immediate biochemical neighbors were available [12]. This biochemical 181 network incorporates only lipid metabolites, and pathway reactions cover two groups of pathways: 182 (1) Fatty acid biosynthesis reactions which apply to the metabolite classes lyso-PC, diacyl-PC, 183 acyl-alkyl-PC and sphingomyelins; (2) β-oxidation reactions representing fatty acid degradation 184 to model reactions between the acyl-carnitines. The β-oxidation model consists of a linear chain 185 of C2 degradation steps (C10-C8-C6 etc.). Number of covariates varied from one to four with 186 mean of 2.48 and median 2.

Table 1 shows 11 loci which were significant in either cGWAS or uGWAS analysis and fall into known regions (see Supplementary Note 2). Of these, ten loci were identifiable by cGWAS and nine were identifiable by uGWAS. Compared to uGWAS, one locus (*ETFDH*) was lost, but two additional loci were identified (*ACSL1* for PC ae C42:5, and *PKD2L1* for lysoPC a C16:1). It is interesting to note that for *ACSL1* (SNP rs4862429 effect onto PC ae C42:5, with cGWAS p=7e-11), the uGWAS p-value was 0.7. This is expected under the model of 'surprising' pleiotropy.

To test whether use of cGWAS increases average power of association analysis, we contrasted the average of cGWAS and uGWAS maximal chi-squared test statistics for loci from Table 1. The ratio of average maximal test statistic between cGWAS and uGWAS was 1.59. However, the Wilcoxon paired sample test contrasting the best cGWAS vs. the best uGWAS values of chi-squared test statistic, was only marginally significant (p=0.067).

For the SNPs listed in **Table 1**, we applied formula (2) to partition the log-ratio of the cGWAS and uGWAS test statistics into 'noise' and 'pleiotropic' components. **Figure 1** shows that the trend in the ratio is mainly determined by the second ('pleiotropic') summand. One can see that, with the exception of locus *SLC22A4*, SNP-trait pairs for which cGWAS had increased power are these where the second term of (1) is positive or close to zero. In contrast, the SNP-trait combinations which were lost in cGWAS, had strong negative contribution from the 'pleiotropic' term of (2).

It is interesting to investigate the variance-covariance structure of loci with positive and negative pleiotropic term. We selected two loci where the pleiotropic component's contribution to power was positive (rs174547 at *FADS1* locus) and negative (rs8396 at *ETFDH*). We show corresponding correlations between SNP and trait and covariates involved, together with partial

210 coefficients from conditional regression of the trait onto SNP and covariates in Figure 2. For 211 FADS1 locus (Figure 2A), the correlation between SNP and the trait (lysoPC a C20:4) and the 212 covariate (lysoPC a C20:3) are in opposite directions, while the trait and the covariate are 213 positively correlated (both based on correlation and partial correlation). As a consequence, we can 214 see that the value of partial regression coefficient between the SNP and lysoPC a C20:4, 215 conditional on lysoPC a C20:3 is greater than coefficient of regression without covariates. This 216 makes biological sense as FADS1 is coding the fatty acid desaturase enzyme, while these two traits 217 differ from each other by one double bond. It appears that this case suits perfectly the biochemical 218 scenario under which we expect increased power of conditional analysis.

- 219 In the second example (Figure 2B, *ETFDH*), we observe that conditional regression of C10 220 onto rs8396 and two covariates (C8 and C12, medium-chain acylcarnitines) leads to smaller SNP 221 coefficient compared to unconditional regression; this happens because all terms of $\sum_{i=1}^{k} \beta_i \rho_{gi} / \rho_{yg}$ are positive. The *ETFDH* gene, prioritised as the best candidate by DEPICT 222 223 (FDR<5%), encodes for electron transfer flavoprotein dehydrogenase that is involved into fatty 224 acid oxidation in the mitochondria. During this process the acyl group is transferred from long 225 chain acylcarnitines to form long-chain acetyl-CoA, which is then catabolized. ETF 226 dehydrogenase takes part in the catabolic process by transferring electrons from Acyl-CoA 227 dehydrogenase into the oxidative phosphorylation pathway. Thus, the ETFDH gene should act on 228 all kinds of long-chain acylcarnitines in the same direction and we can expect that pleotropic 229 influence of this gene onto the acylcarnitines in our example (C8, C10, C12) will be unidirectional. 230 Presence unidirectional genetic effects and positive correlations between these acylcarnitines 231 makes second term of equation (2) negative, which leads to the decreased power of genetic 232 association analysis.
- Above analysis provide a real-life example that use of biochemical neighbors to adjust genetic association analysis of target trait allows for (sometimes very sharp) increase of power for the genetic variants which act in 'surprising' pleiotropic manner; our analysis also suggests that cGWAS may increase GWAS power on average, although this increase is not uniform and heavily depends on pleiotropic relations between involved locus and the traits.
- While use of known biochemical network for covariate selection has many attractive properties, it may be somewhat unpractical, because our biochemical knowledge is yet fragmented. Therefore, next we have investigated the potential of cGWAS method where covariates are selected using data-driven approach. The metabolites network was reconstructed using Gaussian Graphical Models based on partial correlations. For a target metabolite, covariates were selected based on significant partial correlations. For that, we have chosen threshold proposed previously in [12]: p-value<(0.01/Number of calculated partial correlations), which corresponds to a cut-off

- 245 p-value $\leq 8.83 \times 10^{-7}$. The network used in our analysis is presented in **Supplementary Figure 1.**
- For the clarity of notation, hereafter we will call cGWAS using known biochemical network as
- 247 BN-cGWAS, and cGWAS which is based on GGM selection of covariates as GGM-cGWAS.
- 248

Decomposition plot

249

Figure 1. Decomposition of Chi-squared ratio for cGWAS and uGWAS method into pleiotropic and noise components. The stars correspond to the sum of components that is Chisquared ratio (y=x line). Pleiotropic component is represented by squares, noise component – by triangles. Dashed lines correspond to regression lines for the two component. Dark green vertical lines indicate SNP-trait combinations that were significant in cGWAS and not significant in uGWAS; dark red line indicates the SNP-trait combinations which was significant in uGWAS only.

258

Figure 2. Correlations (above diagonal) and partial coefficients of regression of the trait of interest
(below diagonal) for *FADS1* and *ETFDH* loci, representing scenarios in which pleiotropic term of
(2) is strongly positive and negative respectively.

262

263 To contrast GGM-cGWAS and BN-cGWAS, we first used the same set of metabolites which was 264 utilized by BN-cGWAS to run GGM-cGWAS. The results are presented in **Supplementary Table** 265 **1**. We found 16 SNP-trait pairs clustered to 10 loci that could be detected by GGM-cGWAS or 266 BN-cGWAS. The number of covariates included into GGM-cGWAS analysis, was larger (from 2 267 to 18, with mean of 8.5) than that in BN-cGWAS. Therefore, we expected that GGM-cGWAS 268 may gain relative power compared to BN-cGWAS because of noise reduction (term 1 of equation 269 (2)); however, we it may also be expected that GGM-cGWAS may lose power because of less 270 likely occurrence of 'surprise' pleiotropy (term 2 of equation (2)).

For the best SNP-trait pairs detected by GGM-cGWAS or BN-cGWAS, we computed the 271 272 components of equation (2) and contrasted them using Wilcoxon paired samples test. The noise component of (2) was always greater for GGM-cGWAS (mean difference of 0.66, $p=3x10^{-5}$). For 273 274 GGM-cGWAS, the second 'pleiotropic' component of equation (2) was on average smaller than 275 that for the BN-cGWAS (mean difference -0.54, p=0.013); still, for three GGM-cGWAS SNP-276 trait pairs out of 16 the pleiotropic component was positive. Average Chi-squared statistics was 277 33% smaller for GGM-cGWAS that for BN-cGWAS indicating average loss of power (although 278 this loss was not significant, Wilcoxon paired test p=0.5), but at the same time it still was 22% 279 bigger than uGWAS (Wilcoxon paired test p=0.8). We conclude that while GGM-cGWAS is in a 280 way imperfect proxy to use of real biochemical network, it may still have increased power because

of even further reduced target trait residual variance, and some potential to detect 'surprising'pleiotropy.

283 To explore the potential of cGWAS under realistic conditions to a full extent, we analyzed 284 all 151 available metabolites using GGM-cGWAS and contrasted the results to uGWAS (Table 2 285 and Supplementary Figure 2). In total, uGWAS was able to detect 15 loci at genome-wide significance level defined as $p < 5x10^{-8}/151 = 3.3x10^{-10}$. Applying GGM-cGWAS, we identified 19 286 287 significant loci at the same threshold. Expectedly, we observed that compared to uGWAS the 288 precision of genetic effect estimation increased (Table 2, Supplementary Figure 3). The overlap 289 between uGWAS and GGM-cGWAS findings was 14 loci, with GGM-cGWAS losing one locus 290 (for C5:1-DC at rs2943644), but identifying five new loci not identified by uGWAS. Three of the 291 five new loci were affecting amino acids, and two – acylcarnitines. Note that loci identified by 292 BN-cGWAS (covariates selected via biochemical network) are a subset of 19 loci identified by 293 GGM-cGWAS.

294 We have investigated the literature results available for the loci described in Table 2 (see 295 Supplementary Note 2 for details). From 20 loci we report in this study, 15 were genome-wide 296 significant in recent large (n=7,478) meta-analysis of Biocrates metabolomics data by Draisma et 297 al. [13]. For 11 of 15 loci, we observed significant association for exactly the same SNP-metabolite 298 pair. However, not all metabolites analyzed in this study were analyzed by Draisma et al. [13]; 299 still, for the residual three loci the top association was with a metabolite within the same class as 300 in our study and one from different lipid classes (see Supplementary Table 2). For the other five 301 loci, which did not show significant association in work of Draisma et al. [13], we have checked 302 if these were significant and replicated in work of Tsepilov et al. [14]. It should be noted though 303 that in work [14], the same KORA F4 data set was used as discovery, and the analysis concerned 304 the ratios of metabolites. Out of five loci, two were significant and replicated in [14], and in all 305 two cases, the metabolite analyzed in this work was the part of the ratio analyzed by Tsepilov et 306 al.. One of five was published before for the same trait in other studies [15,16]. We did not find 307 previous evidence for association with metabolites for rs2943644 (LOC646736) and rs17112944 308 (LOC728755). Therefore, we are inclined to consider observed associations with rs17112944 and 309 rs2943644 as potential false positives; these two loci are excluded from further consideration.

310

312 Table 1. Eleven loci found by cGWAS and uGWAS on metabolites for which at least one one-reaction-step neighbor was available. Best SNP -

313 Metabolite pair is shown for each locus. *chr:pos* corresponds to the physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect 314 and standard error of the SNP; effA/refA - effect/reference alleles; P-value - p-value of the additive model; *Gene* - the most probable (according to

315 DEPICT) associated gene in the region; N_{cov} – number of covariates used in cGWAS.

							uGWAS		cGWAS		
Locus	SNP	Metabolite	chr:pos	Gene	effA/refA	EAF	beta(se)	P-value	beta(se)	P-value	N _{cov}
	uGWAS & cGWAS										
1	rs211718	C8	1:75879263	ACADM	T/C	0,30	-0.45(0.034)	3,26E-37	-0.10(0.012)	4,83E-17	1
1	rs211718	C12	1:75879263	ACADM	T/C	0,30	-0.04(0.036)	2,19E-01	0.20(0.014)	1,67E-40	3
2	rs7705189	PC ae C42:5	5:131651257	SLC22A4	G/A	0,47	0.15(0.034)	8,65E-06	0.06(0.009)	1,49E-10	3
2	rs419291	C5	5:131661254	SLC22A4	T/C	0,38	0.26(0.035)	7,03E-14	0.17(0.029)	1,01E-08	1
3	rs9368564	PC aa C42:5	6:11168269	ELOVL2	G/A	0,25	-0.29(0.039)	1,14E-13	-0.15(0.024)	1,63E-10	3
4	rs12356193	C0	10:61083359	SLC16A9	G/A	0,17	-0.51(0.046)	1,84E-27	-0.42(0.042)	1,67E-22	1
5	rs174547	lysoPC a C20:4	11:61327359	FADS1	C/T	0,70	0.61(0.033)	1,24E-69	0.66(0.024)	2,96E-141	1
6	rs2066938	C4	12:119644998	ACADS	G/A	0,27	0.73(0.033)	2,42E-93	0.72(0.032)	2,13E-100	1
7	rs10873201	PC ae C36:5	14:67036352	PLEKHH1	T/C	0,45	-0.26(0.034)	4,37E-14	-0.21(0.018)	2,38E-30	2
7	rs1077989	PC ae C32:2	14:67045575	PLEKHH1	C/A	0,46	-0.30(0.034)	2,23E-18	-0.06(0.016)	5,33E-05	3
8	rs4814176	PC ae C40:2	20:12907398	SPTLC3	T/C	0,36	0.24(0.035)	5,74E-12	0.25(0.023)	1,58E-25	4
Only uGWAS											
9	rs8396	C10	4:159850267	ETFDH	C/T	0,71	0.26(0.037)	2,11E-12	0.05(0.011)	6,67E-07	2
Only cGWAS											
10	rs4862429	PC ae C42:5	4:186006834	ACSL1	T/C	0,31	0.02(0.037)	6,62E-01	-0.06(0.010)	6,57E-11	3
11	rs603424	lysoPC a C16:1	10:102065469	PKD2L1	A/G	0,80	0.23(0.042)	5,34E-08	0.21(0.031)	1,39E-11	1

Table 2. Twenty loci found by cGWAS and uGWAS approaches. Best SNP - Metabolite pair is shown for each locus. *chr:pos* corresponds to the physical position of SNP; EAF - effect allele frequency, beta(se) - estimated effect and standard error of SNP; effA/refA - effect/reference alleles; Pvalue - p-value of the additive model; *Gene* - the most probable (according to DEPICT) associated gene in the region; N_{cov} – number of covariates for cGWAS.

uGWAS cGWAS SNP EAF effA/refA Locus Metabolite chr:pos Gene beta(se) **P-value** beta(se) **P-value** N_{cov} uGWAS & cGWAS rs211718 C6 (C4:1-DC) 1:75,879,263 ACADM T/C 0.30 -0.48(0.034) 4.64E-42 -0.13(0.017) 2.00E-13 7 1 rs7552404 C6 (C4:1-DC) 1:75,908,534 ACADM G/A 0.30 -0.48(0.034)3.10E-42 -0.12(0.017) 3.25E-13 7 1 2 G/C 2 rs483180 Ser 1:120,069,028 PHGDH 0.30 -0.24(0.037) 3.34E-11 -0.24(0.028)1.50E-17 2 2 rs477992 Ser 1:120,059,099 PHGDH A/G 0.70 0.24(0.037) 5.15E-11 0.24(0.028)5.82E-18 3 3 rs2286963 C9 2:210,768,295 ACADL G/T -0.49(0.032)1.10E-49 -0.48(0.027)1.48E-67 0.63 4 rs8396 C10 4:159,850,267 ETFDH C/T 0.71 0.26(0.037) 2.02E-12 0.04(0.010) 1.49E-05 8 4 rs8396 C7-DC 4:159,850,267 ETFDH C/T 0.71 -0.09(0.037) 1.67E-02 -0.13(0.020)3.29E-11 8 5 C5 5:131,661,254 SLC22A4 T/C 0.38 7.03E-14 0.17(0.026) 2.28E-10 3 rs419291 0.26(0.035) 5 rs270613 C5 5:131,668,482 SLC22A4 A/G -0.26(0.035)7.93E-14 -0.17(0.026)8.48E-11 3 0.61 6 rs9393903 PC aa C42:5 6:11,150,895 ELOVL2 A/G 0.75 0.29(0.039) 2.19E-13 0.18(0.020) 4.51E-19 6 PC aa C42:5 6 6 rs9368564 6:11,168,269 ELOVL2 G/A 0.25 -0.29(0.039) 1.14E-13 -0.19(0.021)7.84E-19 7 Ser 7:56,138,983 C/T 2 rs816411 PHKG1 0.51 -0.22(0.034)2.15E-10 -0.19(0.026)5.16E-13 7 rs1894832 Ser 7:56,144,740 PHKG1 C/T 0.51 0.21(0.034) 3.23E-10 0.19(0.026) 1.69E-13 2 8 rs12356193 C0 10:61,083,359 SLC16A9 G/A 0.17 -0.51(0.046)1.84E-27 -0.27(0.034) 9.72E-16 3 9 rs174547 lysoPC a C20:4 11:61,327,359 FADS1 C/T 0.70 0.61(0.033) 1.44E-69 0.07(0.011) 9 1.41E-10 9 rs174556 PC ae C44:4 11:61,337,211 FADS1 T/C 0.27 0.09(0.038) 1.55E-02 0.21(0.014) 3.16E-46 3 2 10 C4 12:119,644,998 G/A 0.27 0.73(0.033) 5.87E-94 0.71(0.025) rs2066938 ACADS 1.31E-151 11 rs12879147 PC aa C28:1 14:63,297,349 SYNE2 A/G 0.85 -0.46(0.050)2.07E-19 -0.12(0.019)5.94E-11 14

11	rs17101394	SM(OH) C14:1	14:63,302,139	SYNE2	A/G	0.83	-0.32(0.050)	1.00E-10	-0.10(0.011)	1.17E-17	7
12	rs1077989	PC ae C36:5	14:67,045,575	PLEKHH1	C/A	0.46	-0.26(0.034)	3.42E-14	-0.08(0.010)	8.25E-16	10
12	rs1077989	PC ae C32.2	14:67,045,575	PLEKHH1	C/A	0.46	-0.30(0.034)	2.23E-18	-0.05(0.016)	1.31E-03	6
13	rs4814176	SM(OH).C22:1	20:12,907,398	SPTLC3	T/C	0.36	0.03(0.035)	4.51E-01	-0.07(0.009)	1.10E-16	10
13	rs4814176	SM(OH) C24:1	20:12,907,398	SPTLC3	T/C	0.36	0.24(0.035)	5.40E-12	0.09(0.013)	3.04E-11	9
14	rs5746636	Pro	22:17,276,301	PRODH	T/G	0.24	-0.31(0.039)	3.00E-15	-0.32(0.034)	1.91E-20	2
	Only uGWAS										
15	rs2943644	C5:1-DC	2:226,754,586	LOC646736	C/T	0.68	0.32(0.042)	5.14E-14	0.09(0.022)	3.58E-05	5
	Only cGWAS										
16	rs1374804	Gly	3:127,391,188	ALDH1L1	A/G	0.64	0.20(0.036)	1.88E-08	0.21(0.030)	8.08E-13	3
17	rs4862429	PC ae C42:5	4:186,006,834	ACSL1	T/C	0.31	0.02(0.037)	6.62E-01	-0.06(0.008)	1.25E-12	8
18	rs603424	C16:1	10:102,065,469	PKD2L1	A/G	0.80	0.16(0.042)	9.51E-05	0.14(0.018)	1.32E-13	9
19	rs2657879	Gln	12:55,151,605	GLS2	G/A	0.21	-0.24(0.042)	2.82E-08	-0.27(0.031)	9.37E-18	5
20	rs17112944	C6:1	14:27,179,297	LOC728755	A/G	0.90	-0.28(0.059)	2.09E-06	-0.21(0.032)	1.38E-10	9

324 Conclusions

325 We have developed a new approach for network-based conditional genome-wide association study 326 for metabolomics data (conditional GWAS, cGWAS). For each metabolite trait, we select a set of 327 other metabolites, to be used as covariates in GWAS. The selection of covariates could be done in 328 a mechanistic way, e.g. based on known biological relations between traits of interest; or in a data-329 driven way, e.g. based on partial correlations. The method has modest computational costs and can 330 exploit either individual- or summary-level GWAS data. It has a potential to increase the power 331 of genetic association analysis because of reduced noise and ability to detect specific pleiotropic 332 scenarios, hardly detectable via standard single-trait GWAS.

We have applied cGWAS approach to analysis of 151 metabolomics traits (Biocrates panel) in large (n=1,784) population-based KORA cohort. While conventional uGWAS identified 15 loci in this data set, cGWAS was able to identify up to 5 additional loci. At the same time, we have observed that for some loci the power of cGWAS was decreased. We found that in cGWAS power is always gained because of increased precision of genetic effect estimation, but it may be decreased or increased in presence of specific pleiotropic association scenarios.

339 We show that conditional analysis has especially high power under scenarios when locus-340 specific genotypic and environmental sources of covariance between the trait and its covariates 341 are 'surprising' (acting in opposite direction). This type of pleiotropy is not unexpected for 342 metabolic traits, and we provide an empirical demonstration of existence of such scenarios in this 343 work. This is further demonstrated by the fact that the power gain from the pleiotropic component 344 was higher when we used a mechanistic way of covariate selection (one-reaction-step neighbors 345 from a biochemical network), as opposed to data-driven network (based on Gaussian Graphical 346 Model). We may expect that with increased knowledge of biological networks the mechanistic 347 way of covariate selection may become preferable.

348 However, when genotypic and environmental sources of covariance are consistent, 349 cGWAS may lose power even compared with standard GWAS without biological covariates. One 350 may argue that a joint analysis testing effects of genotype on the set of traits simultaneously may 351 be a better solution, which maintains power across wide range of scenarios. While we are not 352 arguing with this viewpoint, we must emphasize one aspect which makes conditional analysis 353 attractive; namely, better interpretability of the obtained results in terms of effect of genotype on 354 specific trait. The latter may be important in the next step when we may try to relate obtained 355 results with these obtained previously for other traits in other GWAS, e.g. using methods described 356 by [17–19].

- 357 Presence of highly correlated traits and different pleiotropic scenarios are not unique for
- 358 metabolomics. Therefore, we expect that cGWAS may be a powerful approach for investigation
- 359 of other omics traits. Low computational costs and possibility of analysis based on summary-level
- 360 data makes cGWAS a promising approach to investigate new and re-analyze existing omics data
- 361 sets in order to provide deeper understanding of functional genomics.

363 Materials and Methods

364 KORA study

The KORA cohort (Cooperative Health Research in the region of Augsburg) are population-based studies from the region of Augsburg in Southern Germany [20]. The KORA F4 is the follow-up survey (from 2006 to 2008) of the base line survey KORA S4 that was conducted from 1999 to 2001. All study protocols were approved by the ethics committee of the Bavarian Medical Chamber (Bayerische Landesärztekammer), and all participants gave written informed consent.

370 Concentrations of 163 metabolites were quantified in 3,061 serum samples of KORA F4 371 participants using flow injection electrospray ionization tandem mass spectrometry and the 372 Absolute IDQ^{TM} p150 Kit (BIOCRATES Life Sciences AG, Innsbruck, Austria) [21]. After quality 373 control 151 metabolite measurements were used in analysis. Details of the methods and quality 374 control of the metabolite measurements and details of the metabolite nomenclatures were given 375 previously [21]. Metabolite nomenclatures could be found in Supplementary Table 3.

Genotyping was performed with the Affymetrix 6.0 SNP array (534,174 SNP markers after quality control) with further imputation using HapMap2 (release 22) as reference panel resulting in a total of 1,717,498 SNPs (details given in KOLZ *et al.* 2009 [22]). For 1,785 individuals both metabolite concentrations and genotypes were available in the KORA F4 study.

380

381 Statistical analysis

Calculation of partial correlations and their p-values were performed using "ppcor" [23] R library. Graphical representations were made by "ggm" [24] R library. Similar to previous work [12], we considered partial correlation coefficient as significant if correlation's p-value was less than 0.01/(151*150/2) (8.83x10⁻⁷).

386 For the GWAS analysis we used OmicABEL software [25]. All traits were first adjusted 387 for sex, age and batch effect, and then residuals were transformed using inverse-normal transformation [26] prior to GWAS. The genotypes from KORA F4 were used. Only SNPs that 388 389 had a call rate ≥ 0.95 , $R^2 \ge 0.3$, Hardy–Weinberg equilibrium (HWE) $p \ge 10^{-6}$ and MAF ≥ 0.1 (1,717,498 SNPs in total) were considered in analysis. The genomic control method was applied 390 391 to correct for a possible inflation of the test statistics. Lambda for all traits was between 1.00 and 392 1.03. To define independent loci, we have selected all genome-wide significant SNP-trait pairs, 393 and identified the groups which were separated by >500kb. For regions of association, the most 394 associated SNP-trait pair (as indicated by the lowest p-value) was selected to represent this locus. 395 cGWAS and uGWAS results were considered to come from different loci if top SNPs were

396 separated by >500kb. The threshold for GWAS analysis for 151 traits was p-value=5e-397 $8/151=3.31\times10^{-10}$.

398 When partitioning log(cGWAS/uGWAS) test statistic into noise and pleiotropic 399 components (equation (2), Figure 1), we used all known loci that were significant in either cGWAS 400 or uGWAS analyses. If locus included two SNP-trait pairs and traits were different we included 401 both. If locus consisted two SNP-trait pairs and traits were the same, we included the one with 402 lowest uGWAS p-value. When comparing the pleiotropic and noise components, the Wilcoxon 403 paired samples test was used to perform statistical significance testing. For contrasting values of 404 chi-squared test statistics, we employed similar procedure, with the exception that if results from 405 specific analysis for specific locus were not genome-wide significant, for this method we have 406 selected the maximal chi-squared test statistic from the +/-500kb region centered at the top 407 association detected by the alternative method.

408

409 In silico functional annotation

410 We conducted functional annotation of the novel discoveries. For prioritizing genes in associated 411 regions, gene set enrichment and tissue/cell type enrichment analyses, we used the DEPICT 412 software v. 140721 [27] with following parameters: flag loci = 1; flag genes = 1; flag genesets 413 = 1; flag tissues = 1; param ncores = 2, and further manual annotation (h37 assembly). All 27 414 SNPs clustered in 20 loci found by cGWAS and uGWAS (Table 2) were included into analysis. If 415 several genes were proposed for a SNP by DEPICT we selected the gene with the lowest nominal 416 DEPICT P-value. In most of the cases the results of manual annotation matched with the results of DEPICT annotation (see Supplementary Note 2). Additionally, we have looked up each SNP 417 418 using the Phenoscanner [28] database to check whether it was previously reported to be associated with metabolic traits with p-value lower than 5×10^{-8} and proxy $r^2 = 0.7$. 419

421 Additional files

422	Supplementary Note 1 – cGWAS using summary level data
423	Supplementary Note 2 – Literature search of loci identified by cGWAS and uGWAS
424	Supplementary Tables
425	ST 1 – BD-GWAS and GGM-GWAS for 105 metabolites
426	ST 2 – GGM-cGWAS and uGWAS for 151 metabolites
427	ST 3 - List of metabolites measured with the AbsoluteIDQ® p150 Kit
428	Supplementary Figures
429	SF 1 – Partial correlations network
430	SF 2 – Manhattan plots for cGWAS and uGWAS for 151 metabolites
431	SF 3 – Comparison of effect estimates and their standard errors for SNPs from Table 2
432	
433	Abbreviations
434	GWAS – genome wide association study
435	cGWAS – conditional GWAS
436	uGWAS – univariate GWAS (trait-by-trait)
437	BN-cGWAS – cGWAS based on biochemical networks
438	GGM-cGWAS – cGWAS based on partial correlations network
439	
440	Acknowledgements
441	We would like to thank Athina Spilopoulou and Felix Agakov for fruitful discussion. We thank
442	Alexander Zlobin and Alexander Grishenko for help with arranging tables and figures for the
443	manuscript. We would like to express our gratitude to Sophie Molnos for help with management
444	of the data.
445	
446	Funding
447	The KORA study was initiated and financed by the Helmholtz Zentrum München – German

448 Research Center for Environmental Health, which is funded by the German Federal Ministry of

Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was

450 supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-

451 Universität, as part of LMUinnovativ.

This work was supported by the European Union FP7 framework projects MIMOmics (grant agreement nr. 305280) and Pain-Omics (grant agreement nr. 602736).

- 454 The work of YT, SS, OZ and YA was supported by a grant from the Russian Foundation for
- 455 Science (RSCF grant № 14-14-00313).
- 456

457 Authors contribution

- 458 YT, CG, YA planned and supervised the study; PC,CP and JA, KG, RW-S collected data, CG, KS
- 459 contributed data for analysis; YT, OZ, SS performed data analysis; YT, YA, CG, OZ, JK, KS
- 460 discussed and interpreted the results; YT, OZ, CG, YA wrote the manuscript. All authors have
- 461 corrected and approved the final version of the manuscript.
- 462

463 **References**

- Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five Years of GWAS Discovery.
 Am J Hum Genet 90: 7–24. Available: http://linkinghub.elsevier.com/retrieve/pii/S0002929711005337.
- 467 2. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating
 468 data to uncover genotype–phenotype interactions. Nat Rev Genet 16: 85–97. Available:
 469 http://www.nature.com/doifinder/10.1038/nrg3868.
- 470 3. van der Sijde MR, Ng A, Fu J (2014) Systems genetics: From GWAS to disease pathways. 471 Acta Mol Basis Biochim Biophys Dis 1842: 1903-1909. Available: -472 http://linkinghub.elsevier.com/retrieve/pii/S0925443914001124.
- 473 4. Cichonska A, Rousu J, Marttinen P, Kangas AJ, Soininen P, et al. (2016) metaCCA:
 474 summary statistics-based multivariate meta-analysis of genome-wide association studies
 475 using canonical correlation analysis. Bioinformatics 32: 1981–1989. Available:
 476 http://www.ncbi.nlm.nih.gov/pubmed/27153689.
- 477 5. Stephens M (2013) A unified framework for association analysis with multiple related
 478 phenotypes. PLoS One 8: e65245. Available:
 479 http://www.ncbi.nlm.nih.gov/pubmed/23861737.
- 6. O'Reilly PF, Hoggart CJ, Pomyen Y, Calboli FCF, Elliott P, et al. (2012) MultiPhen: joint
 model of multiple phenotypes can increase discovery in GWAS. PLoS One 7: e34861.
 Available:

483http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3342314&tool=pmcentrez&re484ndertype=abstract. Accessed 20 September 2014.

- 485 7. Galesloot TE, van Steen K, Kiemeney LALM, Janss LL, Vermeulen SH (2014) A
 486 comparison of multivariate genome-wide association methods. PLoS One 9: e95923.
 487 Available: http://www.ncbi.nlm.nih.gov/pubmed/24763738. Accessed 20 September 2014.
- 488
 488
 489
 489
 490
 480
 490
 480
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
 490
- 491 9. Kettunen J, Demirkan A, Würtz P, Draisma HHMM, Haller T, et al. (2016) Genome-wide 492 study for circulating metabolites identifies 62 loci and reveals novel systemic effects of 493 LPA. Nat Commun 7: 11122. Available: 494 http://www.ncbi.nlm.nih.gov/pubmed/27005778%5Cnhttp://www.nature.com/doifinder/1 495 0.1038/ncomms11122.
- 496 10. Smith GD, Ebrahim S (2003) "Mendelian randomization": can genetic epidemiology
 497 contribute to understanding environmental determinants of disease? Int J Epidemiol 32: 1–
 498 22. Available: http://www.ncbi.nlm.nih.gov/pubmed/12689998.
- 499 11. Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, et al. (2015) An atlas of
 500 genetic correlations across human diseases and traits. Nat Genet 47: 1236–1241.
 501 doi:10.1038/ng.3406.
- 50212.Krumsiek J, Suhre K, Illig T, Adamski J, Theis FJ (2011) Gaussian graphical modeling503reconstructs pathway reactions from high-throughput metabolomics data. BMC Syst Biol5045:21.505http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3224437&tool=pmcentrez&re
- 506 ndertype=abstract. Accessed 23 May 2013.
- 507 13. Draisma HHM, Pool R, Kobl M, Jansen R, Petersen A-K, et al. (2015) Genome-wide
 508 association study identifies novel genetic variants contributing to variation in blood
 509 metabolite levels. Nat Commun 6: 7208. Available:
 510 http://www.ncbi.nlm.nih.gov/pubmed/26068415.
- 511 14. Tsepilov YA, Shin S-Y, Soranzo N, Spector TD, Prehn C, et al. (2015) Nonadditive Effects
 512 of Genes in Human Metabolomics. Genetics 200: 707–718. Available:
 513 http://www.genetics.org/cgi/doi/10.1534/genetics.115.175760.

- 514 15. Xie W, Wood AR, Lyssenko V, Weedon MN, Knowles JW, et al. (2013) Genetic variants
 515 associated with glycine metabolism and their role in insulin sensitivity and type 2 diabetes.
 516 Diabetes 62: 2141–2150. Available: http://www.ncbi.nlm.nih.gov/pubmed/23378610.
- 517 16. Shin S-Y, Fauman EB, Petersen A-K, Krumsiek J, Santos R, et al. (2014) An atlas of genetic
 518 influences on human blood metabolites. Nat Genet 46: 543–550. Available:
 519 http://www.nature.com/doifinder/10.1038/ng.2982. Accessed 12 May 2014.
- 520 17. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, et al. (2016) Integration of summary data
 521 from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet 48: 481–487.
 522 Available:
- http://www.nature.com/doifinder/10.1038/ng.3538%5Cnhttp://www.ncbi.nlm.nih.gov/pub
 med/27019110.
- Pickrell JK, Berisa T, Liu JZ, Ségurel L, Tung JY, et al. (2016) Detection and interpretation
 of shared genetic influences on 42 human traits. Nat Genet: 19885. doi:10.1038/ng.3570.
- 527 19. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, et al. (2014)
 528 Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using
 529 Summary Statistics. PLoS Genet 10: e1004383. Available:
 530 http://dx.plos.org/10.1371/journal.pgen.1004383.
- Wichmann H-E, Gieger C, Illig T (2005) KORA-gen--resource for population genetics,
 controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1: S26Available: http://www.ncbi.nlm.nih.gov/pubmed/16032514. Accessed 6 June 2013.
- 534 21. Illig T, Gieger C, Zhai G, Römisch-Margl W, Wang-Sattler R, et al. (2010) A genome-wide
 535 perspective of genetic variation in human metabolism. Nat Genet 42: 137–141. Available:
 536 http://www.ncbi.nlm.nih.gov/pubmed/20037589. Accessed 23 May 2013.
- 537 22. Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, et al. (2009) Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid 538 539 concentrations. **PLoS** Genet 5: e1000504. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2683940&tool=pmcentrez&re 540 541 ndertype=abstract. Accessed 30 May 2013.
- 542 23. Kim S (2015) ppcor: An R Package for a Fast Calculation to Semi-partial Correlation
 543 Coefficients. Commun Stat Appl Methods 22: 665–674. Available: 544 http://www.csam.or.kr/journal/view.html?doi=10.5351/CSAM.2015.22.6.665.
- 545 24. Marchetti GM (2006) Independencies Induced from a Graphical Markov Model after
 546 Marginalization and Conditioning: The R Package ggm. J Stat Softw 15. Available:
 547 http://www.jstatsoft.org/v15/i06/.
- 548 25. Fabregat-Traver D, Sharapov SZ, Hayward C, Rudan I, Campbell H, et al. (2014) High549 Performance Mixed Models Based Genome-Wide Association Analysis with omicABEL
 550 software. F1000Research 3: 200. Available: http://f1000research.com/articles/3-200/v1.
- 551 26. Beasley TM, Erickson S, Allison DB (2009) Rank-based inverse normal transformations
 552 are increasingly used, but are they merited? Behav Genet 39: 580–595. Available:
 553 http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2921808&tool=pmcentrez&re
 554 ndertype=abstract. Accessed 7 November 2013.
- Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, et al. (2015) Biological
 interpretation of genome-wide association studies using predicted gene functions. Nat
 Commun 6: 5890. Available: http://www.ncbi.nlm.nih.gov/pubmed/25597830.
- Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, et al. (2016) PhenoScanner: a
 database of human genotype-phenotype associations. Bioinformatics 32: 3207–3209.
 Available:
- 561 http://bioinformatics.oxfordjournals.org/lookup/doi/10.1093/bioinformatics/btw373.
- 562