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Abstract	
Despite	the	increasing	volume	of	available	data,	the	proportion	of	experimentally	measured	data	
remains	small	compared	to	the	virtual	chemical	space	of	possible	chemical	structures.	Therefore,	
there	is	a	strong	interest	in	simultaneously	predicting	different	ADMET	and	biological	properties	of	
molecules,	which	are	frequently	strongly	correlated	with	one	another.	Such	joint	data	analyses	can	
increase	the	accuracy	of	models	by	exploiting	their	common	representation	and	identifying	common	
features	between	individual	properties.	In	this	work	we	review	the	recent	developments	in	multi-
learning	approaches	as	well	as	cover	the	freely	available	tools	and	packages	that	can	be	used	to	
perform	such	studies.		
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Introduction 
Nowadays,	the	volume	of	data	that	can	be	generated	and	processed	when	modelling	tasks	has	
increased	dramatically	[1].	Machine	Learning	(ML)	techniques,	notably	Deep	Neural	Networks	
(DNNs)[2]	are	becoming	indispensable	as	a	tool	for	managing	and	using	these	vast	amounts	of	
generated	and	measured	data	effectively.	However,	data	measurement	is	still	a	difficult	and	time-
consuming	task,	and	there	is	a	strong	interest	in	how	to	make	the	best	use	of	all	available	data.	
Biological	data,	such	as	ADMETox	properties,	are	highly	interrelated.	For	example,	the	lipophilicity	of	
compounds	is,	in	one	way	or	another,	very	important	for	the	majority	of	these	properties.	Thus	
learning	several	ADMETox	properties	simultaneously	can	result	in	better	models.	Moreover,	some	
types	of	data	produced	with	different	methods	can	have	different	experimental	accuracy	and/or	
refer	to	related	but	not	identical	properties.	For	example,	kinetic	water	solubility	is	the	
concentration	of	a	compound	in	solution	at	the	time	when	an	induced	precipitate	first	appears.	This	
type	of	solubility	can	be	easily	automatized	for	use	in	High	Throughput	Screening	(HTS)	settings	and	
is	actively	used	in	industry	due	to	this.	The	more	biologically	relevant	solubility	is	thermodynamic	
solubility,	which	is	the	concentration	of	a	compound	in	a	saturated	solution	when	excess	solid	is	
present,	and	solution	and	solid	are	at	equilibrium.[3]	The	co-modelling	of	both	types	of	solubility	
simultaneously	could	potentially	develop	better	models	for	each	of	them.	This	can	be	achieved	with	
the	help	of	multi-task	learning	[4],	which	can	be	applied	to	an	arbitrary	combination	of	regression	
and	classification	tasks	(so	called	heterogeneous	multi-tasks).		

These	multi-learning	approaches	belong	to	so-called	transfer	learning	[5],	a	technique	where	
knowledge	gained	in	one	or	several	(source)	tasks	is	used	to	improve	the	target	task.	The	transfer	
learning	approaches	differ	with	respect	to	whether	the	source	and/or	target	tasks	have	labelled	
data.	Thus,	they	can	be	classified	as	semi-supervised	or	“self-taught”	learning	(no	labelled	data	in	the	
source	domain),	transductive	learning	(labelled	data	are	only	in	the	source	domain),	unsupervised	
transfer	learning	(no	labelled	data	are	available)	[5]	as	well	as	methods	which	use	labelled	data	for	
both	source	and	target	tasks,	which	include	multi-learning	approaches.	

The	ability	to	infer	relevant	knowledge	is	very	important	for	intelligence.	For	example,	humans,	who	
can	draw	on	vast	amounts	of	previously-learned	information,	can	be	trained	on	a	new	task	with	a	
relatively	tiny	number	of	examples.	In	contrast,	traditional	machine	learning	algorithms,	which	
usually	learn	from	scratch,	and	require	large	example	sets	to	do	so.	Therefore,	there	is	active	
development	and	interest	in	machine	learning	to	design	new	methods	having	the	same	speed	and	
accuracy	as	humans.	Early	examples	of	such	types	of	learning	have	been	successfully	reported	since	
the	mid-1990s,	e.g.	the	use	of	neural	network	weights	trained	with	one	task	as	a	starting	point	for	
new	ones	to	increase	the	development	speed	and	the	accuracy	of	models	[4].	A	Library	model	of	
Associative	Neural	Networks[6]	is	another	example,	which	applied	on-the	fly	correction	of	
predictions	for	new	data	by	using	the	errors	of	the	nearest	neighbours	of	the	target	sample.[7]	
Transfer	of	information	was	also	done	by	developing	models	for	individual	properties,	and	then	
using	those	model	predictions	as	additional	descriptors	for	the	target	property,	known	as	the	feature	
net	approach	[8].	In	the	case	that	the	target	and	source	properties	are	very	similar	or	identical	(e.g.,	
measured	for	different	species	or	at	different	conditions),	one	can	encode	different	targets	by	using	
additional	descriptors	(e.g.,	conditions	of	experiments)	and	model	all	properties	simultaneously.		
Figure	1	schematically	illustrates	single	task	as	well	as	several	multitask	modelling	approaches	using	
an	example	of	neural	networks.	Some	of	these	approaches,	such	as	the	feature	net,	use	sequentially-
ordered	learning.		
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In	our	review	we	will	cover	new	developments	in	the	field,	which	have	appeared	during	the	recent	
years.	Also,	we	will	mainly	focus	on	the	methods	where	the	analysed	properties	are	simultaneously	
modelled	within	a	single	model,	which	corresponds	to	Figure	1b.	

	

	

Figure	1.	a)	Single	Task	learning;	b)	Multi-task	learning;	c)	Multi-task	learning	by	property	encoding	
as	descriptors;	d)	Feature	net.	Adapted	with	permission	from	ref.	[8].	Copyright	(2009)	American	
Chemical	Society.		

Multi-task	Learning	(MTL)	is	a	technique	which	aims	improve	ML	efficacy	by	simultaneously	co-
modelling	multiple	properties	within	a	single	model.	A	lot	of	developments	in	this	field	were	done	in	
in	1990s	by	Rich	Caruana[4],	who	investigated	how	to	improve	related	task	performance	by	
leveraging	domain-specific	information,	and	inductively	transferring	it	between	the	tasks.	In	
comparison	to	the	other	transfer	learning	approaches,	which	use	labelled	data	for	both	source	and	
target	tasks,	the	aim	of	MTL	is	to	improve	the	performance	of	all	tasks	with	no	task	prioritised.	

MTL	trains	tasks	in	parallel,	sharing	their	representation	internally.	As	a	result,	the	training	data	from	
the	extra	tasks	serve	as	an	inductive	bias,	acting	in	effect	as	constraints	for	the	others,	improving	
general	accuracy	and	the	speed	of	learning.	Caruana	noted	mechanisms	by	which	MTL	may	show	
improvement	over	Single	Task	Learning	(STL)	to	be	a)	amplification	of	statistical	data;	b)	attention	
focusing	(finding	a	better	signal	in	noisy	data);	c)	eavesdropping	(learning	“hints”	from	simpler	
tasks);	d)	representation	bias	and	feature	selection	and	e)	regularisation	(less	overfitting)	[4].	

As	MTL	implies	sharing	information	between	all	tasks,	it	is	possible	to	define	three	main	types	of	
MTL	based	on	the	type	of	data	sharing:	feature,	instance	and	parameter-based[9].	Feature-based	
MTL	models	learn	a	common	feature	representation	among	all	the	tasks	by	assuming	that	such	a	
representation	can	increase	the	performance	of	the	algorithm	vs.	single-tasks.	Parameter-based	
approaches	explore	the	similarity	between	target	properties	and	include	task	clustering,	learning	of	
task	relationships,	as	well	as	multilevel	hierarchical	approaches.	Instance-based	MTL	identifies	
individual	data	within	a	task,	which	can	be	effectively	used	in	other	tasks	for	information	sharing.	
[10]	However,	we	did	not	find	applications	for	the	latter	in	chemoinformatics	and	thus	will	not	cover	
them	in	our	review.	Let	us	consider	some	examples	of	the	other	two	MTL	approaches	and	their	
combination.	

  		A/B
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Feature based approaches 
Neural	networks	are	the	primary	platform	for	multi-learning.	Rich	Caruana	was	one	of	the	first	to	
develop	multi-task	learning	using	backpropagated	neural	networks.	He	found	out	that	four	separate	
neural	networks	performing	only	one	task	can	be	reduced	to	one	network	with	multiple	outputs	that	
performs	the	tasks	simultaneously.	As	a	result,	he	created	a	multi-task	neural	network	able	to	
perform	parallel	learning.	One	should	also	mention	the	earlier	work	of	Suddarth	and	Kergosien	[11],	
who	used	an	additional	layer	to	inject	rule	hints	and	to	guide	the	neural	network	as	to	what	should	
be	learned.	

The	network	forms	a	set	of	features	on	the	hidden	layer(s),	which	can	fit	several	tasks	
simultaneously.	Moreover,	the	activation	patterns	of	neurons	in	neural	networks	with	several	
hidden	layers	contribute	to	the	formation	of	features,	which	are	known	to	be	important	for	the	
analysed	type	of	properties,	e.g.	toxicophores	for	the	prediction	of	toxicological	end-points.[12]		

One	of	the	first	successful	applications	of	MTL	in	chemoinformatics	was	done	by	Varnek	et	al	[8],	
who	demonstrated	that	learning	several	tissue/air	partitioning	coefficients	by	using	Associative	
Neural	Networks	provided	models	with	statistically-significantly	higher	accuracy	compared	to	the	
respective	single	task	models.	The	neural	network	models	analysed	by	Varnek	et	al	were	examples	of	
so-called	“shallow”	neural	networks	since	they	included	only	one	hidden	layer.	The	appearance	of	
new	training	algorithms	and	in	particular	GPU-accelerated	computing	has	brought	about	the	rise	of	
Deep	Neural	Networks,[2]	which	incorporate	multiple	hidden	layers	with	much	larger	numbers	of	
neurons.	This	greater	flexibility	of	DNN	networks	allows	them	to	learn	more	complex	relationships	
and	patterns	in	the	data.	

Regarding	multi-learning	one	can	distinguish	two	primary	architectures	with	respect	to	the	sharing	
of	parameters:	hard	and	soft.	“Hard”	parameter	sharing	is	similar	to	that	of	shallow	neural	networks	
and	implies	the	sharing	of	hidden	layers	between	all	tasks,	except	some	task-specific	output	layers.	
“Soft”	parameter	sharing	gives	each	task	its	own	model	with	its	own	parameters,	where	these	model	
parameters	have	a	regularized	distance	to	facilitate	the	sharing	of	learning.[13]	Soft	parameter	
sharing	has	not	yet	received	sufficient	attention	in	chemoinformatics	and	will	be	briefly	outlined	in	
the	section	“Simultaneous	Feature	and	Task	similarity	learning”.	

J.	Ma	et	al	[14]	performed	several	experiments	on	STL	and	MTL	neural	networks.	They	found	out	
that	in	some	cases	multi-task	learning	deep	neural	networks	(MTL	DNN)	are	better	than	single	task	
learning	deep	neural	networks	(STL	DNNs).	The	authors	suggested	that	better	performance	of	MTL	
DNN	is	based	mainly	on	the	size	of	data	sets:	MTL	DNNs	are	useful	for	small	and	mixed	(small	and	
large)	datasets	and	STL	DNNs	are	good	for	large	data	sets.	

Multi-task	learning	provided	the	best	model	according	to	the	ROC	AUC	(Receiver	Operator	
Characteristic	Area	Under	Curve)	metric	for	the	Tox21	challenge.[12]	The	authors	showed	that	such	
networks	learned	on	their	hidden	layers	chemical	features	resembling	toxicophores	identified	by	
human	experts.	The	networks	used	these	features	to	classify	active	and	inactive	(toxic	and	nontoxic)	
compounds.	It	is	also	of	note	that	the	second	best	approach	was	based	on	“shallow”	STL	associative	
neural	networks.[15]		

In	another	comprehensive	study	the	authors	compared	the	performance	of	MTL	and	STL	approaches	
in	predicting	the	toxicity	of	chemical	compounds	from	the	Registry	of	Toxic	Effects	of	Chemical	
Substances	(RTECT)	database	totalling	29	toxicity	end-points	and	more	than	120k	
measurements.[16]	MTL	significantly	outperformed	STL	thus	showing	the	utility	of	this	approach	to	
model	complex	in	vivo	endpoints.	
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Xu	et	al	[17]	investigated	why	an	MTL	DNN	can	outperform	separate	STL	DNNs	and	under	what	
scenarios	the	multi-task	approach	is	advantageous.	The	result	of	this	study	lead	to	two	main	findings	
regarding	the	efficacy	of	multi-task	deep	neural	networks:		

• Similar	molecules	modelling	correlated	properties	will	boost	the	predictive	performance	of	
the	DNN,	and	likewise	uncorrelated	properties	will	degrade	performance.		

• Structurally	dissimilar	molecules	have	no	influence	on	the	predictive	performance	of	the	
MTL	DNN,	regardless	of	whether	or	not	tasks	are	correlated.		

Their	conclusions	are	important	for	the	identification	of	strategies	for	designing	datasets	for	MTL	
learning.	

MTL	can	be	used	to	simultaneously	learn	both	regression	and	classification	in	one	model,	as	was	
demonstrated	by	Xu	et	al	[18]	for	the	prediction	of	acute	oral	toxicity.	The	authors	used	
convolutional	neural	networks	and	reported	that	their	model	provided	higher	accuracy	compared	to	
conventional	methods.	

Human	cytochrome	P450	inhibition	for	5	kinases	were	predicted	using	a	pre-trained	autoencoder-
based	DNN	[19].	On	the	pre-training	stage,	the	first	layers	were	trained	to	reconstruct	the	original	
input	layer	on	the	whole	database.	The	authors	proved	that	an	autoencoder-based	DNN	can	achieve	
better	quality	than	other	popular	methods	of	machine	learning	for	cytochrome	P450	inhibition	
prediction,	and	a	multi-target	DNN	approach	can	significantly	outperform	single-target	DNNs.	The	
flexibility	of	neural	networks	makes	it	possible	to	use	them	not	only	with	descriptors	derived	from	
chemical	structures	in	the	traditional	way,	but	also	apply	them	to	directly	analyse	chemical	
structures	represented	as	SMILES	or	chemical	graphs.	We	will	review	several	approaches	in	the	
“Implementations	of	multi-learning	approaches”	section	below.	

Multi-task	feature	learning	for	sparse	data	using	other	methods.	The	problem	of	feature-selection	
has	an	exact	mathematical	formulation	and	an	analytical	solution	for	linear	methods.	For	example,	
Varnek	et	al[8]	compared	the	performance	of	neural	networks	with	Partial	Least	Squares	(PLS).	PLS	
could	also	provide	multi-task	learning	by	identifying	common	internal	representations,	so	called	
latent	variables,	for	several	analysed	properties	simultaneously.	In	addition	to	the	PLS	method,	there	
are	other	approaches	for	identifying	sparse	features	or	to	perform	multi-feature	selection	as	
comprehensively	analysed	in	a	recent	review.[9]	These	methods	can	be	used	directly	with	linear	or	
kernel	methods,	or	to	provide	features	for	training	other	methods.		

One	such	method	is	Macau	[20].	It	is	based	on	Bayesian	Probabilistic	Matrix	Factorisation	(BPMF).	
After	BPMF	was	used	to	win	the	Netflix	prize	for	predicting	film	recommendation,	the	interest	in	this	
method	notably	increased.	One	of	the	problems	during	multi-learning	are	missing	values;	frequently	
not	all	measurements	are	available	for	all	targets.	For	some	other	tasks	the	matrix	of	responses	can	
be	extremely	sparse,	e.g.	only	1.2%	of	all	users-combinations	were	available	for	the	Netflix	
competition.	Some	methods,	such	as	neural	networks,	can	naturally	work	with	missing	values	by	
ignoring	the	error	contribution	from	missing	values	when	calculating	the	loss	for	backpropagation.	
The	BPMF	allows	imputing	missing	values	in	the	matrix	thus	enabling	the	application	of	standard	
techniques,	such	as	singular	value	decomposition	and	principal	component	analysis.	In	contrast	to	
classical	algorithms	of	matrix	factorization,	Macau	is	able	to	handle	side	relations	i.e.	fingerprints	of	
chemical	compounds	or	phylogenetic	distance	between	protein	targets.	Another	useful	feature	of	
Macau	is	the	ability	to	work	with	multi-dimensional	data	and	perform	tensor	decomposition.	The	
capacity	to	deal	with	multi-dimensional	biological	sparse	data	was	studied	by	de	Vega	et	al[21],	who	
applied	this	technique	to	inhibition	activities	of	15073	compounds	for	346	targets	extracted	from	
ChEMBL.	The	authors	showed	that	Macau	provided	performance	similar	to	that	of	neural	networks	
methods	but	did	not	require	GPU-accelerated	computing.	
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Task learning approaches 
Task	learning	explores	task	relationships	to	better	learn	common	parameters	of	models	as	
overviewed	below.	

Metric-learning	algorithms.	k-Nearest	Neighbour	approaches	provide	predictions	for	new	samples	
based	on	their	nearest	neighbours.	Usually,	it	uses	a	Mahalanobis	distance,	which	is	defined	as:	

𝑑! 𝑥! , 𝑥! = 𝑥! − 𝑥!
!𝑀 𝑥! − 𝑥! 	 	 	 (1)	

where	and	xi	and	xj	are	two	samples	and	𝑀	is	a	matrix,	which	acts	as	a	global	linear	transformation	
of	the	input	space.	The	𝑀	matrix	is	thus	an	optimizable	parameter	of	the	method.	The	most	
straightforward	way	is	to	use	the	same	metric	to	model	all	tasks	simultaneously.	However,	better	
performance	can	be	expected	by	using	different	matrices,	which	are	optimised	to	each	individual	
class.	If	tasks	are	correlated,	the	matrix	𝑀	can	be	decomposed	into	a	common	𝑀!	and	individual	
task-specific	𝑀!	parts,	as	

𝑑! 𝑥! , 𝑥! = 𝑥! − 𝑥!
! 𝑀! +𝑀! 𝑥! − 𝑥! 	 	 (2)	

where	𝑀!	and	𝑀!,… ,𝑀! 	are	the	global	matrix	and	task-specific	additional	matrices	respectively.	
The	larger	the	similarity	is	between	the	tasks,	the	larger	the	determinant	of	matrix	𝑀!	relative	to	
those	of	individual	tasks	𝑀!.	This	idea	was	first	applied	to	multi	kNN	by	Parameswaran	et	al[22].	
Since	that	time	many	different	algorithms	have	been	developed	for	metric	learning,	as	overviewed	
by	Yang	et	al.[23]		

Similarity	learning.	Metric	learning,	in	contrast	to	feature	selection,	directly	optimises	the	
parameters	of	the	method	itself.	The	main	idea	is	that	similar	tasks	can	provide	better	generalization	
by	using	similar	parameters.	For	example,	when	classifying	several	related	properties	one	can	
identify	a	common	separation	hyperplane	given	by	a	vector	w0,	which	will	be	only	slightly	different	
for	separation	hyperplanes	wi	for	individual	properties	

𝑤! = 𝑤! + 𝑣! 	 	 	 (3)	

where	𝑣! 	accounts	for	features	specific	for	property	i.	This	separation	is	thus	similar	to	that	used	for	
global	and	task-specific	matrices	in	eq.	(2)	where	𝑤!	and	𝑣! 	correspond	to	matrices	M0	and	Mt	
respectively.	Figure	2	exemplifies	the	intuition	underlying	this	idea	used	to	develop	the	Multi-Task	
Least	Square	Support	Vector	Regression	(MLS-SVR)	approach.[24]	

One	of	the	promising	current	approaches	in	the	field	is	based	on	MTL	networks	with	“soft”	
parameter	sharing	(see	Figure	3).	The	network	facilitates	multi-task	learning	by	regularising	weights	
as	well	as	features	(which	are	defined	as	neural	network	activation	patterns	at	the	last	layers)	across	
the	networks	[25].	The	regularisation	of	weights	corresponds	to	the	sharing	of	model	parameters	
while	the	regularisation	of	learning	features	across	the	last	networks’	layers	corresponds	to	feature	
regularisation.	The	algorithm	can	also	be	applied	if	no	measurements	are	available	for	one	of	the	
tasks.		
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Figure	2.		Multi-task	learning	in	Least	Square	Support	Vector	Regression	(MLS-SVR)	identifies	a	
common	hyperplane	𝑤!,		which	carries	the	information	of	the	commonality	and	𝑤! = 𝑤! + 𝑣!,	
where	the	vector	𝑣! 		carries	the	information	of	the	specialty.	(Reprinted	from	Pattern	Recognition	
Letters,	vol.	34,	Xu,	S.;	An,	X.;	Qiao,	X.;	Zhu,	L.;	Li,	L.,	Multi-output	least-squares	support	vector	
regression	machines,	Copyright	(2013),	with	permission	from	Elsevier).	 

The	information	about	task	dependency	can	be	used	as	a	priori	information	and	an	example	of	
multi-task	learning	with	the	integration	of	taxonomy	information	has	been	presented	by	Rosenbaum	
et	[26].	The	authors	used	a	dataset	of	112	human	kinases	extracted	from	ChEMBL.	The	Graph-
regularized	multi-task	(GRMT)	Support	Vector	Machine	Regression	and	Top-Down	Multi-task	SVR	
were	used	to	consider	the	relationship	between	these	targets	during	modelling.	The	authors	showed	
that	hierarchical	learning	provided	significantly	better	results	compared	to	base	models,	as	
developed	using	STL	approaches	such	as	STL,	or	a	model	which	combined	all	data	and	ignored	the	
kinases’	types.		

Similarity	learning	is	also	a	feature	of	Generative	Topographic	Mapping	(GTM),[27]	which	can	be	
used	both	for	visualization	and	molecular	property	prediction.[28]	GTM	constructs	a	projection	from	
a	high-dimensional	descriptor	space	into	a	latent	(usually	2D)	space.	Probabilities	of	the	latent	
representations	of	molecules	can	be	regarded	as	GTM	descriptors	and	be	used	to	build	classification	
or	regression	models.	Gaspar	et	al[29]	proposed	the	Stargate	GTM	method,	which	projects	both	
descriptors	and	multi-target	activity	spaces	into	corresponding	latent	spaces	and	iteratively	
optimizes	the	joint	probability	distribution	between	the	two	mappings.	The	authors	compared	the	
method	on	data	extracted	from	ChEMBL	and	showed	that	the	Stargate	GTM	slightly	outperformed	
conventional	GTM	but	had	a	lower	accuracy	than	Random	Forest.	It	was	also	stressed	that	the	model	
can	act	as	a	“gate”,	which	both	predicts	the	activity	profiles	for	a	compound	and	finds	areas	in	a	
descriptor	space	that	are	likely	to	have	the	desired	activity	profile.	The	latest	feature	is	a	particular	
advantage	of	Stargate	GTM.			
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In	machine	learning	there	are	a	number	of	other	approaches	that	can	explore	task	similarity,	
including	task	clustering	or	multi-level	approaches	as	reviewed	elsewhere	[9].		

Simultaneous Feature and Task similarity learning 
As	it	was	aforementioned,	networks	with	soft	parameter	sharing	can	provide	a	richer	variety	of	
network	architectures	(for	review	see	[13]).	Such	networks	can	be	used	to	simultaneously	provide	
feature	selection	and	task	similarity	learning.	Let	us	show	how	this	method	could	potentially	be	used	
to	address	domain	adaptation.	This	problem	is	well	known	in	the	chemical	industry	and	has	been	
deeply	studied	by	Sheridan,[30]	who	demonstrated	a	loss	of	prediction	accuracy	in	models	for	
prospective	validation	of	compounds,	due	to	a	time	shift	in	chemical	diversity.	The	problem	of	
prospective	validation	can	be	easily	cast	to	the	multi-learning	domain	by	considering	two	tasks	
(prediction	of	past	and	new	data,	for	which	one	may	have	just	a	few	measurements)	as	two	separate	
tasks.		

 
	

Figure	3.	An	example	of	neural	network	model	using	“soft	parameter”	sharing.	Two	networks	are	
trained	in	parallel	for	each	individual	task.	The	soft	parameter	sharing	is	done	by	introducing	a	
penalty	function,	which	prevents	neural	network	weights	in	both	models	from	differing	greatly,	as	
well	as	by	regularising	neural	network	features	at	the	last	layer.	Reprinted	from	ref.	[25]	under	the	
Creative	Commons	license	CC-BY	4.0.	

Implementations of multi-task learning approaches 
Multiple	software	packages	exist	and	are	available	in	the	computer	science	field,	which	provide	tools	
for	multi-learning.	As	a	rule,	many	articles	are	published	by	the	authors	together	with	their	source	
code,	which	is	frequently	deposited	on	online	repositories	such	as	GitHub,	allowing	wide	and	
immediate	dissemination	of	information.	The	use	of	these	software	tools	in	chemoinformatics	is	not	
necessarily	straightforward	due	to	the	need	to	make	an	interface	with	chemical	structures.	However,	
several	efforts	to	port	these	packages	to	chemoinformatics	are	currently	on-going.	In	Table	1	we	
review	several	complete	packages,	which	were	developed	to	bring	multi-learning	approaches	to	
analyse	chemical	structures.	

Table	1.	“Chemistry	aware”	multi-task	learning	approaches	

Package	 Examples	of	supported	
algorithms	

Availability	



	

9	

Chainer	Chemistry	 NFP,	GGNN,	RSGCN,	
WeaveNet,	SchNet	

https://github.com/pfnet-
research/chainer-chemistry	

DeepChem	 DAG,	NNF,	MPNN,	
TEXTCNN,	WEAVE,	IRV	

https://github.com/deepchem/deepchem	

OCHEM	 The	methods	from	
ChemChainer,	DEEPCHEM,	
DNN,	MLS-SVM	as	well	as	
multi-task	learning	by	
property	encoding	as	
descriptors	and	feature	
net.	

http://ochem.eu	

	

Chainer	Chemistry	(ChemChainer)	ports	several	neural	network	architectures,	which	were	recently	
introduced	to	work	with	graphs,	to	chemical	structures.	DeepChem	supports	the	majority	of	
ChemChainer	methods	as	well	as	providing	several	other	approaches,	some	of	which	were	originally	
developed	by	the	authors	of	the	toolbox.	DeepChem	also	provides	a	port	of	machine	learning	
methods	from	the	Scikit-learn	python	package.	Since	the	latter	methods	support	only	single-task	
learning,	DeepChem	uses	an	embedded	wrapper	to	calculate	models	for	each	task,	and	provides	a	
combined	result	of	STL	models	in	way	similar	to	that	of	MTL,	thus	allowing	an	easy	comparison	of	
STL	and	MTL	models.	Thus,	the	user	can	apply	both	types	of	methods	to	datasets	containing	several	
properties	using	a	similar	interface.	ChemChainer	and	DeepChem	are	based	on	Python	and	are	built	
around	Chainer	and	TensorFlow	frameworks,	respectively.	Both	packages	use	the	RDkit	library,[31]	
which	provides	a	framework	to	translate	chemical	structures	to	graphs	and	the	required	
representation	for	both	packages.	

OCHEM	provides	[32]	a	uniform	interface	to	methods	from	both	of	these	packages	as	well	as	several	
other	methods	supporting	multi-task	learning,	such	as	Associative	Neural	Networks,	an	
implementation	of	Deep	Neural	Networks,	a	GPU	implementation	of	Least	Squares	Support	Vector	
Machines	[33]	and	several	other	approaches.	An	example	of	simultaneous	prediction	of	tissue/air	
partitioning	coefficients	from	Varnek	et	al	[8]	by	different	methods	is	shown	in	Figure	4.	

Below	we	overview	several	methods	implemented	in	these	packages.	The	majority	of	these	methods	
are	neural	networks	that	operate	on	chemical	graphs.	Thus,	these	approaches	are	different	from	
traditional	ones	that	analyse	molecules	by	converting	them	to	a	set	of	descriptors.	The	first	
publication	about	the	direct	application	of	neural	networks	to	graphs	was	proposed	as	an	extension	
of	recurrent	neural	networks	in	2005	[34].	Interestingly,	the	first	models	based	on	chemical	graphs	
were	presented	in	the	field	of	chemoinformatics	about	eight	years	earlier	by	Baskin	et	al.[35]	

Neural	Network	Fingerprints	(NNF).	The	method	shows	that	the	representation	of	chemical	
structures	as	circular	fingerprints	(e.g.	Morgan	fingerprints	or	Extended	Connectivity	Circular	
Fingerprints	(ECFP))	can	be	extended	with	a	more	advanced	method	based	on	neural	networks.[36]	

Weave	network[37]	This	network	was	developed	as	an	inspiration	of	convolutional	neural	networks.	
This	network	recreates	atom	and	pair	features	on	each	layer	based	on	the	information	in	the	
previous	layer,	which	resembles	a	weaving	propagation	of	information	through	the	network.	The	
multiple	layers	(“weaves”)	can	be	stacked	to	produce	networks	with	more	complex	architectures.		

Renormalized	Spectral	Graph	Convolutional	Network	(RSGCN)	[38]	This	network	was	developed	to	
learn	large	graph-structured	networks,	where	the	classification	information	is	only	available	for	a	
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small	number	of	samples	but	valuable	additional	information	can	be	derived	from	the	data	graph	
structure	of	a	much	large	number	of	unlabeled	data	points.	

A	continuous-filter	convolutional	neural	network	for	modeling	quantum	interactions	(SchNet)[39]	
was	developed	to	overcome	the	limitations	of	using	grid-based	approaches,	which	work	with	
discretized	signals	such	as	image	pixels.	The	Comparative	molecular	field	analysis	(CoMFA)[40]	
represents	another	example	of	a	similar	grid-based	approach	coupled	with	PLS.		

Gated	Graph	Neural	Network	(GGNN).	This	network	was	specifically	developed	to	predict	sequences	
of	outputs,	allowing	better	predictions	of	their	relationships.[41]	This	algorithm	was	introduced	by	
testing	its	performance	on	the	bAbI	suite	tasks	where	it	demonstrated	a	remarkable	performance	
over	existing	algorithms.	The	bAbI	tasks	were	specifically	developed	to	test	the	reasoning	capabilities	
of	artificial	intelligence	systems,	such	as	Path	Finding	and	Shortest	Path	Finding,	or	automatic	
program	verification.		

	

	

Figure	4.	Example	of	MTL	and	STL	using	the	comprehensive-modelling	view	of	the	OCHEM	platform.	
The	RMSE	of	models	on	the	left-side	columns	(MTL)	provide	a	higher	squared	correlation	coefficient,	
R2,	than	models	developed	for	each	analysed	property	regardless	of	the	descriptor	set	or	method	
used.	The	models	developed	using	DEEPCHEM	and	ChemChainer	are	based	on	chemical	graphs.	The	
values	in	parentheses	indicate	the	average	value	or	R2	for	each	analysis.	ASNN	-	Associative	Neural	
Networks	[6];	DNN	-	Deep	Neural	Network	[16];	DAG	-		Directed	Acyclic	Graphs	[42];	TEXTCNN	-	Text	
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Convolutional	Neural	Network	[43];	NFP	–	Neural	Network	Fingerprint	[36];			GGCN	-	Gated	Graph	
Neural	Network	[41];	STL	-	S	

Message	Passing	Neural	Networks	(MPNN)[44]	are	a	generalisation	of	neural	network	architectures,	
which	operate	on	graphs	and	update	their	node	states	using	message	passing.	Examples	of	such	
networks	are	the	NNF,	GGNN,	Weave	and	RSGCN	networks	considered	above.	The	developed	
network	was	based	on	the	GGNN	architecture	and	had	several	improvements	to	decrease	the	
computational	cost	and	increase	performance,	e.g.	optimisation	of	the	final	layers	of	the	network	
(readout	function	which	maps	the	whole	graph	to	a	feature	vector),	improvement	of	the	scalability	
of	training,	etc.	This	allowed	the	authors	to	achieve	superior	results	for	13	targets	when	co-
modelling	electronic	and	energetic	properties	of	molecules.	

Directed	Acyclic	Graphs	(DAG)[42]	(or	DAG	Recursive	Neural	Network)	consider	molecules	as	
directed	graphs	by	iteratively	taking	each	atom	as	a	central	one	and	defining	the	directions	of	all	
other	bonds	as	outgoing	from	the	central	atom.	The	algorithm	uses	the	atoms	and	their	atomic	
features	to	propagate	information	through	the	graph	to	calculate	properties.	This	operation	is	
repeated	for	all	atoms	in	a	molecule	and	the	result	is	used	to	train	a	neural	network.	

Influence	Relevance	Voters	(IRV)[45]	is	a	variation	of	a	metric-learning	algorithm	applied	to	
molecular	graphs.	The	motivation	of	this	algorithm	was	to	simulate	the	ability	of	humans	to	learn	
using	just	few	examples	or	in	a	limit	with	a	single	example.		

Text	Convolutional	Neural	Networks	(TEXTCNN)[43]	uses	neural	network	vectors	trained	on	billions	
of	words	from	Google	News.	These	pre-trained	vectors	serve	as	“universal”	feature	extractors	that	
can	be	used	to	achieve	excellent	results	for	various	problems.	The	method	was	adapted	to	work	with	
SMILES	by	the	developers	of	DEEPCHEM.	

The	variety	of	powerful	and	freely	accessible	methods	will	enable	their	wide	use	to	address	various	
multi-learning	tasks.	

Open issues 
Despite	the	promising	performance	of	MTL	there	are	several	issues,	which	either	have	not	been	
properly	addressed	or	remain	open.	Surprisingly,	there	is	no	good	understanding	as	to	which	tasks	
are	considered	similar	and	could	thus	profit	from	multi-learning	[13,46-48].	The	main	outstanding	
issue	being	that	some	tasks	help	each	other	and	some	do	not;	some	compete	for	network	capacity	
so	that	training	them	together	actually	worsens	performance.	Chen	et	al.[47]	stressed	that,	in	
general,	multi-learning	neural	networks	can	be	rather	hard	to	train	because	different	tasks	bring	
imbalances	in	the	gradient	calculations.	The	authors	proposed	an	adaptive	algorithm	to	estimate	the	
weights	of	tasks	dynamically	during	the	training	to	improve	prediction	accuracy.	Much	remains	to	be	
explored	in	the	design	of	neural	network	architectures,	especially	in	the	area	of	DNNs.	A	recent	
publication	by	Sturm	et	al[49]		analysing	the	performance	of	DNNs	on	the	ExCAPE-DB	of	70	million	
SAR	datapoints,	demonstrated	a	large	dependency	of	the	performance	upon	the	hyperparameter	
choices.	Optimising	such	parameters	can	be	a	costly	operation,	so	determining	general	guidelines	for	
estimating	initial	settings	should	be	a	point	of	future	investigation.		However,	one	can	also	formulate	
an	even	broader	question:	“Can	we	derive	non-linear	dependences	between	tasks	from	data	and	use	
them	to	improve	multi-task	learning?”		Zamir	et	al.	(a	best	paper	award	at	the	CVPR2018	
conference)[48]	provided	a	method	for	automatic	creation	of	taxonomy	graphs	for	tasks.	This	
approach	has	great	prospects	in	chemoinformatics,	e.g.,	for	deriving	and	using	the	taxonomy	of	
protein	targets,	viruses,	toxicity	endpoints,	etc.	in	a	fully	data-driven	mode.	
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Summary 
The	multi-task	learning	approaches	are	gaining	popularity	in	various	fields	of	science,	including	
chemoinformatics.	Successful	use	of	these	methods	can	result	in	models	with	higher	prediction	
accuracies	compared	to	the	development	of	models	for	each	individual	property.	The	conditions	
when	MTL	can	provide	better	results	over	STL	are	clearly	formulated	by	Xu	et	al	[17].	As	concluded	
by	the	authors	MTL	should	be	used	for	modelling	correlated	properties,	but	will	degrade	
performance	for	uncorrelated	properties.	Structurally	dissimilar	molecules	have	no	influence	on	the	
predictive	performance	of	MTL,	regardless	of	whether	or	not	tasks	are	correlated.	While	these	
recommendations	were	for	deep	neural	networks,	they	are	likely	to	be	valid	for	other	multi-learning	
approaches	too	and	should	be	considered	before	deciding	whether	an	MTL	method	can	be	
employed.	Finally,	the	development	of	a	single	MTL	model	is	much	faster	and	such	a	model	occupies	
less	memory	and	disk	space	compared	to	multiple	single	task	models.	This	feature	becomes	
important	when	increasing	the	number	of	simultaneously	analysed	properties.	Examples	of	data	sets	
that	could	potentially	benefit	from	transfer	learning	and	MTL	with	regards	to	QSAR	modelling	are	
given	by	Simoes	et	al[50]	and	include	a)	similar	compounds	measured	under	different	experimental	
conditions;	b)	antimicrobial	activities	against	genetically	similar	microorganisms;	c)	compounds	with	
the	same	mechanism	of	action	in	homologous	targets	and	high	degrees	of	similarity	in	the	binding	
pocket;	d)	non-specific	endpoints	such	as	toxicity.	When	the	endpoint	has	been	measured	exactly,	
but	under	different	conditions	or	on	e.g.	different	but	correlated	target	organisms,	one	can	also	
encode	conditions	as	input	descriptors.	The	availability	of	tools	to	perform	multi-learning	is	
important	for	the	widespread	adoption	and	use	of	these	methods	by	the	scientific	community.	

Outlook 
Both	industrial	and	academic	partners	share	high	expectations	from	“Big	Data”	in	chemistry,	which	is	
a	new	emerging	area	of	research	on	the	borders	of	several	disciplines	[1].	Transductive	learning	in	
general,	as	well	as	multi-learning	approaches,	will	help	to	fully	exploit	the	potential	of	such	data	by	
contributing	models	with	higher	prediction	ability	and	coverage.	These	approaches	will	be	important	
within	the	new	federated	learning	project,	a	call	for	which	was	recently	launched	by	the	IMI.	The	
future	developments	in	this	area	should	accommodate	different	data	precision	and	accuracy	from	
different	sources,	unbalanced	datasets	as	well	as	sound	calculation	of	the	applicability	domain	and	
accuracy	of	predictions	of	multi-models,	which	will	be	important	for	the	use	of	these	methods.	
Moreover,	MTL	can	be	combined	with	other	types	of	networks,	such	as	Recurrent	Neural	Networks	
(RNNs),	to	automatically	design	new	chemicals	with	desired	predicted	properties	[51].		
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