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Supplementary Figures

Supplementary Figure 1 Discrepancy in p-values in a methylation study.
p-values from 10,000 permutations, compared to GCTA p-values assuming asymptotics
(in log scale). Evaluated on 431,366 methylation sites on all autosomal chromosomes, from
the KORA dataset, with 1,799 individuals. Sites with ĥ2 = 0 (206,436 sites) or with
a parametric p < 10−20 (570 sites) omitted for clarity of presentation, showing a total
of 224,360 sites, with 99.995% confidence intervals (CIs). Parametric p-values are often
smaller than the exact p-values obtained by the permutation test, frequently by several
orders of magnitude, resulting in many false positives.
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Supplementary Figure 2 Discrepancy in p-values. p-values from 10,000,000 per-
mutations, compared to GCTA p-values assuming asymptotics (in log scale). Evaluated
on 3,489 methylation sites for which the GCTA p-value is p < 10−7, on all autosomal
chromosomes, from the KORA [18] dataset. Sites with a parametric p < 10−30 (143 sites)
omitted for clarity of presentation, showing a total of 3,346 sites, with 99.5% CIs. Para-
metric p-values are still often smaller than the exact p-values obtained by the permutation
test by several orders of magnitude.
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Supplementary Figure 3 GTEx heritability study. Heritability values of gene
expression profiles of the GTEx study, compared with their respective parametric p-values.
When ĥ2 = 1 is estimated, p-values are uncalibrated, resulting in discrepancies.
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Supplementary Figure 4 Power study. The power of the permutation test (full lines)
and the LMM parametric test (dashed lines) is shown for p-value thresholds of p = 0.1, 0.01
and 0.001. The power of the two tests is comparable.
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Supplementary Figure 5 Discrepancy in p-values. p-values from 10,000 permuta-
tions, compared to SKAT p-values, as implemented by RL-SKAT (in log scale). Evaluated
on 431,366 methylation sites on all autosomal chromosomes, from the KORA dataset, with
1,799 individuals. Sites with ĥ2 = 0 (206,436 sites) omitted for clarity of presentation,
showing a total of 224,930 sites, with 99.995% CIs. Parametric p-values are often smaller
than the exact p-values obtained by the permutation test, frequently by several orders of
magnitude, resulting in many false positives.
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Supplementary Figure 6 Illustration of the derivative-based approach. The
logarithm of the restricted likelihood function is shown as a function of the heritability
value, h2. The true REML estimate is shown by h2max, while the observed heritability
estimate is shown by H2. The derivative of the log-restricted-likelihood function at H2 is
shown as a linear slope, and it points to the true maximum. Therefore, we can deduce that
h2max > H2 simply by evaluating the derivative at H2.
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Supplementary Figure 7 Performance of SAMC. p-values from 10,000,000 per-
mutations, compared to SAMC p-values with t0=1,000 and 1,000,000 permutations (in log
scale). Evaluated on 1,907 methylation sites, as in Supplementary Figure 2, with 99.95%
CIs. SAMC is reasonably calibrated, also for small p-values.
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Supplementary Figure 8 Sensitivity to outliers. The QQ-plots of parametric
p-values are shown for phenotypes generated from the assumed normal distribution, as
well as from several heavy-tailed distributions. When deviating from normality, skewness
in p-values is observed.
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Supplementary Figure 9 Discrepancy in p-values, with outliers removed. p-
values from 10,000 permutations, compared to GCTA p-values assuming asymptotics (in
log scale). Removal of outliers does not eliminate discrepancies.
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Supplementary Figure 10 Sites with SNPs in probes. The KORA analysis is
shown here, with sites with known SNPs in their probes colored in red. Such sites are
likely to be multimodal. Removal of such sites does not discard all discrepancies.
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Supplementary Figure 11 Sites with a multimodal distribution. The KORA
analysis is shown here, with sites with a multimodal distribution, as detected by gaphunter,
colored in red. Removal of such sites does not discard all discrepancies.
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Supplementary Figure 12 QQ-plots for permutation p-values with covariates. Per-
mutation p-values were calculated for phenotypes simulated from the KORA dataset with
varying effect sizes. See text for details.
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Supplementary Figure 13 Performance of SAMC - various parameters. p-
values from 10,000,000 permutations, compared to SAMC p-values with various t0 and N
(in log scale). Evaluated on 1,907 methylation sites, as in Supplementary Figure 2. Red
dots depict sites with RSE > 10%. Data shown for t0 = 100 as the number of permutation
N grows (left panes). The coefficient of variation (sample standard deviation divided by
sample mean) across 8 runs for the same set of parameters (right panes).
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Supplementary Figure 14 Performance of SAMC - various parameters. Per-
formance and CV for t0 = 1000 (see Supplementary Figure 13 for details).
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Supplementary Figure 15 Performance of SAMC - various parameters. Per-
formance and CV for t0 = 10000 (see Supplementary Figure 13 for details).
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Supplementary Figure 16 Performance of SAMC - various parameters. Per-
formance and CV for t0 = 100000 (see Supplementary Figure 13 for details).

Supplementary Figure 17 Performance of SAMC - various parameters. Per-
formance and CV for t0 = 1000000 (see Supplementary Figure 13 for details).
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Supplementary Tables

Site Parametric p-value Param. p-value (QN) Perm. p-value CI

cg00123214 2.601 · 10−08 1.468 · 10−05 12 · 10−09 (6.201, 20.962)·10−09

cg00044796 3.779 · 10−13 2.656 · 10−11 4 · 10−09 (1.090, 10.242)·10−09

cg01821635 3.941 · 10−18 1.209 · 10−15 2 · 10−09 (0.242, 7.225)·10−09

cg06784218 5.756 · 10−21 1.045 · 10−19 4 · 10−09 (1.090, 10.242)·10−09

cg08963013 4.625 · 10−26 9.038 · 10−21 6 · 10−09 (2.202, 13.059)·10−09

cg14252149 5.005 · 10−34 6.202 · 10−26 4 · 10−09 (1.090, 10.242)·10−09

cg00071950 5.678 · 10−36 2.553 · 10−35 5 · 10−09 (1.623, 11.668)·10−09

cg02002194 9.238 · 10−42 1.812 · 10−43 4 · 10−09 (1.090, 10.242)·10−09

cg11266682 1.873 · 10−46 8.708 · 10−44 7 · 10−09 (2.814, 14.423)·10−09

cg15296535 8.427 · 10−51 5.565 · 10−53 9 · 10−09 (4.115, 17.085)·10−09

Table 1 Effect of quantile normalization on extreme p-values. For 10 selected
sites, we show the analyical parametric p-value, as calculated by GCTA; the parametric
p-value calculated on the phenotypes after quantile normalization (QN); the permutation
p-value, as calculated by 109 permutations, and the CIs implied by it. QN does not
eliminate the discrepancy between the parametric and the permutation test.
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Supplementary Notes

Supplementary Note 1 Reasons for p-value discrepancy

We discuss the underlying reasons for p-value discrepancies.

Power differences. It is possible that the permutation test is underpowered relative
to the parametric test. To this end, we conducted a simulation study. We simulated
phenotypes with varying degrees of heritability under the LMM (500 phenotypes per h2

value), and used both tests to calculate p-values (using N=10,000 permutations for the
permutation test). We calculated their false positive rate (FPR) and their power as a
function of the true h2 value (Supplementary Figure 4), for thresholds of p = 0.1, 0.01
and 0.001. The FPR is approximately well-calibrated (10.3%, 1.3% and 0.4%, respectively,
for the parameteric test; 10.6%, 1.4%, 0.3% for the permutation test), while the power of
the two tests is comparable, in line with existing literature [1, 2]. We conclude that the
permutation test is equally powerful under the LMM, and thus that reduced power does
not explain the discrepancy.

Normalization. A common practice for heritability estimation is to perform some type
of normalization on the phenotypes before analysis, such as quantile normalization (QN),
which ensures that the phenotype follows an empirical normal distribution. Performing
QN can often increase proper p-value behavior. However, QN may also reduce power, e.g.
when the phenotype is bimodal, QN will unify the two modes into a single unimodal distri-
bution, and will the discard the important information of the mode to which each sample
belongs. Additionally, we note that QN should be applied to the residuals and not to the
phenotype itself, which is problematic in the presence of strong unknown covariates. To
this end, we applied QN to our data, and calculated parametric p-value vs. the permuta-
tion p-values, as in Supplementary Figure 1. The results, shown in Figure 3, indicate that
while QN indeed reduces the number of inflated (small) p-values, many sites remain with
substantial discrepancy. Also, as expected, QN introduced many deflated p-values, i.e.,
sites whose parametric p-values are much larger than their permutation p-value counter-
part. We additionally reran the analysis of Table 3, comparing permutation p-values with
parameteric p-values, with and without QN, on 10 sites with small permutation p-values
(Table 1). Again, QN fails to eliminate the large discrepancies. We conclude that while
QN may be useful in many cases, it does not alleviate the discrepancies at hand.

Wrong asymptotic distribution for statistic under the model. Another potential
source for such discrepancies is the distribution assumed for the statistic used for the cal-
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culation of the p-value, even when the null model is correct. The assumptions underlying
p-value calculation are often violated, leading to inaccurate p-values. However, our sim-
ulation study above shows the FPR is well calibrated, so the asymptotic distribution is
expected to be a reasonable approximation. As a method for the correction of the distribu-
tion of p-values for mild deviations from the asymptotic distribution, it was suggested [3]
to consider a larger parametric family of distributions for the distribution of the LR statis-
tic: Pr(2 log Λ = x) = w · χ2

0(x) + (1 − w)a · χ2
d(x), where Λ is the LR statistic, and w, d

and a are constants to be fitted. A small number of permutations (e.g., 1,000) is used
to generate a sample of LR statistics, and they are used to find the best fitting model
of a weighted mixture of a constant zero and a chi-square distribution, with an arbitrary
number of degrees of freedom. We followed the suggested procedure and obtained adjusted
p-values. While it was possible to slightly adjust the bias, the results are qualitatively the
same, with large discrepancies remaining unchanged (data not shown). We conclude that
this is not the source of discrepancy.

We finally considered model mis-specification, where the model is improper for the data at
hand, and in particular, the assumption that the phenotype takes a multivariate normal
distribution.

Sensitivity to outliers. In line with existing literature [4], we observed large p-value de-
viations in phenotypes simulated to have heavy-tailed marginal distributions, which cause
relatively distant outliers. Specifically, we generated phenotypes by drawing phenotype
measurements i.i.d. from a target distribution. When the target distribution is a normal
distribution, this amounts to the model null hypothesis. For any target distribution, the
permutation test is assured to be well-calibrated due to the exchangeable distribution of
the phenotype. However, the parametric p-values might not be calibrated. To this end, we
generated 1,000 phenotypes, from several heavy-tailed target distributions, calculated their
parametric p-values using the KORA kinship matrix, and constructed a quantile-quantile
(QQ) plot to examine their calibration.

The results are shown in Supplementary Figure 8. For a normal distribution, the QQ-plot
is aligned, with the smallest p-value reaching about 10−3, as expected, while, for other
distributions, skewness is observed. In particular, we show the QQ-plots for the Gamma
distribution with parameters α = 1/2,β = 1, the standard log-normal distribution, the T
distribution with 2 degrees of freedom, and the Bernoulli distribution with p = 0.99.

We further tested the effect of outliers on the data at hand. The GTEx dataset, did
not contain any outliers, while the KORA dataset did contain 2-5 outliers, as visible in
a PCA plot (not shown). We removed all 5 outliers any re-ran a comparison between
permutation and parametric p-values and verified that many large discrepancies remain
(Supplementary Figure 9). Therefore, removal of outliers does not solve the problem.
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Empirical discrepancies extend beyond multimodality. We have seen that multi-
modality (e.g. a binary Bernoulli distribution) may be the cause of discrepancy. Indeed,
analyzing the KORA dataset, we have seen that many of the problematic sites exhibit a
bimodal or trimodal behaviour. Thus, we set out to find if such sites are the ones displaying
discrepancy.

First, we removed sites with known multimodality. In particular, having a SNP in the probe
of a site causes the hybridization of the probe to depend on the genotype in some cases,
which may cause multimodal phenotypes. We removed 57,341 such sites, obtained from [5]
from our analysis; however, the remaining sites still exhibit large p-value discrepancies
(Supplementary Figure 10), qualitatively similar to Supplementary Figure 1.

Second, we explicitly removed sites empirically seen to be multimodal. Current quality-
control (QC) methylation pipelines typically remove potentially problematic probes as
those with DNA methylation distributions characterized by two or more distinct clusters
separated by gaps. We used the gaphunter program [6] with default parameters to iden-
tify and remove 3270 multimodal sites. However, remaining sites still show discrepancies,
as seen in Supplementary Figure 11. Further examination shows that those are indeed
sites with one mode but several scattered outliers. We note that as these outliers may be
different within each site, it is not possible to only remove a small amount of samples to
avoid outliers. Indeed, using gaphunter to remove these sites as well (using a flag which
includes multimodal sites with a very small cluster size) removed 193,762 of 431,366 total
sites (45%), well beyond any reasonable QC.

Supplementary Note 2 Validation of likelihood function be-
haviour

The following was tested on each one of the 7,989 methylation site phenotypes on chromo-
some 22 of the KORA dataset, and on 10,000 random permutations of each site, resulting
in a total of 79,897,989 ≈ 107.9 phenotypes.

First, we evaluated the sign of the derivative of the log-restricted-likelihood function at
h2 = 0, 0.1, . . . , 0.9, 1, as described in the Methods section. We checked whether there was
indication of more than one local maximum of the log-restricted-likelihood function, by
testing if more than one of the follow cases hold: (i) the derivative at h2 = 0 is negative
(indicating a local maximum at 0); (ii) the derivative at h2 = 1 is positive (indicating a local
maximum at 1); (iii) there are two adjacent grid points a and b such that the derivative
is positive at h2 = a and negative at h2 = b (indicating a local maximum between them).
For all phenotypes tested, there was no indication of more than one local maximum.

Second, we estimated the heritability of each phenotype (using REML, as described in
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Methods), and verified that the sign of the derivative at the grid points was consistent
with the estimate, where (i) if the estimate is 0, we expect the derivative at 0 to be
negative; (ii) if the estimate is 1, we expect the derivative at 1 to be positive; (iii) at all
other grid points, we expect the derivative to be positive if and only if the estimate is
larger than the grid point. Again, for all phenotypes tested, all the derivative signs were
consistent with the estimate.

Supplementary Note 3 Using the permutation test for LMM
with covariates

We discuss the application of permutation testing in LMMwhen covariates are involved.

1 Potential issues

In order for the permutation test to be calibrated under the null hypothesis, the distribution
of the permuted quantity needs to be exchangeable, i.e., having the same distribution when
its entries are exchanged. In particular, any multivariate distribution with i.i.d. entries is
exchangeable. Without covariates, the LMM null hypothesis is y ∼ N (0n,σ

2
pIn). With the

constant intercept covariate, it is y ∼ N (β ·1n,σ2pIn). In both those cases, the distribution
is exchangeable, resulting in an exact permutation test.

When additional, non-constant, covariates are added, the exchangeable quantity is the
vector of residuals, e = y −Xβ. However, it is generally not observed, and thus needs to
be estimated from the data. This is a limitation compared to the permutation test without
non-constant covariates, due to mainly two reasons.

The first reason is that our test is no longer completely non-parametric, as we now explicitly
assume a model used for estimating the residuals given the phenotype and the covariates.
This is still an improvement over a completely parametric test, as we still do not assume
an explicit form for the distribution of the residuals, which allows for flexible modeling;
see also the discussion above regarding non-normal i.i.d. errors. This is in line with other
non-parametric approaches in genetics [7].

The second issue is that even if the residual model is correct, our estimate may not be
precise due to the need to estimate the unobserved parameters. In the linear example
above, we have no access to the true β, and thus we need to estimate β̂ from y and X.
If, for example, the estimate β̂ was far from its true value β, ê will have a component
of X that did not exist in e (as ê − e = X(β̂ − β)). If, in addition, X has a covariance
structure similar to K (equivalently, X are correlated with the dominant eigenvectors of
K), this could induce a false correlation that did not originally exist, inflating the p-value.
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See [8–10] for a detailed discussion in the similar simpler case of linear regression, whose
conclusions carry to this case. Luckily, with even small sample sizes, we can expect the
bias in estimating β to be small [10].

2 Dealing with covariates

With these potential issues in mind, our method supports two approaches to dealing with
covariates.

2.1 Block permutation for discrete covariates

Consider the case where there are few discrete covariates (e.g. sex and smoking status).
Covariates partition the samples into a small (e.g. 4) number of groups, according to their
covariate values (e.g. non-smoking males). In this case, we can avoid any potential issues
with confounding by covariates by conditioning on them. This is done in the simple manner
of permuting individuals only within each group. Our software package thus supports
drawing random permutations only from the set of permutations maintaining the group
block structure. Our method remains unchanged otherwise.

2.2 General covariates

In the case of general covariates, we apply our method, extended to covariates. First,
the likelihood derivative can be calculated in linear time also with covariates [11]. The
covariates are permuted along with the phenotype, i.e. per permutation π, we compare
π(y),π(X) vs. the unchanged K. Note that the implicit underlying residual model here,
based on REML, is the linear e = y −Xβ.

It is important to note a distinction between testing for heritability and the commonplace
scenario of testing for an association between a phenotype and a single marker. In the
former, the tested quantity is h2, while in the latter, one of the covariates is the marker
of interest, and the tested quantity is its associated fixed effect. A permutation test is
often applied in the single-marker scenario, and its properties and pitfalls are discussed
elsewhere, e.g., [12]. While several issues are common, e.g. inflation in the presence of
confounders, the heritability testing scenario is in a sense simpler - there are only three
distinct entities: the phenotype y, the covariates X and the kinship matrix K. In the
single-marker scenario, there is an additional entity, the tested marker, and its additional
relationships to the others adds complications.
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3 Empirical study

To validate the permutation test with covariates, we performed an empirical study. First,
we performed a simulation study. Using the KORA kinship matrix and the age, sex, and
smoking status covariates (see Methods), we simulated phenotypes under the null hypoth-
esis of no heritability, as y ∼ N (X1 ·β, In), with varying effect sizes β = 0, 0.25, . . . , 2. For
each effect size, we generated 100 random phenotypes, and performed a permutation test
with 10,000 permutations. We used a quantile-quantile plot (QQ-plot) to verify that the
p-values are well calibrated (Supplementary Figure 12). The QQ-plots were calibrated for
all effect sizes, showing that the bias in estimating β [10] is indeed negligible. A similar
simulation study with GTEx gave qualitatively similar results (not shown).

In addition, as discussed in the main text, we compared parametric and permutation
p-values for the KORA dataset, both with and without covariates. While the p-values for
the same phenotype obviously differ, under both regimes there are significant discrepancies,
showing that they are not due to the lack (or addition) of covariates.

4 Summary

While permutation testing is mathematically exact only with constant covariates and an
exchangeable distribution, we and others have shown, in theoretical analyses, data stud-
ies and simulations, that under a wide range of scenarios, permutation testing remain
calibrated with covariates as well.

In practice, there are endless combinations of error distributions, correlations between sam-
ples, covariates, markers and phenotypes, and more. A complete mapping of the robustness
of both the parametric and permutation tests remains a subject for a future study [4], and
is beyond of the scope of this work. We note that despite these potential issues, in many
cases the parametric alternatives suffer from significantly larger practical problems. An
informed choice between the two alternatives, comparing their advantage and drawbacks,
remains the role of the researcher.

Supplementary Note 4 The SAMC algorithm

1 Algorithm description

The Stochastic Approximation Markov Chain Monte Carlo (SAMC) algorithm can be gen-
erally described as an iterative, stochastic approximation method, that, given a partitioning
of the sample space into subsets, can estimate the subset sizes. SAMC can be used for
efficient p-value calculation [13]. For the sake of completeness, we give here a presentation
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of the SAMC algorithm in the context of p-values; for a full description and explanation,
see [13, 14].

Given an estimate H2, we want to calculate its p-value, i.e. the probability of the event
ĥ2(π(y)) ≥ H2. We define a partitioning of [0, 1] to D + 1 intervals, where the interval
[0,H2] is divided into D equally sized intervals, and [H2, 1] is an additional interval. This
induces a partitioning of the permutation space - if [h2d,h

2
d+1] is the d-th interval, then

we define Xd = {π|ĥ2(π(y)) ∈ [h2d,h
2
d+1]}; namely, the set of permutations of the phe-

notype for which the estimated heritability value falls in the interval [h2d,h
2
d+1]. Then,

X1∪ . . . ,∪XD+1 is a full partitioning of the space of permutations. Then, the p-value is ex-
actly the probability of the event XD+1 assuming a uniform distribution over permutation
space, or |XD+1|/n!.

SAMC utilizes the following key observation. Let pi = |Xi|/n! be the true sizes of the
subsets, and let p̂i be some estimate of their sizes. Let ψ(i) = (1/p̂i)/(

∑D+1
i=1 (1/p̂i)), that

is, a probability distribution on subsets, proportional to 1/p̂i. This probability distribution
is constructed to have the self-balancing property introduced below. For a permutation
π ∈ Sn, let J(π) be the index of the interval in which ĥ2(π(y)) falls. We are interested in
the probability distribution over permutations, defined as:

f(π) ∝ ψ(J(π))

The key property of f is that if the estimates p̂i are accurate, then sampling from f will
sample uniformly from the subsets. To see that, for a subset Xi

Prπ∼f (π ∈ Xi) =
∑
π∈Xi

f(π) ∝ |Xi|
n!

· ψ(i) ∝ pi/p̂i.

If p̂i = pi, then Prπ∼f (π ∈ Xi) ∝ 1, and thus the subset sampling is uniform. In order to
sample from f , a Metropolis-Hastings (MH) step is used. The target distribution for the
MH step is f , which in turn is constructed from the current estimates p̂i. The choice of a
well performing proposal distribution q is discussed below.

The update rule for subset probability estimates follows the stochastic approximation (SA)
algorithm [15], which ensures that the estimates can be improved continuously as the
simulation goes on. The SA update rule defines a sequence of weights, called gain factors,
designed to ensure convergence.

Therefore, the algorithm alternatingly samples a new random permutation according to the
target distribution f defined by current estimates p̂i, using the MH sampling algorithm;
and then, given the subset in which the new permutation falls, updates the estimates.
Informally, given the above partitioning, SAMC will eventually sample from each subset
uniformly, while in the process estimating the probability of each subset. When the algo-

25



rithm converges, its estimate for the last subset will be our estimate of the p-value.

In practice, as in [13], we will update an estimate of the log of a value only proportional

to the probability. That is, defining θ
(t)
i = log p̂

(t)
i to be our updated estimate at iteration

t, then our estimated probability for subset i is:

p̂i =
exp(θ

(t)
i )∑D+1

d=1 exp(θ
(t)
d )

.

The proposal distribution q(πt, τ) defines the probability of choosing a new permutation
τ , given that the current permutation is πt. Let ei = (0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0), Finally, the

algorithm is:

1. Initialize a uniform estimate, θ
(t)
1 = . . . , = θ

(t)
D+1 = 0.

2. Choose a random initial permutation π1.

3. For t = 1, . . . ,T (or until convergence):

(a) Simulate a sample πt+1 by a single Metropolis-Hastings update, as follows:

i. Generate τ according to the proposal distribution q(πt, τ).

ii. Calculate the ratio r = exp(θ
(t)
J(πt)

− θ
(t)
J(τ)) · q(τ ,πt)/q(πt, τ)

iii. Accept the proposed move with a probability of min(1, r). If accepted, set
πt+1 = τ . Otherwise, set πt+1 = πt.

(b) Update the estimates: For i = 1, . . . ,D + 1, set θ
(t+1)
i = θ

(t)
i + γ(t)(eJ(πt+1) −

( 1
D+1 , . . . ,

1
D+1)), where γ

(t) is called the gain factor and is defined as γ(t) =
t0/max(t0, t).

4. Return exp(θ
(t)
D+1)/

∑D+1
i=1 exp(θ

(t)
i ).

Note that this algorithm does not require us to fully estimate the heritability of a per-
mutation τ , but rather, only to calculate in which interval J(τ) it falls. For each interval
[h2d,h

2
d+1], we can check the derivatives at the endpoints h2d and h2d+1. If the derivative

is positive at the h2d and negative at h2d+1, then we know a maximum exists within that
interval. Using the derivative allows us to avoid the heritability estimation step, as be-
fore.

An additional speedup is obtained using the following. The proposal distribution altered
only a small proportion of the permutations between consecutive steps (see below). There-
fore, the quantity ut+1 = UTπt+1(y) may be calculated from ut = UTπt(y) by adding a
small number of columns of UT .
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Tuning the parameters of SAMC

We now describe guidelines for tuning the parameters of SAMC algorithm described above.
These are the proposal distribution q, the number of intervals, D; the number of iterations,
N ; and an additional parameter, t0, that corresponds to the number of iterations after
which the estimation will begin converging more rapidly. In more detail, the estimate per
subset is updated in the t-th iteration by a value which is multiplied by a weight γt, the
gain factor, which effectively controls the magnitude of the update. The gain factor is 1 for
the first t0 iterations, and then it begins decreasing by defining γt = t0/t for t > t0.

Proposal distribution. We follow [13] in defining q(πt, τ) as the uniform distribution
over all permutations that are generated by randomly permuting 5% of the values of πt.
Results with 10% were qualitatively similar (not shown).

Number of intervals. SAMC in general prefers a fine partition, so that the transition
between intervals will be smooth. On the other hand, a large number of subsets will
require a larger number of iterations (permutations) until each subset has been visited.
We found that D = 50 or D = 100 are often a reasonable trade-off; a D as low as
D = 20 may be suitable as well. We refer the reader to [13] for a further discussion about
partitioning.

Number of iterations and t0. It is important that t0 will not be too small; otherwise,
estimates will begin to converge before all subsets have been sufficiently visited. Previous
recommendations have advised t0 =1,000 to 5,000 or t0 = 2D to 100D. On the other hand,
γt should be very close to 0 at the end of simulations. Otherwise, the resulting estimates
will have a large variation. This can be controlled by determining the ratio between T and
t0, which controls the last gain factor as γN = t0/N . Therefore, N should be sufficiently
larger than t0, e.g. N = 100t0 or 1000t0. An alternative to setting a fixed N is to stop the
algorithm when it seems to have sufficiently converged; we did not investigate this criterion
in this paper.

Validation of parameter choice. In practice, the above rules of thumb are best val-
idated empirically for the problem at hand. To this end, we recommend the following to
check the performance of a given set of parameters. (i) First, run SAMC multiple (e.g.
5-10) times and compare the output p-value estimates. If there are large discrepancies,
it might mean that convergence was not achieved. Further information can be gained
by looking at the probability estimates for all subsets, not only the last. (ii) Second, as
mentioned above, as SAMC converges, it visits all subsets approximately uniformly. The
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relative sampling error (RSE) is defined as the maximal percentage of deviation of the
sampling rate of any subset relative to the required uniform rate. For example, if D = 50
and the RSE is 10%, then each subset was visited by 1.9 ± 0.19% of permutations (there
are 51 subsets and 1/51 ≈ 0.019). If the RSE is above some threshold, say 10%, then it
is a strong indication that the run has not converged, and an increase of N is advised;
(iii) Finally, if phenotypes exist whose heritability estimate has a relatively large p-value
(e.g, 10−3), run the simple (non-SAMC) permutation testing to get an estimate of the true
permutation test p-value (e.g, with N = 105 or 106 random permutations), and compare
the p-value estimated by SAMC. An additional possible approach we did not pursue is
using the Potential Scale Reduction Factor [16], a convergence criterion based on a suit-
able comparison of the variance of sampled values within multiple runs, compared to the
variance between them.

Parameter tuning for the KORA dataset. We chose parameters of SAMC by se-
lecting several sites with a relatively high p-value, as estimated by 10,000 permutations.
We examined the performance of SAMC with several parameter settings and compared it
with the p-value obtained by the simple permutation test. We examined the effect of vari-
ous parameter settings on the performance of SAMC, checking the relative sampling error
(RSE) as well as the variability in estimates across several runs per site (see Methods,
Supplementary Figure 13, Supplementary Figure 14, Supplementary Figure 15, Supple-
mentary Figure 16 and Supplementary Figure 17).

We found, in agreement with the suggested parameter tuning guidelines of [13], that when
t0 is too small, convergence is slow - t0 = 1000 appears to work well in our case. Moreover,
when the ratio t0/N is too large, estimates do not yet converge. That is, N must be
sufficiently larger than t0. We found N ≥ 100,000 to give good results for t0 = 1000.
We concluded that selecting the right t0 is important for a speedy convergence. We chose
t0=1,000 and N=1,000,000 as suitable parameters. Throughout the paper, we used D = 50
intervals.

Implementation. The permutation test was implemented in C++, using the Eigen [17]
and Boost software libraries, and in Python.
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