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ABSTRACT

Temporal changes to the concentration of molecu-
lar species such as mRNA, which take place in re-
sponse to various environmental cues, can often be
modeled as simple continuous functions such as a
single pulse (impulse) model. The simplicity of such
functional representations can provide an improved
performance on fundamental tasks such as noise re-
duction, imputation and differential expression anal-
ysis. However, temporal gene expression profiles are
often studied with models that treat time as a cate-
gorical variable, neglecting the dependence between
time points. Here, we present ImpulseDE2, a frame-
work for differential expression analysis that com-
bines the power of the impulse model as a contin-
uous representation of temporal responses along
with a noise model tailored specifically to sequenc-
ing data. We compare the simple categorical mod-
els to ImpulseDE2 and to other continuous models
based on natural cubic splines and demonstrate the
utility of the continuous approach for studying differ-
ential expression in time course sequencing experi-
ments. A unique feature of ImpulseDE2 is the ability
to distinguish permanently from transiently up- or
down-regulated genes. Using an in vitro differenti-
ation dataset, we demonstrate that this gene clas-
sification scheme can be used to highlight distinct
transcriptional programs that are associated with dif-
ferent phases of the differentiation process.

INTRODUCTION

Time course sequencing experiments such as RNA-seq,
ChIP-seq and ATAC-seq yield a description of the devel-
opment of a cellular system over time. Such a dynamic de-

scription can be used to analyze the timing of cellular pro-
grams and can uncover transitional responses that are not
observed if only initial and terminal cell states are com-
pared. These dynamic properties give insights into the regu-
latory molecular circuits that drive the developmental pro-
cess.

Differential expression analysis is frequently used to re-
duce time course (longitudinal) datasets to genes with vary-
ing expression profiles across conditions to ease down-
stream analytic tasks. Differential expression analysis algo-
rithms for time course datasets can be divided into methods
that treat time points independently and methods that ex-
plicitly model the dependence between time points. Meth-
ods that utilize the former approach are mostly based on
generalized linear models, with the sampling time point as
a categorical variable that is then used as a predictor for the
expression level. These models are implemented in the con-
text of popular software packages such as DESeq (1), DE-
Seq2 (2), edgeR (3) and limma (4). Methods that utilize the
latter approach constrain the sequence of measured expres-
sion levels to a continuous function of time, thus capturing
the dependence of expression levels between time points.
Such continuous dependence on time has previously been
captured with linear models based on a spline basis trans-
form of the time coordinate (edge (5) and limma (4)) or
with non-linear models (impulse model in ImpulseDE (6)).
Notably, while any differential expression framework based
on a generalized linear model can in principle be used with
a natural cubic spline basis to produce continuous fits, in
many cases (e.g. DESeq2) such extensions have rarely been
discussed to date.

Importantly, categorical time models suffer from a rela-
tive loss of statistical testing power, especially if many time
points are observed, relative to continuous models, which
have a fixed number of parameters. Furthermore, categor-
ical time models are difficult to use if expression trajecto-
ries are compared between conditions that were sampled
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at different time points (as may be the case if samples are
taken from human donors). Conversely, continuous expres-
sion models of time can address this shortcoming by com-
paring fitted values in unmeasured time points implicitly.

Here, we present ImpulseDE2, a differential expression
algorithm for longitudinal sequencing experiments. Like
its predecessor, ImpulseDE, ImpulseDE2 models the gene-
wise expression trajectories over time with a descriptive
single-pulse (impulse) function (Figure 1) (7,8). However,
unlike ImpulseDE, which uses an empirical null model
based on randomization of the original data, ImpulseDE2
employs a noise model specific to count data from multiple
batches and combines it with a likelihood ratio test, leading
to much faster and more accurate inference (Supplementary
Figure S1). Notably, ImpulseDE2 was favorably mentioned
in a recent benchmarking study on differential gene expres-
sion in time course datasets (9).

In the following, we use four different datasets to demon-
strate that ImpulseDE2 outperforms ImpulseDE, as well as
the categorical model of DESeq2 (with standard settings),
and the continuous temporal models implemented with
edge and limma. We then propose ways to extend these ex-
isting methods to improve their performance on time course
data. To this end, we discuss the purpose and consequences
of low mean expression gene filtering for limma and edge.
We further show how one can improve the performance of
DESeq2 by using a natural cubic spline basis (referred to
as DESeq2splines) instead of a categorical representation of
time, non-standard batch correction in case–control analy-
sis and high-dispersion outlier handling. Through this anal-
ysis, we propose settings for DESeq2 (e.g. using splines) that
are best suited for time course studies and demonstrate how
out-of-the-box ImpulseDE2 can perform better or similarly
well across all performance indicators and datasets.

At last, we introduce a hypothesis testing scheme that
can be used to identify transiently and permanently acti-
vated or deactivated genes. These classes of transient and
permanent changes directly relate to the biological process
of cell activation or differentiation: over the course of the re-
sponse of a cell to a stimulus, the cell moves from one state in
the transcriptome space to another state. ImpulseDE2 can
distinguish genes responsible for the differences between
the states (permanent changes) and genes that change tran-
siently during the transition between the cell states.

MATERIALS AND METHODS

ImpulseDE2 fits an impulse model (7,8) (Equation 1) to
time course count data and performs differential expression
analysis based on the model fits with a log-likelihood ratio
test. The central covariate considered in ImpulseDE2 is con-
tinuous time. Furthermore, if trajectories from two different
conditions (case and control) are compared, a discrete con-
dition indicator covariate is added. At last, if batch struc-
ture is present in the data beyond the case and control con-
ditions, a categorical batch assignment covariate is added
for each confounding variable.

We distinguish case-only and case–control differential ex-
pression analysis. Case-only differential expression analysis
looks for genes with changing expression over time. In this
analysis, an impulse fit to the expression values over time

is compared to a constant fit. In the second mode, namely
case–control differential expression analysis, we are look-
ing for genes with expression profiles that differ between
two time courses (representing two conditions). In this anal-
ysis, the alternative model is represented by separate im-
pulse model fits to each condition, while the null model is
represented by a single impulse model fit to both condi-
tions. ImpulseDE2 can additionally correct for batch effects
through a gene and batch specific factor in the gene expres-
sion model. Multiple confounding variables with differing
batch structures can be modeled if the corresponding de-
sign matrix is full rank.

The impulse model

ImpulseDE2 models the expression level of a gene as a func-
tion of time with the function fImpulse. The impulse func-
tion is the scaled product of two sigmoid functions (Equa-
tion 1) (7) and has three state-specific expression values: ini-
tial, peak and steady state. The two sigmoid functions rep-
resent the transitions of initial state to peak state and peak
state to steady state.

μ(t) = fImpulse(t) = 1
h1

(
h0 + (h1 − h0) 1

1+e−β(t−t1)

)

∗
(

h2 + (h1 − h2) 1
1+eβ(t−t2)

)
, (1)

where the amplitude parameters are h0 = fImpulse(t → −∞),
h2 = fImpulse(t → ∞) (steady state expression) and h1 models
the intermediate expression, t1 and t2 are the state transition
times, β is the slope parameter of both sigmoid functions.
One could use two different slope parameters but we use a
shared slope parameter to reduce the number of parameters
of the model.

The likelihood function

We assume that the number of reads x generated from μ
transcripts is negative binomially distributed. The likeli-
hood L(xi,.|μi,., φi ) of the count data xi, . of gene i observed
in J samples at time points tj is:

L(xi,., t.|μi , Ci,., φi , s.) =
J∏

j=1

LNB(xi, j |

μi (tj ) ∗ exp(〈Xj,., Ci.,〉) ∗ s̃ j , φ̃i ),

(2)

where LNB is the negative binomial likelihood:

LNB(x|μ, φ) = �(φ + x)
x! �(φ)

(
μ

φ + μ

)x (
φ

φ + μ

)φ

(3)

The mean expression at each time point �i(tj) is determined
by a fit of the impulse model fImpulse(t) (Equation 1) to the
time course data. Similarly, the underlying impulse model
trend is replaced by a sigmoid or by a constant model as
required for the hypothesis tests presented below. Other pa-
rameters of the model are: a sample-specific size factor s̃ j ,
which corrects for library size and gene-specific batch cor-
rection factors Ci (in log space), which correspond to a
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Figure 1. The impulse model is descriptive of global transcriptome and chromatin dynamics during the cellular response to stimuli. (A) The four classes
of expression trajectories that can be modeled with the impulse model. (B) Case-only analysis: shown are an impulse fit (alternative model) and a constant
fit (null model) with vertically superimposed inferred negative binomial likelihood functions. The likelihood functions are scaled and shifted so that the
density is zero at the time coordinate of the time point of sampling. (C) Case–control analysis: shown are a separate case and control impulse fit (alternative
model) and a single impulse fit to all samples (‘combined’, null model). (D–H) Heat maps of z-scores of library depth normalized mean counts per time
point of differentially expressed genes selected with DESeq2. Green stars indicate clusters that can be modeled with the valley model. (D) RNA-seq of
Drosophila melanogoster development (‘Drosophila (Graveley)’ dataset (17)). (E) Chromatin immunoprecipitation (ChIP) of the H3K4me1 histone mark
in the erythroid lineage in hematopoesis (‘erythroid chromatin (Lara-Astiaso)’ dataset (14)). The x-coordinates are seven cell states in developmental order
(‘developmental times’ one to seven) within the erythroid lineage. (F) RNA-seq of dendritic cell activation through LPS (‘LPS (Jovanovic)’ dataset (15)). (G)
RNA-seq of myeloid differentiation (‘myeloid (Sykes)’ dataset (18)). (H) RNA-seq of differentiation of human embryonal stem cells to definite endoderm
(‘hESC (Chu)’ dataset (19)). Heat map of two further datasets (‘estrogen (Baran-Gale)’ (16) and ‘Plasmodium (Broadbent)’ dataset (20)) are supplied in
Supplementary Figure S2.

model matrix X that encodes batch assignments or other
sample-specific covariates. One can incorporate guanine-
cytosine content bias correction via sample-specific normal-
ization constants or by supplying normalized count data
(10). One has to take care that the negative binomial dis-
tribution assumption is not violated if normalized data are
supplied (10). At last, the dispersion factor φ̃i links the mean
of the negative binomial distribution to its variance (Equa-
tion 4). φ̃i is pre-estimated as a constant hyperparameter for
each gene with DESeq2 (2).

σi (tj )2 = μi (tj ) + φ̃i ∗ μi (tj )2 (4)

Parameter estimation and differential expression analysis

The overall likelihood of the data is the product of the gene-
wise likelihoods. Therefore, the optimization of the model
parameters based on the likelihood intuitively lends itself to
parallelization over genes. We performed gene-wise impulse
model parameter estimation with the Broyden–Fletcher–
Goldfarb–Shanno algorithm (Supplementary Notes Sec-
tion S2). The set of parameters estimated for the impulse
model is {h0, h1, h2, t1, t2, β}, which does not contain the
constant hyperparameters s̃ j and φ̃i . φ̃i is estimated with
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DESeq2 and treated as a constant during impulse model
fitting.

We perform differential expression analysis using a log-
likelihood ratio tests by comparing the likelihood of the null
with the alternative model using the � 2-distributed deviance
test statistic (Supplementary Notes Sections S1 and S2.3).

Reference methods

We used ImpulseDE2, DESeq2 and DESeq2splines on
rounded expected count matrices (Supplementary Notes
Section S5). We used DESeq2 in the log-likelihood ra-
tio test mode in all cases. We used ImpulseDE, edge and
limma on scaled data, where the scaling factor is deter-
mined as the DESeq2 size factor (2). Therefore, the same
library size normalization was used for ImpulseDE2, DE-
Seq2, ImpulseDE, edge and limma. Before using edge and
ImpulseDE, we log transformed the normalized expected
counts (log(x + 1)). We used voom (11) to transform the
data before fitting the linear model with limma. We used
DESeq2splines, limma and edge with a natural cubic spline
basis with four degrees of freedom. All analysis performed is
based on P-values and Benjamini–Hochberg (12) corrected
P-values. We did not use method specific false-discovery
rate (FDR) adjustment algorithms to make the results com-
parable.

Overview datasets

Table 1 summarizes all datasets presented in this study. The
datasets Plasmodium (Broadbent) and estrogen (Baran-
Gale) were only used to show heat maps in Supplementary
Figure S2 to highlight the occurrence of expression patterns
with the impulse model shape in these scenarios. UpSetR
plots are supplied for the analysis of all other datasets in
Supplementary Figures S10–S14. In the iChIP (Jovanovic)
dataset, genes were replaced with iChIP peaks called with
MACS2 (13) and the signal is the number of reads overlap-
ping a peak.

RESULTS

ImpulseDE2 is a differential expression algorithm that
combines a parametric model for the expression trajectory
across time (impulse model, Figure 1A) with a negative
binomial noise model (Figure 1B). ImpulseDE2 has two
modes of operation: single-condition differential expression
analysis (‘case-only’) and two-condition differential expres-
sion analysis (‘case–control’). Case-only differential expres-
sion analysis identifies genes that have non-constant expres-
sion trajectories over time from samples of a single condi-
tion (Figure 1B). Case–control differential expression anal-
ysis identifies genes that have different expression trajecto-
ries over time between two conditions (such as with and
without a stimulus or treatment at time point zero) (Fig-
ure 1C).

We compared ImpulseDE2 with the following reference
methods: DESeq2 that is based on a categorical time expres-
sion model and that has a negative binomial noise model,
DESeq2 with a natural cubic spline basis transform of the
time coordinate (below referred to as DESeq2splines), edge

that is based on natural cubic splines as expression model
with a non-parametric noise model in log space, limma that
is based on natural cubic splines as expression model with
a Gaussian noise model in log space and ImpulseDE that is
based on the impulse model as the expression model with a
non-parametric noise model.

The impulse model is descriptive of global transcriptome and
chromatin dynamics during the cellular response to stimuli

We considered a comprehensive collection of sequencing-
based temporal datasets, covering several organisms, molec-
ular species, biological processes and time scales. Specifi-
cally, the presented datasets include histone mark dynam-
ics during development (14) (Figure 1E), expression profiles
of cell cultures in response to environmental stimuli (15,16)
(Figure 1F and Supplementary Figure S2) and expression
profiles of cell cultures in response to developmental stimuli
(17–20) (Figure 1D, G and H; Supplementary Figure S2).

We selected differentially expressed genes without explic-
itly constraining to a single-pulse behavior, by using DE-
Seq2 with a categorical model of time. We then clustered
the expression profiles of the selected genes over time (Fig-
ure 1D–H and Supplementary Figure S2). Evidently, most
of the selected molecular species can be modeled with the
impulse model with a single ‘peak’ or ‘valley’. There are a
few exceptions that have a weak bimodal behavior, which
can also be approximated with a unimodal model. For in-
stance, considering the Drosophila melanogaster develop-
ment data (Figure 1D), we note that most genes peak only
once over an entire developmental time course from an em-
bryo to an adult organism. Note that in many experimental
settings, one would only be interested in a subprocess of the
entire development, such as one of the embryo stages: lar-
vae, pupae or adult. The single-peak or -valley assumption
agrees well with the data in these subprocesses.

Fundamental limits of categorical frameworks on longitudi-
nal data

Continuous models, such as linear models based on a nat-
ural cubic spline basis transform or non-linear paramet-
ric models can be used with a fixed number of degrees of
freedom irrespective of the number of time points sampled,
whereas categorical models require one degree of freedom
per sampled time point. In case-only differential expression
analysis, the null model is usually a constant model and its
number of degrees of freedom therefore is independent of
the number of time points. Accordingly, the difference in
degrees of freedom of the full (alternative) and the reduced
(null) models in the differential expression test is constant
for continuous models and grows linearly for categorical
models. Therefore, the relative statistical power of a contin-
uous framework increases compared to a categorical frame-
work with the number of time points samples.

We showed this difference in statistical power in simula-
tions with varying number of time points and a mix of gen-
erative models in a case-only scenario (see Supplementary
Methods Section S7 for description of the simulation pro-
cess). Each simulated dataset consists of 1500 differentially
expressed (DE) genes and 1000 non-DE genes. The non-
DE genes are simulated as noisy samples from a constant
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Table 1. Datasets presented in this study

Dataset Time points Batches Controls Heat map Analysis Reference

LPS (Jovanovic) 7 2 case–control Figure 1 Figure 3, Supplementary
Figures S3 and S4

(15)

Drosophila (Graveley) 23 2–3 case-only Figure 1 Supplementary Figure S5 (17)
Myeloid (Sykes) 10 2 case-only Figure 1 Figure 4, Supplementary

Figures S6 and S7
(18)

hESC (Chu) 6 3 case-only Figure 1 Figure 5 Supplementary
Figure S8

(19)

iChIP (Jovanovic) 7 1 case-only Figure 1 Supplementary Figure S9 (14)
Plasmodium (Broadbent) 10 1 case-only Supplementary Figure S2 – (20)
Estrogen (Baran-Gale) 10 1 case-only Supplementary Figure S2 – (16)

expression level over time, while the DE genes are noisy
samples taken from either a linear, sigmoidal or impulse-
like function of time (500 genes each). We sampled three
independent and identically distributed replicates per time
point based on negative binomial noise and assessed the sta-
tistical testing power of each method as the area under the
receiver-operator characteristic curve (AUROC) of the dif-
ferential expression cells. Here, the binary classifier is signif-
icance of differential expression and the variable threshold
parameter is the significance threshold for the Benjamini–
Hochberg corrected P-values.

Considering the resulting AUROC values, it is clear that
most continuous frameworks (namely, ImpulseDE2, DE-
Seq2splines, edge and limma) outperform the categorical
framework DESeq2 and that ImpulseDE2 outperforms Im-
pulseDE (Figure 2A). Limma based on a spline model with
very few (two) degrees of freedom performs very well in this
comparison as we used simple functional forms for the sim-
ulated trajectories. Models with few degrees of freedom may
miss transient patterns on real data so that we do not rec-
ommend using such models on real data.

Condition-wise batch correction outperforms global batch
correction

It is difficult to benchmark differential expression frame-
works because there is typically no ground truth other than
in simulation scenarios. To address this, we propose a met-
ric to evaluate differential expression results based on an-
notated gene sets: the gene responsiveness score. The re-
sponsiveness of a gene is defined as the number of published
studies (from a pool of available studies) that annotated that
gene as differentially expressed under settings related to the
ones under investigation. For instance, in the context of the
LPS (Jovanovic) dataset (15) (Figure 1F), the responsive-
ness score of a gene will reflect the number of published
datasets (RNA-seq or microarrays) of dendritic cell stimu-
lation through toll-like receptor 4 or other toll-like receptors
in which this gene was reported as differentially expressed.

Our assumption in using this score is that the more anno-
tated gene sets related to the target process contain a gene,
the more confident we can be that this gene should be called
as differentially expressed. Based on this assumption, one
can then compare two algorithms for differential expression
at a given significance threshold based on the number of
called genes as well as the distribution of their responsive-
ness scores. Specifically, a non-empty set of genes that were
called by only one method reflects an advantage in type II

error rate (false negatives) or a disadvantage in type I error
rate (false positives). The responsiveness of the genes in this
set can then be used to evaluate the relative contribution of
true positive and false positives to this set.

A good resource that includes a large pool of such dif-
ferential expression annotations in the context of immune
cells is the ImmuneSigDB (21) collection. We used this re-
source to evaluate the performance of the different algo-
rithms on the LPS (Jovanovic) dataset, a well studied sys-
tem with a large set of relevant published transcriptional
datasets. The LPS (Jovanovic) dataset consists of samples
of seven time points in two conditions (with and with-
out lipopolysaccharide (LPS) addition at time point 0 h).
To compute the responsiveness scores in this context, we
computed for each gene the number of ImmuneSigDB (21)
transcriptional genes sets that contain ‘dendritic cell’ (DC)
and ‘lipopolysaccharide’ (LPS) or ‘toll-like receptor’ (TLR)
in their description. We used these scores for pairwise com-
parison between methods, where we analyzed the overall
responsiveness of the sets of genes that are only called by
one method and not the other. Specifically, we compared
ImpulseDE2 to DESeq2, DESeq2splines, limma and edge
based on the mutually exclusive differential expression cells
at a Benjamini–Hochberg corrected P-value of 0.01 both for
case-only and case–control analysis.

We found that in both case-only and case–control setting,
ImpulseDE2 reports substantially more genes than DESeq2
(Figure 3A and E) and edge (Figure 3D and H). Further-
more, we find that genes reported only by ImpulseDE2 are
similarly or more responsive than genes uniquely called by
each of these two methods, indicating that the higher num-
ber of DE genes may reflect a decrease in type II error
rather than an increase in type I error. Limma reports more
DE genes than ImpulseDE2 in both scenarios (Figure 3C
and G). However, those DE genes only called by limma
are less responsive than the DE genes only called by Im-
pulseDE2, which suggests that limma has a higher type I
error rate than ImpulseDE2 (Figure 3C and G). Compar-
ing to DESeq2splines, we find that, in the case-only settings,
ImpulseDE2 reports less genes; however, the genes uniquely
reported by ImpulseDE2 are more responsive than the ones
reported only by DESeq2splines (Figure 3B). In the case–
control setting, ImpulseDE2 reports less genes, while the
distributions of responsiveness scores of the genes identified
exclusively by each method are similar.

The LPS dataset (both case and control conditions) was
sampled twice, yielding two batches. The correlation ma-
trix of all samples suggests that there are strong batch ef-
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Figure 2. ImpulseDE2 performance on simulated data (ROC and FDR data). AUC: area under the curve, df: degrees of freedom, FDR: false-discovery
rate, ROC: receiver-operator characteristic. (A) AUC of ROC curve for case-only differential expression analysis with a varying number of time points
(5–12 time points with three replicates each). (B) FDR for case-only analysis based on random deviation of a constant trend. The strength of the random
variation is quantified by the standard deviation of the normal distribution from which the deviation from the constant trend is drawn for each sample.
ImpulseDE was not included in this simulation study due to its slow run time and as this panel was included to compare the discovery rates of categorical
and continuous models on random trends.

fects in this dataset (Supplementary Figure S3). Frame-
works for differential expression analysis based on general-
ized linear models allow for batch effect correction during
model fitting through coefficients for batch identity covari-
ates in the linear model (2). ImpulseDE2 performs batch
correction separately within each condition (case and con-
trol) in the full model as the case and control profiles are
fit separately. The differences between ImpulseDE2 and the
DESeq2-based approaches (DESeq2 and DESeq2splines)
in the case–control analysis (Supplementary Figure S4a,b
and d) may be attributed to the differences in the way
batches are handled. To explore this, we introduced the
condition-wise batch correction in the DESeq2-based mod-
els to test whether the differences in model performance
are due to the batch model. Indeed, we found that the cat-
egorical model DESeq2 with condition-wise batch correc-
tion yields very similar P-values for differential expression
to ImpulseDE2 (Supplementary Figure S4a,c).

In summary, the gene set annotation based analysis sug-
gests that ImpulseDE2 outperforms edge, limma and DE-
Seq2. We also find that one can improve the performance of
the latter by using condition-wise batch correction. Com-
pared with DESeq2splines, we find that ImpulseDE2 re-
ports less genes, albeit with similar or higher responsive-
ness scores. We note that this difference in detection rate
between ImpulseDE2 and DESeq2splines is not a general
property, as we have observed little difference (Figure 4A;
Supplementary Figures S8a and S9a) or even an opposite
trend (Supplementary Figure S5a) in other datasets.

DESeq2 with standard settings misses differentially ex-
pressed genes that contain zero count observations

Globally, ImpulseDE2 and DESeq2 give similar results on
the myeloid (Sykes) dataset (Figure 4A and B). We observed
that there are 72 genes that are detected by ImpulseDE2
and not by DESeq2 (Figure 4B and Supplementary Fig-
ure S5b) that are enriched in gene ontology (GO) biological

process (22) gene sets related to the immune system (Sup-
plementary Data S1) and that contain observations with
zero counts. These 72 genes are labeled as high variance
outliers by DESeq2 and are therefore not regularized in
the empirical Bayes dispersion estimation step of DESeq2.
To address this, we implemented a correction step in Im-
pulseDE2, which automatically identifies genes with over-
estimated variances and corrects the dispersion estimates
to the maximum a posteriori estimates from DESeq2 (‘Ma-
terials and Methods’ section). Because of the lower vari-
ance estimate, ImpulseDE2 can identify these genes as dif-
ferentially expressed while they are missed by DESeq2 (Fig-
ure 4B, also observed on another dataset in Supplementary
Figure S5b). These genes that were labeled as dispersion
outliers by DESeq2 contain very clear cases of differential
expression (Supplementary Figure S6). One can detect these
variance outlier genes with DESeq2 without strong effects
on the global results if the dispersion outlier calling is al-
tered in DESeq2 as described in the Supplementary Meth-
ods Section S6.2. The dispersion outlier standard settings of
DESeq2 are conservative so that the variance is not under-
estimated. We showed that this may yield undesirable results
on genes with zero count observations.

DESeq2 detects multimodal expression profiles as differen-
tially expressed

There are also genes which receive lower P-values by DE-
Seq2 (bottom right half of Figure 4B). We visually observed
that these genes have mostly multimodal temporal profiles
(Supplementary Figure S7). Continuous expression mod-
els tailored to unimodal expression profiles (the impulse
model and natural cubic splines with few degrees of free-
dom) under-fit such multimodal trajectories and therefore
fit part of the variation as noise. Accordingly, frameworks
based on such continuous models assign lower P-values for
differential expression to such multimodal trajectories (Fig-
ure 2B). An analyst has to decide for each project whether
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Figure 3. Overlaps to annotated gene sets indicate that ImpulseDE2 identifies more relevant genes than DESeq2, edge and limma on LPS (Jovanovic)
dataset. Background: all genes analyzed. ImpulseDE2: genes only called differentially expressed by ImpulseDE2 and not by the reference method at a
Benjamini–Hochberg corrected P-value threshold of 0.01. DESeq2 (A and E), DESeq2splines (B and F), limma (C and G), edge (D and H): genes only
called differentially expressed by the reference method and not ImpulseDE2 at a Benjamini–Hochberg corrected P-value threshold of 0.01. n: gene set size.
ECDF: empirical cumulative density function, KS: log10 P-value of one sided Kolmogorov–Smirnov test for the ECDFs of the set of the given method to
lie below the ECDF of the other method considered in the plot. The ECDF are based on the number of overlapping ImmuneSigDB (21) target sets with
each gene in the individual gene sets: the target set was all ImmuneSigDB sets that contain any the following strings in their names: “DC”, “DENDRITIC”
(empty, all listed under DC), “LPS” or “TLR”. (A–D) Case-only differential expression analysis. (E–H) Case–control differential expression analysis.

such multimodal trajectories are of interest. It is important
to keep in mind that such trajectories can be explained by
noise if few replicates are sampled or batch correction is dif-
ficult.

ImpulseDE2 and DESeq2 outperform limma on genes with
low average expression

We observed large differences in the global differential ex-
pression results of ImpulseDE2 and limma on the myeloid

(Sykes) dataset (Figure 4A and E). Many of the genes only
labeled differentially expressed by edge or limma and not
by ImpulseDE2 have low average expression (Figure 4F),
which we also observed on the hESC (Chu) data (Supple-
mentary Figure S8f) and the Drosophila (Graveley) data
(Supplementary Figure S5f). Indeed, the authors of voom
employ filtering of genes with low mean expression before
running limma–voom (11). This is sensible in terms of the
framework of limma–voom: a normal distribution in log-
space that does not account for the largely discrete nature
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Figure 4. Comparison of ImpulseDE2, DESeq2, limma and edge on myeloid (Sykes) dataset. (A) Fraction of significantly differentially expressed genes
as a function of the significance threshold by method. (B–E) Correlation plot of the inferred differential expression Benjamini–Hochberg (BH) corrected
P-values for all genes between ImpulseDE2 and DESeq2 (B), DESeq2splines (C), edge (D) and limma (E). Orange points correspond to genes for which
ImpulseDE2 disabled DESeq2 dispersion outlier handling. (F) Kernel density estimate of density of the distribution of expression means of genes called
differentially expressed at a q-value threshold of 1e − 2 of ImpulseDE2, limma and edge. The mean expression distribution across all genes is shown as all
genes. The UpSetR plot for this dataset is supplied in Supplementary Figure S10.

of count data in the low expression range. ImpulseDE2 and
DESeq2 account for the count data type through their neg-
ative binomial noise model. However, we argue that filter-
ing genes with low expression before differential expres-
sion analysis is not a desirable solution: Firstly, one may
be interested in those genes with low mean expression. Sec-
ondly, any filtering step is highly dataset dependent and
will therefore often lead to situations in which genes are
missed because of suboptimal filtering. Given a time course
with 10 sampled time points, a gene with zero expression
throughout which increases to a transcript count of 19 at
the last time point would be excluded by a very lenient min-
imum mean expression filter of two already. The omission
of such an expression profile is undesirable if this was ob-
served across replicates. There are 115 genes in the myeloid
(Sykes) dataset with average expression below two, which
were called differentially expressed by DESeq2splines at a
significance threshold on the false-discovery corrected P-
value of 0.01 and 567 genes with average expression below
five, these genes are potentially false negatives in the limma-
based analysis.

We therefore argue that such gene filtering has the poten-
tial to introduce false negative differential expression calls.
The inclusion of genes with low average expression in the
limma–voom pipeline results in a large number of differen-
tial expression cells of these genes with low average expres-
sion (Figure 4F), which may include false positives as the
limma–voom noise model is not appropriate for these genes.

ImpulseDE2 identifies genes with transiently changing ex-
pression level

The response of a cell to a stimulus can often be viewed as a
transition of the population from one transcriptomic state
to another transcriptomic state, such as in cell activation or
differentiation (8). A biologically more interesting question
than simple differential expression may be whether a gene
is induced transiently (which may indicate involvement in
transitional phases) or more permanently (indicative of po-
tential importance in the terminal phenotype) (23).

We introduce a hypothesis testing scheme that is able to
answer these questions. To this end, we use a third model––a
monotonous sigmoid that is indicative of maintained mod-
ulation of expression (up- or down- regulation). We com-
pare the fit to this model to an impulse model and a constant
model. We define transiently regulated genes as genes, which
are significantly better fit by an impulse model than by a sig-
moid model and which do not have a monotonous impulse
model fit (Supplementary Methods Section S2.3). We define
permanently regulated genes as genes that are not transient
but that are significantly better fit by a sigmoid than by a
constant model. We classify up- and down-regulated genes
in the transient and the permanent class based on their im-
pulse model fits.

We analyzed the performance of the expression profile
stratification by ImpulseDE2 on a six time point RNA-seq
dataset of in vitro human embryonic stem cell differentia-
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Figure 5. ImpulseDE2 can distinguish between transiently and perma-
nently changing expression trajectories in hESC (Chu) dataset. Shown are
z-scores of size-factor normalized mean expression values per time point.
Selected top enrichments with GO biological process, GO molecular func-
tion and MSigDB hallmark gene sets are supplied to the right of each
group.

tion (19). The heat map of expression profiles sorted by their
peak times within each class shows that ImpulseDE2 can
indeed classify expression trajectories into transiently and
permanently changing trajectories (Figure 5).

We find a large group of genes that is transiently down-
regulated from 0 to 72 h after differentiation induction.
The top gene set enrichment hit of the transiently down-
regulated genes against the GO molecular function gene sets
(22) is oxidoreductase activity and the top enrichment with
respect to the MSigDB hallmark set is oxidative phosphory-
lation (Supplementary Data S2). It was shown that human
embryonic stem cells can be induced to differentiate by hy-
poxic conditions (19). We argue that the observed down-
regulation of genes related to oxidative phosphorylation
during differentiation may provide a mechanistic link to
the differentiation induction by hypoxia: down-regulation
of oxidative phosphorylation related processes is a molecu-
lar (e.g. transcriptomic or metabolic) signature that is in-
duced by and drives differentiation. Therefore, differenti-
ation can be directly induced by inducing this signature
through hypoxia. We note that the optimal hypoxia treat-
ment for differentiation induction coincides with the time
frame of down-regulation of the oxidative phosphorylation
related gene set (0–72 h (19) and Figure 5).

Moreover, we find a succession of transiently up-
regulated genes that would be expected as result of a sig-
naling cascade that drives the transition from initial state
to final state (reached at 72 h). Indeed, the top gene set en-
richment hits of these transiently up-regulated genes against
the GO molecular function gene sets contain many nucleic
acid binding terms, suggesting gene expression regulation
cascades are active.

The top three enrichments of permanently down-
regulated genes against the MSigDB hallmark gene sets (24)

contain two Myc-target sets which suggest that this gene
set represents the loss of embryonic cell identity. The top
enrichments of permanently up-regulated genes against the
GO biological process gene sets (22) contain several tissue
development terms which suggest that this gene set repre-
sents the gain in differentiated cell identity.

In summary, we find that genes with transient expres-
sion trajectories reflect transient processes in the population
and genes with monotonous expression trajectories reflect
differences in the cell states (embryonic and definite endo-
derm).

DISCUSSION

We motivated the use of the impulse model by showing
that transcriptomic and epigenomic dynamics of cells in re-
sponse to environmental and developmental stimuli can of-
ten be modeled with a single maximum or a minimum per
gene. We note that similar functional forms can be achieved
with natural cubic splines models with few degrees of free-
dom (such as three or four degrees of freedom). The im-
pulse model has previously been used in the differential ex-
pression tool ImpulseDE. ImpulseDE is based on a non-
parametric noise model. Here we introduce ImpulseDE2,
a differential expression algorithm, which is based on the
impulse model and which is tailored to count data. The al-
tered noise model makes ImpulseDE2 50 times faster than
ImpulseDE (Supplementary Figure S8) and yields better
differential expression results on count data, such as pro-
duced by RNA-seq, ChIP-seq (Supplementary Figure S9)
and ATAC-seq.

We showed that continuous expression models outper-
form categorical models if more time points than degrees
of freedom of the continuous model are sampled. We in-
troduced the gene responsiveness metric and gene set en-
richment analysis of sets of mutually exclusive differential
expression cells to benchmark differential expression meth-
ods. ImpulseDE2 works well out-of-the-box compared to
all other methods across datasets. We described how DE-
Seq2 can be brought to similar performance with non-
standard settings. On the other hand, limma and edge have
disadvantages on genes with low expression mean and we
discussed why gene filtering is not always desirable. We
therefore suggest the use of ImpulseDE2 or DESeq2 with
the settings described here for time course differential ex-
pression analysis. One can base this decision on the contin-
uous model used: ImpulseDE2 has a rigid expression model
that is unlikely to overfit random fluctuations in very noisy
data, DESeq2 based on splines can be used to extract ex-
pression profiles of all shapes, depending on the number of
degrees of freedom used. It makes sense to use continuous
models in time if at least as many time points as the number
of degrees of freedom used were sampled: six or more time
points for ImpulseDE2, n or more time points if a spline
model with n degrees of freedom is used for DESeq2, limma
or edge.

ImpulseDE2 relies on estimation of a non-linear model
for expression as a function of time. Disadvantages of such
models include numerical estimation problems and local
maxima of the log-likelihood cost function. We guarded
against both problems in the implementation through mul-
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tiple initializations and through numerical thresholds. Im-
pulseDE2 did not produce numerical errors on any ana-
lyzed dataset.

At last, we combine impulse model fits with constant
and sigmoid model fit to identify genes with transiently or
monotonously changing trajectories and show that these
automatically annotated gene sets represent biologically
meaningful groups of genes. Our analysis suggests a mech-
anism for hypoxia-induced human embryonic stem cell dif-
ferentiation.

DATA AVAILABILITY

ImpulseDE2 is available through Bioconductor
and through Github (https://github.com/YosefLab/
ImpulseDE2). We made instructions for the usage of
DESeq2 with a natural cubic spline basis for temporal data
available as Supplementary Data S3.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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