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Abstract 

Here, we report the data visualization, analysis and modeling for a large set of 4830 SN 2 

reactions the rate constant of which (logk) was measured at different experimental conditions 

(solvent, temperature). The reactions were encoded by one single molecular graph - Condensed 

Graph of Reactions, which allowed us to use conventional chemoinformatics techniques 

developed for individual molecules. Thus, Matched Reaction Pairs approach was suggested and 

used for the analyses of substituents effects on the substrates and nucleophiles reactivity. The 

data were visualized with the help of the Generative Topographic Mapping approach. Consensus 

Support Vector Regression (SVR) model for the rate constant was prepared. Unbiased estimation 

of the model's performance was made in cross-validation on reactions measured on unique 

structural transformations. The model's performance in cross-validation (RMSE=0.61 logk units) 

and on the external test set (RMSE=0.80) is close to the noise in data. Performances of the local 

models obtained for selected subsets of reactions proceeding in particular solvents or with 

particular type of nucleophiles were similar to that of the model built on the entire set. Finally, 

four different definitions of model's applicability domains for reactions were examined. 
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Introduction 

Compared to individual molecules, chemical reaction is a complex object because it 

involves several molecular species of two types (reactants and products) and its yield depends on 

experimental conditions (solvent, catalyst, temperature). This prevents applying to chemical 

reactions most of conventional methods designed for the analysis and modeling of individual 

compounds. This complexity could be reduced using the Condensed Graph of Reaction (CGR) 

approach [1] representing reaction by a single 2D graph, some sort of pseudomolecule, 

characterized by both conventional chemical bonds and such called dynamic bonds 

characterizing chemical transformations. Fragment descriptors generated for CGR can be 

successfully applied in any chemoinformatics application used a descriptors vector as an input. 

This approach has successfully been used for similarity searching in reaction space [2], for data 

analysis using Generative Topographic Mapping [3] and for QSPR modeling of various kinetic 

and thermodynamic properties of reactions [4–6] or optimal reaction conditions [7]. On the other 

hand, some methods of data analysis considering chemical species as molecular graphs were 

never used for reactions analysis so far. One of these methods, Matched Molecular Pairs (MRP), 

is widely used in medicinal chemistry [8] for the analysis of the effects of replacement of one 

chemical group with another one. In this paper, we’ll demonstrate how this approach can be 

extended to chemical reactions represented by their CGR. 

Another goal of this paper is the development of predictive models for logarithm of rate 

constant (logk) of bimolecular nucleophilic substitution reaction (SN2). Nucleophilic substitution 

(SN) is a fundamental class of reactions in which an electron rich molecule called nucleophile 

attacks the positive or partially positive charged atom of substrate molecule to replace a leaving 

group [9], called also nucleofuge (example shown on Figure 1). Bimolecular nucleophilic 

substitution SN2 is referred to subclass of SN reactions where the bond with leaving group is 

broken and the bond with nucleophile is formed synchronously. Notice that nucleophilic 

substitution reactions proceeding through formation of carbocation followed by ion 

recombination are denoted as SN1. Nucleophile could be either neutral (usually amine or alcohol) 

or negatively charged species (alcoholates, thiolates, halogen or other inorganic salt anions, 

deprotonated amines). Usually, only reactions with aliphatic carbon in reaction center are called 

as SN2 reactions. Reactions involving substitution at aromatic or unsaturated carbon of substrate 

atom are usually asynchronous and follow either addition-elimination (SNAr) or elimination-

addition (SN1) mechanisms.  

Prediction models for SN2 reaction rate were reported in some earlier publications [10–12]. 

Thus, Baskin et al [10] reported neural networks models for logk on a set of 1732 reactions 
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proceeding in various pure solvents at different temperatures. The feature vector combined 

descriptors encoding, on one hand, chemical structure of substrate and product molecules, and, 

on the other hand, solvent and temperature. Hoonakker et al [11] reported predictive models for 

logk built on a dataset of 1014 SN2 reactions proceeding in water at different temperatures. They 

used three different machine-learning techniques (SVR, M5P, MLR) and ISIDA fragment 

descriptors derived from CGR in combination with inverse temperature. Madzhidov et al [12] 

reported Random Forest models built on a dataset of 1041 SN2 reaction proceeding in different 

solvents and water-organic solvent mixtures, and at different temperatures but involving only 

neutral nucleophiles. The models were built on ISIDA or SiRMS [13] descriptors encoding 

structure of reactants completed by 14 solvent descriptors and inverse temperature. The study by 

Nugmanov et al [14] was focused on particular case of SN2 reactions involving azide ion as 

nucleophile  

Unlike previous studies, here the SVM consensus model for logk were built on the set of 

4830 reactions involving both neutral and anionic nucleophiles and proceeding at different 

temperatures in 43 different solvents and water-organic mixtures. This is the biggest and the 

most diverse data set of SN2 reactions considered so far. The data set was analyzed using the the 

GTM approach. Matched Reaction Pairs approach was described and used for the analyses of 

substituents effects on the substrates and nucleophiles reactivity. Unbiased estimation of the 

model’s performance was performed in cross-validation on reactions measured on unique 

structural transformations. Performances of the global model built on the entire data set and local 

models obtained for the subsets of reactions proceeded in particular solvent were compared. 

Finally, different applicability domains for reactions were compared. The developed consensus 

model is available for the user at our server cimm.kpfu.ru. 

 

 
 

Scheme 1. Example of SN2 reaction and of related Condensed Graphs of Reaction. The CGR has 
two dynamic bonds and two dynamic atoms. The former describe one formed bond (denoted by 
circle) and one broken bond (denoted by a crossed line). The latter describe the atoms which 
change their charges from 0 to -1 (labeled by “c-1”) and from 0 to +1 (labeled by “c+1”). 
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2. Computational procedure 

2.1 Data preparation 

More than 8000 reactions were manually collected from the handbook by Palm  and registered in 

the database created under IJChem (ChemAxon) environment [15]. Each database record 

included the following information: structure of reactants and products, rate constants, 

temperature, solvent, molar percentage of organic solvent in water-organic mixture (100% for 

pure solvent, including pure water), literature source. Reactions with, at least, one of mandatory 

field missed or those that proceed in undesired condition (binary mixture of organic solvents, 

tertiary mixture, or high-pressure reactions) were excluded. 

Chemical structures were standardized with ChemAxon Standardizer [16] including 

functional group normalization, aromatization and atom-to-atom mapping (AAM). Explicitly 

specified hydrogen atoms were removed. Special attention was paid to duplicates filtering. The 

latter were defined as the same chemical transformations proceeding in the same conditions 

(solvent, temperature and composition of organic solvent-water mixture. Stereospecific reactions 

were also considered as duplicates. For each series of duplicated reactions, an average logk value 

and related standard deviation (SD) were calculated. Distribution of these SD values for the 

entire set shows that in most of cases SD < 0.5 logk units (Figure 1) which could be used as a 

reasonable estimation of experimental inter-laboratory error. 

 

 
Figure 1. Histogram of standard deviation of logk values within a series of duplicated reactions.  

 

The curated modeling set contains 4830 logk data points for 1383 unique transformations 

including 2882 reactions with neutral nucleophile and 1948 reactions involving anionic 

nucleophile in 43 different solvents and their mixtures with water (Figure 2c). The logk varied 
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from -7.68 to 1.65. The logk distribution resembles almost perfect Gaussian function with the 

peak at -3.5 (Figure 2a) whilst temperature distribution is highly skewed with expected cliff at 

25°C (Figure 2b). The most popular solvents were ethanol, methanol, acetone often used in 

mixtures with water and nitrobenzene. Most of rate constants were measured at several different 

experimental conditions, only 551 reactions were studied at one condition only. For vast 

majority of reactions, less than 10 measurements of rate constant per transformation were 

reported (Figure 2d).  

 

 

a) b)  

 

c)  
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d)  

Figure 2. Data distribution with respect to (a) rate constant, (b) temperature, (c) solvent 

(dark part is for pure solvent one and light part is for mixture with water), (d) the number of 

experimental conditions per transformation.  

 

 

2.2 Condensed Graphs of Reaction 

The Condensed Graph of Reaction (CGR) approach [2, 11] was used to merge molecular 

graphs of all reactants and products into a single graph. In order to characterize chemical 

transformations CGR uses “dynamic bonds” corresponding to broken formed or transformed 

bonds, and “dynamic atoms”, characterizing changes of atomic charges upon the transformation 

(see Scheme 1). Previously this approach was used in the modeling of rate constants of various 

reactions (SN2 [11, 12, 14], bimolecular elimination [5], Diels-Alder [17]), optimal condition 

prediction [7] as well as for detection of erroneous atom-to-atom mapping [18]. Technically, a 

CGR can be obtained from the reaction equation by superposing related atoms in the molecular 

graphs of reactants and products. Thus, an atom-to-atom mapping (AAM) procedure establishing 

these relations is required.  

The CGR preparation workflow consists of the following steps: (1) all transformations 

were extracted in RDF format [19]; (2) atom-to-atom mapping was performed using the 

ChemAxon/Standartizer tool [16]; (3) the errors of mapping were fixed, first, using Indigo [20], 

then in in-house software [21]; and (4) CGRs corresponding to the transformations were built 

using the in house CGR-Designer tool and stored in SDF format.  
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2.3 Matched Reaction Pairs 

Molecular Matched Pair (MMP) is defined for a pair of molecules, which are different with a 

respect of a single group [22]. Analysis of such differences across many pairs of molecules 

allows understanding of a trend with change of the analyzed property due to the 

appearance/disappearance of the respective group. The extension of MMPs to chemical reactions 

encoded by CGRs is straightforward since CGR represents a single molecular graph. Thus, 

instead of comparing a pair of compounds, one can compare a pair of reactions which we’ll 

further call Matched Reaction Pairs (MRP), see Figure 4. The MRP analysis may help to 

understand how specific variations of reactants’ structure affect kinetic or thermodynamic 

property of reaction. 

 

 
 

Figure 4. Example of Match Reaction Pairs (top) corresponding to replacement of two H 

atoms in 1 by two Cl atoms in 2. Reactions used for CGR preparation are shown on the bottom 

 

Since MRP reflects only structural factor, this analysis can be performed only for reactions 

proceeding in similar conditions. Therefore, a subset of 125 reactions carried out in pure 

methanol at ambient temperature has been prepared. All calculations were performed with the 

OCHEM tool [23] implementing the Hussain and Rea algorithm [22].  
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2.4 Data visualization with Generative Topographic Mapping 

GTM constructs a 2D-dimensional map reproducing the data distribution of the initial D-

dimensional space, defined by the descriptors [24, 25]. The map is framed by K nodes forming a 

perfect square grid. The nodes correspond to normal probability distributions centered on the 

GTM manifold, a flexible 2D envelope embedded into the D-dimensional data cloud.  

Since we intended to analyze only structural diversity of reactions, the information about 

reaction conditions was not considered. The map was prepared for a set of 1383 unique 

transformations encoded by CGR. The atom-bond sequences of length from 2 to 4 containing at 

least one dynamic atom or bond were used as descriptors. In order to enhance the data analysis, 

the data points on 2D map were colored according to the type reaction signatures, substrate, and 

nucleophile nature (see Figure 3).  

The calculations were performed with the ISIDA-GTM tool using default parameters for GTM 
construction [26]. 

 

2.5 Quantitative Structure-Reactivity modeling  

2.5.1 Descriptors 

The reactions were first rendered as Condensed Graphs of Reaction, created from the 

reaction RDF files using the in-house CGR Designer tool and stored in modified SDF format. 

This was directly processed by the in-house ISIDA Fragmentor software [2], in order to generate 

fragment descriptors. The length of monitored fragments varied from 2 to 14 for sequences and 

from 2 to 6 for atom-centered fragments. An important option regulating the amount of the 

overall generated CGR fragments is the ‘dynamic bond’ exclusive inclusion. Toggled on, the 

option produces the fragments, that contains the bonds forming/breaking while chemical reaction 

(local fragments) and omits the ‘generic’ fragments, not assigned to the reaction center. That 

could be used to generate fragments that describe local environment of the reaction center 

exclusively. Overall, 616 descriptor sets have been generated for the preliminary SVR scanning.   

Descriptors of the reaction conditions. Descriptors of reaction conditions included solvent 

descriptors and temperature. The solvent descriptors considered in this study include the values 

of  polarity, polarizability, H-acidity and basicity: Catalan SPP[27], SA[28] and SB 

constants[29], Camlet–Taft α[30], β[31], and π*[32] constants, 4 functions of dielectric 
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condition descriptor features the reciprocal of reaction temperature, given in Kelvin-1 (K). 

 
2.5.2 Building and validation of SVR models 
SVR models were built and validated using the ε-SVR algorithm implemented in the 

libSVM package[43]. The modeling was performed using the evolutionary SVR optimizer[44], 

which can be used to perform both descriptor space selection and optimization of the operational 

parameters (epsilon, kernel type, cost, gamma) of the SVR method. The procedure, applied to 

logk as a modeled property generated a total of 3000 models. Ten descriptors sets producing the 

SVR individual models of maximal robustness (estimated by Q2 value obtained in 10 times 

repeated 5-fold cross-validation) have been selected. Resulting 500 models were used to predict 

the logk values for the reactions in the external test set. This consensus model is available for the 

users on our server http://cimm.kpfu.ru (see details in Supporting Information). 

 

The predictive performance of the models has been estimated by root mean squared error 

(RMSE) and squared determination coefficient calculated in five-fold cross-validation (Q2) 

repeated 10 times after the data reshuffling (10x5-CV), or on the external test set (R2):  

 𝑄!(𝑅!) =  1−  
(𝑌!"#,! −  𝑌!"#$,!)!!

!!!

(𝑌!"#,! − < 𝑌 >!"#)!!
!!!

          (3) 

 

𝑅𝑀𝑆𝐸 =
(𝑌!"#,! −  𝑌!"#$,!)!!

!!!

𝑛          (4) 

Here Yexp and Ypred are, respectively, experimental and predicted logk values, n is the 

number of data points, while <Y>exp is the mean of experimental values. 

 

2.5.3 Applicability Domain of the models.  
In order to improve the models performance on the external test set, several applicability 

domain (AD) definitions were examined. The first of them (“signature control”) retains the test 

set reactions which have reaction signatures the same as training set reactions. A “signature” 

represents a structural motif of CGR identifying a given type of reaction. Two types of 

signatures were considered. They correspond to the reaction center with its first one or two 

coordination spheres (“wide” and “narrow” signature controls, respectively).  

A combination of fragment control and bounding box approaches [33, 34] were also used 

as AD for each individual model. The fragment control discards the objects possessing fragments 
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not present in the training set reactions. The bounding box AD discards a reaction for which, at 

least, one of its descriptors Di, is outside of the range of Di values computed for the training set 

reactions. When ensemble of individual models (“consensus” model) is simultaneously applied, 

a test set is retained if it is within fragment control and bounding box AD of, at least, of one 

individual model. Here, we’ll call this AD as “weak” consensus control. Additionally, a “firm” 

consensus control AD [35] was examined. It considers predictions unreliable if a given reaction 

is outside of AD for a certain percentage (50% by default) of individual models. 

 

3. Data visualization 

With the help of color code characterizing different types of transformations, substrates and 

nucleophiles, the 2D generative topographic map provides with clear view on chemical content 

of the studied reactions dataset. Four differently colored maps on Figure 3 show that different 

types of reactions are well separated which implicitly confirms the choice of fragment 

descriptors selected in genetic algorithm optimization. 

One can see that the large majority of the data corresponds to the reactions between substrates 

containing C-Hal bonds with N- or O-containing nucleophiles (Figure 3a). The signature subsets 

separation is mostly governed by the substrate type: for a given halogen atom (Hal) the clusters 

corresponding to broken C-Hal bond and created C-O or C-N bonds tend to be located together. 

Figures 3b and 3c show, respectively, regions populated by reactions involving the most popular 

substrates and nucleophiles. The neutral nucleophiles occupy larger zone than anionic the ones 

which corresponds to their relative populations in the dataset (40% of anionic and 60% of 

neutral); these zones are well separated (Figure 3d). 
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Figure 3. GTM map on 1383 unique transformations encoded by ISIDA fragments. 

Objects are colored according to a) reaction center signature (only reaction center atoms 
included), b) substrates, c) nucleophile structure, d) nucleophile type. The most popular 
signatures or molecules are shown explicitly.  

 

- 
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4. Analysis of substituent effect using Matched Reactions Pairs (MRP) 

For SN2 reaction, substituents effects are conventionally considered in the framework of 

the reaction mechanism where an atom of nucleophile possessing lone electron pair or bearing 

negative charge attacks partially positively charged carbon atom which results in a leaving group 

replacement. Thus, electron donating substituents in nucleophile increase its reactivity and, 

hence, a reaction rate. Similarly act electron-acceptor substituents in substrate molecule which 

increase partial positive charge on reacting carbon atom.  

In most of cases, the MRP analysis fully supports the known mechanism and follows 

conventional interpretation of substituents effects. For instance, substitution of hydrogen in 

nucleophile by chlorine (electron acceptor), as expected, slows the reaction down (Figure 5 top), 

whereas replacement of electron donating methoxy- to acceptor nitro-group in substrate 

molecule increases its speed (Figure 5 middle). However, MRP may also help to detect 

unexpected logk variations. For example, hydrogen / nitro-group replacements in the substrate 

(Figure 5 bottom) leads to either increase or decrease of the rate constant. In the right pair of 

reactions on Figure 5d, the H/NO2 replacement increases the reaction rate, which is fully in line 

with the conventional interpretation of substituent effects for SN2 reactions. However, in 8 

reaction pairs, one of which is shown in the left part of Figure 5c, this replacement leads to the 

decrease of logk. This behavior is known for SN1 reactions in which carbo-cationic intermediate 

is destabilized by electron-withdrawing substituents. On the other hand, it could also happen to 

an SN2 reaction with late transition state and great charge separation where the bond with leaving 

group is strongly loosened. Then partial positive charge on carbon could be destabilized by 

electron acceptor and thus even in case of SN2 reaction electron withdrawing group could slow 

the reaction down. Notice that this interesting observation can hardly be done without the MRP 

analysis. 
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Figure 5. Examples of Molecular Reaction Pairs for SN2 reactions in methanol at ambient 
temperature. In CGRs, formed and broken bond are shown as crossed and circled respectively. 
Blue and red arrows correspond, respectively, to the decrease and increase of logk induced by 
the given transformation. 

 

 

5. Consensus model performance in cross-validation and outliers analysis 

The performance of our SVR consensus model in cross-validation is pretty high: Q2=0.92 

and RMSE=0.34 logk units (see Figure 6) which is much better than that of previously reported 

SVR models by Honnakker et al. (Q2=0.53, RMSE=1.26) [11] and Random Forest models by 
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Madzhidov et al (Q2= 0.67, RMSE = 0.51) [12] also based on the ISIDA descriptors. This could 

be explained by rigorous data curation protocol used in this study.  

It should, however, be noticed that the above statistical parameters may not reflect a real 

predictive performance of the model since at the given CV fold the same reaction proceeding 

under slightly different conditions can be present both in training and test sets. 

 

 

 

 
Figure 6. Performance of the global model in cross-validation: predicted vs experimental 

logk values for the entire data set (top) and for the for unique data points subset (bottom). Solid 
lines correspond to perfect predictions, doted lines specify margin with values predicted within 
3·RMSE, dashed lines specify margin with values predicted within 3·RMSEUDP, crosses and 
circles represent reactions with neutral and anionic nucleophile reactions correspondingly. 
Examples of outliers are described in Table 2 
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In order to tackle this problem, the model’s performance was assessed only on unique data 

points (UDP), i.e., reactions studied under one sole condition. Thus, predicted logk for 551 

unique data points corresponding to 202 reactions with anion nucleophiles and 349 reactions 

with neutral nucleophiles were selected from cross-validation results obtained for the entire 

modeling set. The accuracy of predictions on UDP reactions was close to the experimental error: 

RMSEUDP=0.61 and Q2
UDP=0.75 (see Figure 6 bottom).  

Examination of data points for which difference between predicted and experimental 

values exceeds 3·RMSEUDP revealed several outliers, typical examples of which are shown in 

Table 2. They mostly resulted from (i) experimental data inconsistency, (ii) chemical complexity 

or (iii) some limitations of fragment descriptors.  

Outliers 1 and 2 are typical examples of data inconsistency. Reaction 1 was carried out in 

phenyl-ethanol at 201 °C. Its experimental logk value doesn’t follow expected 1/T dependence 

observed for the series of measurements at different temperatures: logk = -4.09 (90 °C), -3.81 

(100 °C), -3.68 (105 °C), -3.58 (110 °C), -3.42 (115 °C). Predicted logk = - 1.36 much better 

follows the 1/T trend than the experimental rate constant (-3.21). 

Non-continuous variation of logk as a function of solvent mixture composition has been 

detected for reaction 2 carried out in pure DMSO. Analysis of the training set data shows that the 

rate constant increases with DMSO percentage in mixture with water: logk = 1.07 (81% DMSO), 

0.06 (65%), -1.01 (46%), -2.08 (30%), -2.93 (18%), -3.66 (8%), -4.09 (2%). Thus, logk = -2.48 

reported for pure DMSO looks too small and is clearly out of this trend. 

Some complex structural effects were not learned by the model due to the lack of examples 

in the modeling set. Thus, in para-nitroaniline (a nucleophile in reaction 3) direct polar 

conjugation of amino- and nitro-groups in para-positions significantly reduces the 

nucleophilicity of NH2-group. Since training set didn’t contain any close analogues of para-

nitroaniline, the model overestimated logk (see Table 2). Similarly, large experimental logk for 

reaction 4 resulted from anchimeric assistance of OH group in β−position was not learned by the 

model due to the lack of data.  

Reactions involving reagents with rarely occurred structural patterns  can hardly be 

well predicted. This is a case of reaction 5 in which the substrate bears SO2CH2Cl group, unique 

in the training set, and reaction 6 representing a rare transformation of tertiary to quaternary 

amine.  

For the reactions involving small size reactants only small fragments are generated. These 

fragments are, sometimes, very common for the training set objects and therefore they are not 
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allowed to distinguish different classes of reactants. Thus this is not surprising the model fails to 

predict logk correctly for these reactions (see items 7, 8 and 9).  

 

Table 2. Example of outliers detected in cross-validation. 

N Reaction 
Experimental 

conditions 
logkexp logkpred 

1 

 

phenyl-ethanol, 

201 °C 
-3.21 -1.36 

2  DMSO, 25 °C -2.48 1.33 

3 

 

methanol, 0 °C -5.00 -2.85 

4 
 
water, 0 °C -2.06 -6.38 

5 

 

1,4-dioxane,  

50 °C 
-2.05 -4.40 

6 
 
methanol, 0 °C -1.58 -3.47 

7  methanol, 50 °C -4.99 -3.08 

8 
 

water, 25 °C -5.80 -2.38 

9 
 

DMFA, 0 °C 0.29 -1.90 
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6. Local vs global models 

The question arises whether the models built on selected subsets (“local” models) perform 

better than the “global” consensus model reported in previous section ? To answer this question, 

the local models were built on the subsets containing only reactions with neutral and anionic 

nucleophiles or reactions proceeding in particular solvents (nitrobenzene, methanol, ethanol, 

acetone, water, benzene). The modeling workflow was similar to that described in section 2.5 

and only unique data points (UDP) were used. Obtained results show that the local models built 

on “nucleophiles” subsets performed similarly to the global model: RMSEUDP (local) = 0.72 and 

0.59 and RMSEUDP (global) = 0.68 and 0.57 for anionic and neutral nucleophiles, respectively. 

The models built on the subsets corresponding to particular solvents involved fragment and 

temperature descriptors. Results given in Figure 8 show that for 4 solvents (nitrobenzene, 

ethanol, water and benzene) RMSE values of global and local models are similar. On the other 

hand, global models performed better for acetone and worse in methanol. Notice that accuracy of 

predictions vary as a function of solvent type: prediction error observed for nitrobenzene and 

ethanol subsets is smaller than for other solvents.  

 

 
Figure 8. Cross-validated RMSE of global and local models on the subsets corresponding 

to particular solvents. 

 

7. Consensus model validation on the external test set  

An external data set containing 105 Menshutkin reactions was collected from the papers 

published in 1990-2010 and it didn’t overlap with the training set reactions. Prediction 

performance of the models on this test set was slightly worse (RMSE=0.8 and R2=0.64) than that 

observed in cross validation for UDP. 
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Figure 9. Validation of the global model on the external set: predicted vs experimental 

logk. Solid line corresponds to perfect prediction. Dotted lines are located by 3*RMSEUDP away 
from the perfect prediction line. (a) Datapoints are labelled according to reaction signature types. 
(b) Only reactions having reaction signatures similar to training set ones are shown. (c) only 
reactions within bounding box AD for, at least, one individual model are retained. (d) only 
reactions for which 50% of individual models were retained by the bounding box AD are shown 

 

All detected outliers contain substituted phenylsulphonate leaving group (see example on 

Scheme 2). Their experimental logk values varying from -3.5 to -0.8 are much larger than 

predicted logk varying from -3 to -4. This could be explained by the fact that for 34 training set 

reactions of similar type, logk never exceeded -2.5.  

 
Scheme 2. Example of SN2 reactions with the substituted phenylsulphonate leaving group 

 

In order to improve the models performance on the external set, several applicability 

domain definitions were examined (see section 2.5.3). Results how given in Table 3 that none of 

them are efficient. Indeed, the “wide” signature control AD discards no test set reactions and, 

therefore, it doesn’t impact the models statistical parameters. The “narrow” signature control and 

“weak” consensus control lead to significant decrease of both prediction performance and the 

data coverage. On the other hand, the “firm” consensus control significantly improves the 
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model’s performance. However, it covers only 7.5% of data which doesn’t allow us to 

recommend this AD in further applications.  

 

Table 3.Performance of consensus model on the external test set as a function of Applicability 

Domain 

AD definition R2 RMSE Data coverage (%) 

“wide” signature control  0.64 0.8 100 

“narrow” signature control  0.22 0.69 13 

“firm” consensus control  0.98 0.1 7.5 

“weak” consensus control  0.5 0.61 32.3 

 

 

Conclusions 

Representation of a chemical transformation by a single Condensed Graph of Reaction 

opens a possibility to apply to chemical reactions mining variety of chemoinformatics 

approaches developed for individual molecules. In particularly, this concerns invented in this 

work the Matched Reactions Pairs approach (an analogue of well-known Matched Molecular 

Pairs) which being applied to CGRs provides an interesting insight into the substituents effects 

on chemical reactivity. Being applied to a set of SN2 reactions, this method helped us to detect 

transformations with late transition state and great charge separation.  

A CGR can be encoded by fragment descriptors which, in turn, can serve as an input in the 

tools of data visualization and modeling. If necessary, these descriptors can be concatenated with 

the parameters describing experimental conditions. Here, this approach has successfully been 

used to visualize large set of SN2 reactions using Generative Topographic Method and to 

develop predictive SVR models for the logarithm of reaction rate. The performance of the 

developed consensus model in cross-validation (RMSEUDP=0.61 logk units) and on the external 

test set (RMSE=0.8) is nor far from the experimental error (0.5 logk units). Four different 

definitions of model’s applicability domain for reactions have been examined, but none can be 

recommended because of either low ability to discard the outliers or low data coverage. 

The developed consensus SVR model is freely available for the users on our server 

cimm.kpfu.ru. 

 

Supporting Information contains some information about implementation of SVR consensus 

model on our server http://cimm.kpfu.ru 
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