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 Abstract 

Recent advances in genomics technologies have greatly accelerated progress in both 

fundamental plant science and applied breeding research. Concurrently, high throughput plant 

phenotyping is becoming widely adopted in the plant community, promising to alleviate the 

phenotypic bottleneck. Whilst these technological breakthroughs are significantly accelerating 

QTL and causal gene identification, challenges to enable even more sophisticated analyses 

remain. In particular, care needs to be taken to standardize, describe and conduct experiments 

robustly while relying on plant physiology expertise. Here we review the state of the art 

regarding genome assembly and the future potential of pangenomics in plant research We also 

describe the necessity of standardizing and describing phenotypic studies using the Minimum 

Information About a Plant Phenotyping Experiment (MIAPPE) standard in order to enable the 

reuse and integration of phenotypic data. In addition, we show how deep phenotypic data might 

yield novel trait-trait correlations and review how to link phenotypic data to genomic data. 

Finally, we provide perspectives on the golden future of machine learning and their potential in 

linking phenotypes to genomic features. 

 

Introduction 
The last decade has seen a considerable increase in published plant genomes, enabled by 

advances in sequencing technologies. The initial post-Sanger sequencing advancement came in 

the form of high-throughput short-read technologies, frequently termed second generation 

sequencing (see glossary). Although the maximum read length of about 600 bases was 

considerably shorter than that available from contemporary Sanger sequencing, the high 

throughput and low relative cost ensured that this technology was quickly adapted. This was 

followed by the more recent long-read technology (third generation sequencing) led by the 

PacBio platform. This overcame the read length problem inherent in second generation 

sequencing, enabling multi-kilobase reads, but at a cost of read quality. Third generation 

sequencing was initially used to resequence well-studied model species such as Arabidopsis 

thaliana, yeast and Drosophila (Berlin et al., 2015) before successfully sequencing new 

genomes, such as the small genome from Oropetium thomaeum (Van Buren et al., 2015).  

This trend continues as Oxford Nanopores, the latest long-read technology, becomes more 

widely available. This technology (Jain et al., 2016) has already successfully been used to 

reconstruct the Arabidopsis genome (Michael et al., 2018) as well as the genome of a non-model 

wild tomato species (Schmidt et al., 2017) and has the added advantage of not requiring a large 

capital investment. Long reads can not only reveal small scale variation and presence-absence 

dynamics in genes, but also large-scale variation, including rearrangements from e.g. 

transposon activity, and can lead to potentially novel insights about a plant species. 

Additionally, as pangenomic approaches based on multiple reference accessions becomes more 

common, the de novo sequencing of many lines from each species can be expected (e.g. Brassica: 

Golicz et al., 2016, rice including wild relatives: Zhao et al., 2018). Whilst genome research is 

certainly well established and advances in technologies allow for the delivery of data ever more 

quickly and efficiently, effective algorithms and storage capacity for genome data are becoming 

serious concerns (Stephens et al., 2015). 
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As with genomic developments, there are promising advances in plant phenotyping technology, 

such as the use of automated phenotyping machinery (Fiorani and Schurr, 2013) and advanced 

image analyses (Pound et al., 2014, Tsaftaris et al., 2016, Pound et al., 2017). This has resulted in 

unprecedented insights into plant physiology, architecture, and  performance. Compared to 

genomic research, data output produced by established systems in plant phenotyping is still 

manageable (Coppens et al., 2017), although expanding use of advanced imaging platforms such 

as hyperspectral cameras by the wider community will likely result in similar storage capacity 

concerns. As phenotyping equipment costs are still prohibitive for many plant labs, new lower 

cost phenotyping procedures, including the deployment of inexpensive sensors and set ups 

(Paulus et al., 2014) as well as machine learning techniques for low cost devices are being 

developed and researched (Atanbori et al., 2018). 

Analyses which combine advanced phenotyping and genomic datasets offer great potential for 

the discovery of novel insights, such as in genome wide association studies (Millet et al., 2017, 

Borevitz et al., ibid) or genomic prediction technologies, even within the scope of a single 

project. Furthermore, machine learning and other data science techniques can extract novel 

insights from meta analyses of multiple datasets. However, there are several obstacles that need 

to be addressed before this can become widely applicable. This review outlines the current state 

of the art in genomics, plant phenotyping, and standardization. It explains how these data can be 

integrated using data science and machine learning techniques, and discusses current 

challenges that are being addressed by the plant science community. 

 

From Sequences to Genomes 

De novo sequencing and assembly of plants is often difficult and tedious (Claros et al., 2012). 

This is largely due to the high repeat content of many plant genomes, with repetitive elements 

derived from a wide range of sources, including transposons and tandem gene duplications. The 

situation can be further complicated by the fact that many plants are autopolyploid, or have 

undergone recent whole genome duplications (Vogel et al., 2018). This has often necessitated 

analyzing diploid relatives (e.g. wild strawberry, Shualev et al., 2011) or using double-

monoploid lines (e.g. Potato Genome sequencing consortium, 2011) rather than a commercially 

relevant crop line. Even more problematic, plants may be derived from the hybridization of 

different but related species, giving rise to allopolyploid species such as rapeseed (Chaloub et 

al., 2014), tobacco (Sierro et al., 2014) or petunia (Bombarely et al., 2016), whose genomes are 

often tackled by first analyzing the extant parental genomes. This approach has also been 

applied to sequencing the D parent of the allohexaploid wheat (Luo et al., 2017). 

While polyploidy forms an obvious problem, repeats and the complications they cause were 

known but not systematically analyzed. Jiao and Schneeberger (2017) investigated this issue in 

detail by comparing approximately 100 diverse plant and vertebrate genomes. The authors 

were able to demonstrate higher incidences of repeats in plant genomes, suggesting that some 

plant genome assemblies will require more advanced approaches to span repetitive regions. 

Another difficulty of plant genomes is often their sheer size, making costly long-read sequencing 

technologies prohibitively expensive, both in terms of sequencing and computation. This was 

especially challenging for the complex 17 Gbp wheat genome which consists of three 
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subgenomes (International Wheat Genome Sequencing Consortium, 2014). Thus, the initial 

assembly relied on sequencing sorted chromosomes, a difficult wet-lab technique. On the other 

hand, a whole genome shotgun assembly using long-read data required 880,000 CPU hours to 

compute, taking more than half a year despite being run on a compute cluster (Zimin et al., 

2017). Finally, many plants are self-incompatible (Fujii et al., 2016) and consequently can be 

highly heterozygous, adding complexity to the assembly process.  

Despite these hurdles, many standard pipelines and tools, which can potentially assemble a 

reasonable quality genome, are available (Figure 1). The primary factor determining the choice 

of assembly pipeline is the type of reads in the dataset, since short and long reads are generally 

assembled using very different approaches. In the case of short-read data from the Illumina 

platform, reads are typically quality controlled using e.g. FASTQC followed by adapter/quality 

trimming (Bolger et al., 2014b).  After read trimming, the assembly process can be performed 

using a variety of short-read assemblers such as ABySS (Simpson et al., 2009), DISCOVAR (de 

novo) (Weisenfeld et al., 2014), Velvet (Zerbino and Birney, 2008) or SOAPdenovo (Luo et al., 

2012). SOAPdenovo is especially popular as it is easy to install, relatively easy to use and 

reasonably fast. Alternatively, commercial software such as the CLC assembler can be used with 

small computational resources and offers a graphical user interface, whereas the commercial 

NRGene suite enables the analysis of complex genomes using short-read data (Avni et al., 2017, 

Luo et al., 2017)   

Examples of long-read assemblers include Miniasm (Li, 2016), Canu (Koren et al., 2017), SMART 

denovo or its successor, wtdbg, and Falcon. In some cases, steps of different assemblers can be 

“m x d  nd m t   d” fo  sp ed and efficiency. For instance, it can be beneficial to use the error 

correction steps of Canu coupled to SMART denovo (Schmidt et al., 2017) or wtdbg (Koren: 

https://genomeinformatics.github.io/na12878update/). 

The relative costs and high error rate of long-read technologies negate some of their benefits. 

Error rate was particularly problematic in the case of long reads from early versions of the third 

generation Oxford Nanopore platform, which offered read correctness of below 70% (Rang et al. 

2018). Its error rate has improved substantially in subsequent versions, but the technology still 

has difficulty resolving specific base patterns, such as long homopolymers. As a result, recent 

versions have been assessed to give a maximum read correctness of 88% (Wick et al., 2018), 

although this is potentially lower in plants (Schmidt et al., 2017). Since these errors are 

systematic, they cannot be fully corrected by additional coverage. Therefore, even after post-

assembly read polishing, assemblies are currently capped at 99.9% accuracy when using Oxford 

data alone (Wick et al., 2018). In theory, PacBio reads should have much fewer systematic 

errors, and thus should converge on the correct result given sufficient coverage. Nonetheless, 

there are indications that real world assemblies may still suffer from some residual accuracy 

problems (Watson, 2018).   

Given their complementary attributes, it is common to combine error-prone long reads with 

highly accurate short reads to form a potentially superior hybrid assembly (Figure 3). Multi-

step hybrid approaches are necessary because established assembly algorithms, namely the 

Overlap-Layout-Consensus (OLC) method, used with long reads, and the De Bruijn Graph (DBG) 

method, used with short reads, are only suitable for their respective kinds of read dataset. An 

early approach to hybrid assembly was to first assemble the short reads, then scaffold the 

resulting contigs guided by the long reads (Figure 3). This can be performed by a post-
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assembler tool, such as PBJelly and SSPACE-LongRead, or integrated directly into an assembler, 

such as SPAdes. The MaSuRCA (Zimin et al., 2013) approach is similar, and works by first 

conservatively assembling the short-   ds  nto  ong   ‘s p  -   ds’  nd t  n  ss mb  ng t   

super-reads in combination with the longer reads in an OLC approach. These short-read-first 

approaches work relatively well when only limited amounts of long-read data are available. 

However, when sufficient long-read data is available, a long-read assembly approach will 

generally give a better result. Short reads can be used pre-assembly, to correct the individual 

long reads (Figure 3b), or post-assembly, to correct the contigs (Figure 3c), a process commonly 

  f    d to  s ‘po  s  ng’ t    ss mb y. Fo  p  -assembly read correction, the simplest approach 

is to map individual short reads onto long reads and use the short-read consensus to correct the 

long reads. This approach is implemented in tools such as Proovread (Hackl et al., 2014) and/or 

LSC (Au et al., 2012). Since it is difficult to unambiguously align individual short reads against 

long reads, an alternative strategy involves an initial assembly of the short, accurate reads into 

contigs (HALC, Bao et al., 2017) or assembly graphs (LoRDEC, Salmela et al., 2014) to correct the 

long reads. A recent comparison of long-read correction tools found that HALC performed best 

on d t  s ts f om “ omp  x” g nom s  s     s t  t of   m ns or rice (Mahmoud et al., 2017). 

Post assembly polishing using short reads can be performed using Pilon, while Racon supports 

polishing with either short or long reads. Although polishing with accurate short reads can 

dramatically improve assembly accuracy, in practice, this often applies only to unique genome 

regions.  

Although these multi-step hybrid approaches often out-perform assemblers which use short or 

long reads alone, they are inherently wasteful. Information is lost at each step in the analysis, 

and thus results in a sub-optimal assembly. A single step hybrid approach, which would allow 

for the seamless integration and combined analysis of short and long reads, could in principle, 

yield an improved assembly (Figure 3d).  

In addition, especially in the case of some plant genomes, many short reads cannot be accurately 

mapped to one location due to transposon derived repeats and homologous genes with a high 

degree of identity, making the long read assembly errors unrecoverable by short reads. 

The final endpoint of a genome assembly is ordering and orienting the assembled sequences to 

form chromosomal pseudomolecules. This can be guided by marker sequences from an 

independently determined genetic map. Alignment of these marker sequences against the 

assembly allows the approximate chromosomal position and potentially orientation of each 

scaffold to be determined. This last step is often not reached, as it is either not needed for the 

planned analyses or high resolution genetic maps are not available. However, in the context of 

combining genotypes with phenotypes, the exact chromosomal position of genes is essential for 

their correlation with known QTLs. Hi-C, a new technology providing contact frequencies 

between sequences, has revolutionized the assembly to chromosomes. For plants it was notably 

applied to the 5Gb barley and 12 Gb wild emmer genome (Mascher et al., 2017, Avni et al., 2017) 

and has allowed chromosome scale assemblies without a genetic map for e.g. raspberry (Van 

Buren et al., 2018). 
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One reference, multiple references and the Pangenome 

Short-read sequencing technologies, in conjunction with annotated reference genomes, can be 

readily applied to a variety of biological questions, including detection (Zhang et al., 2017) and 

analysis of gene expression (Ezer et al., 2017), DNA methylation (Zhong et al., 2013), 

identification of transcription factor binding sites and the detection of causal regions and 

mutations in mutant screens (James et al., 2013, Klap et al., 2017) or populations (Thoen et al., 

2017). However, the importance of next generation sequencing, beyond the context of a single 

reference accession, has long been recognized (Varshney et al., 2009). As sequencing became 

more accessible in terms of cost and availability, plant projects frequently sequenced multiple 

accessions or species in order to investigate natural diversity. This was initially applied to plant 

species with relatively small genomes such as rice or Arabidopsis, but has since been extended 

to field crops such as tomato (Lin et al., 2014). 

Traditionally, the dominant analysis approach for such projects involved mapping reads from 

novel accessions to the reference genome in order to determine small scale variation, especially 

single-nucleotide polymorphisms (SNPs) and less commonly, insertions and deletions (InDels), 

including copy-number variations (CNVs). A reduced representation of a genome is potentially 

the cheapest way to gain SNP and marker information in order to enable genome-wide 

association studies (GWAS) and genomic selection studies (Bhat et al., 2016). The key idea was 

to reduce the sequencing cost per sample by only sequencing corresponding parts of genomes, 

albeit at the cost of a more complex library preparation, using restriction enzymes to selectively 

cut the DNA, thus focussing the sequencing around the restriction sites. Multiple approaches 

have been developed, including Reduced Representation Libraries (RRL, van Tassel et al., 2008), 

Restriction site Associated DNA Sequencing (RAD-Seq, Baird et al., 2008) and Genotyping by 

Sequencing (GBS, Elshire et al., 2011). New variations of these techniques continue to be 

developed (He et al., 2016, Scheben et al., 2017).  

Whole genome resequencing ranging from skim sequencing (approximately 1x coverage or 

below) to medium coverage resequencing (in the range of 20-40x) is increasingly common for 

small to mid-size genomes (Scheben et al., 2017), but remains so far prohibitively expensive for 

large genomes such as wheat. Using this resequencing approach, sequences from the whole-

genome are used, thereby offering more comprehensive SNP detection than reduced 

representation approaches. This whole genome resequencing approach, which was successfully 

used in humans, often performs less well when applied to plants. This is due to the standard 

read mapping approaches, which were mostly tuned for human data sets and only tolerate 

minor variations from the reference sequence (Langmead and Salzberg, 2012; Li and Durbin, 

2009). They are therefore ill-suited to the high rates of variation found even within a single 

plant species. The frequent use of related wild species as breeding material further amplifies 

this problem due to a broadening of the genomic pool. Other typical plant genomic 

characteristics, including large gene families, ancient whole genome duplications, polyploidy 

and a high amount of transposon derived repeats, further exacerbate the challenge. 

Whilst techniques based on mapping reads to reference genomes are well suited to GWAS and 

genomic selection, they are inadequate in identifying new genome variants, such as novel genes 

not present in the reference. In maize, it was estimated that an early genomic reference did not 

capture about a quarter of the low-copy gene fraction from all inbred lines (Gore et al., 2009). 

Despite the estimated completeness of this reference being just 91%, mapping rates of above 
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95% for whole genome resequencing were obtained, illustrating that some reads were 

incorrectly mapped to repeat regions or paralogous genes (Bukowski et al., 2018). This 

represents a major issue as, in order to improve existing elite accessions using transgenic and 

new breeding technologies, finding novel genes or gene variants is necessary (Scheben and 

Edwards, 2018). 

An alternative strategy to deal with this issue is to map the reads to the reference plant genome 

 s ng     t v  y st   t    gnm nt    t      fo  ow d by  ss mb y of t   “  ft-ov  ”    ds t  t  o  d 

not be mapped. Using this two step approach, it is expected that the non-mapping reads will 

assemble into novel genetic regions present in the particular strain under study. This strategy 

has been applied in the model plant Arabidopsis (Schneeberger et al., 2011), and more recently 

to the crops cabbage (Golicz et al., 2016) and wheat (Montenegro et al., 2017). However, the 

resulting novel sequences are typically short and fragmented, since many of the reads belonging 

to these regions would have been inadvertently mapped to similar regions present on the 

reference, even if relatively strict alignment criteria are used.  

A radically different approach is to ignore the existing reference entirely, instead jointly 

assembling read data from multiple genomes and tracking read origin (Iqabl et al., 2012, Muggli 

et al., 2017, Turner et al., 2018). This computationally elegant method allows the nodes and/or 

edges of the graph to be tagged with information, indicating which read dataset(s) support 

them. Given these tags, it is easy to determine the nodes/edges which are either shared by or 

unique to specific datasets. Chains of such nodes/edges can then be used to infer longer shared 

or unique sequences. Despite its elegance, this approach is only used occasionally in the 

eukaryotic field due to the computational resources needed.  

Another alternative is the creation of multiple de novo assemblies, which, from the wet-lab 

perspective, has been made feasible by recent advances in long-read sequencing technologies. 

However, the bioinformatics infrastructure required for such an endeavor presents a major 

barrier. A single gigabase scale assembly can require 10,000+ central processing unit (CPU) 

hours per iteration in the case of Canu (Koren et al., 2017, Schmidt et al., 2017), but new 

sequence analysis algorithms (Bolger et al., 2017b, 2017c) and assembly tools such as wtdbg 

(see above) promise to bring these computational costs down. 

Multiple de novo genomes from a single species contain a more complete genetic repertoire than 

a single haploid reference. This approach can be extended to a set of related species such as a 

crop and its wild relatives. A recent study used more than 60 diverse rice (Oryza sativa) 

accessions together with a wild relative (Oryza rufipogon) to assemble multiple genomes, 

revealing gene loss and gain (Zhao et al., 2018). In a similar approach, 54 Brachypodium lines 

were all assembled de novo (Gordon et al., 2017). While illustrating the power of a multiple-

reference genome approach, these projects required multiple time-intensive analysis pipelines, 

and several ad-hoc developments.  

A fundamental barrier to the wider adoption of this approach is that the vast majority of 

existing analysis tools and pipelines do not work with multiple reference genomes, and the 

n ïv      t on of  n ‘ n-s    o po yp o d ’ fo m d by  gg  g t ng m  t p     f   n   g nom s   s 

inadequate in many scenarios. It is necessary to have a clear conceptual difference between the 

sequences from a single line/species, which are generally considered in aggregate, and 

sequences from different lines/species, which are considered as alternatives. Furthermore, this 
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‘ n-s    o po yp o d’  pp o     s   g  y  n ff    nt w  n wo k ng w t       g  n mb   of   g  y 

related genomes, since each is represented independently.  

The creation of a pangenome promises to address the conceptual and computational limitations 

of t   ‘ n-s    o po yp o d’  pp o   . At  ts most b s      p ng nom  m st   t  n t   d st n t on 

between multiple sequences from one origin genotype and sequences from different genotypes, 

and more critically, the analysis tools using a pangenome reference must act appropriately 

based on this origin information and the specific analysis being performed. For computational 

reasons, a pangenome is likely to be represented as a graph structure, as described above, 

rather than a large collection of independent linear sequences. This allows regions that are 

shared between many genomes to be represented once, saving both storage space and 

computational resources during alignment.  

Despite the challenges of their creation, pangenomes promise to be an extremely powerful 

resource for the analysis of genomic sequences. However, existing pangenomic aligners, such as 

BWBBLE (Huang et al., 2013) can handle only limited variation beyond what is already known. 

This limitation is not critical for genomes (e.g. human) where genetic diversity is limited and 

where the reference is very comprehensive. However, for optimal use with crop species and 

their wild relatives, pan-genomic tools will also need to support highly divergent, novel 

sequences as well as large-scale variations. One approach has been made by the variant graph 

team (Variant graph team, 2018) that allow representing pangenomes in graphs or to map 

reads to these and also to visualize them. 

In summary, by using multiple reference genomes, it is possible to find new genes or new 

regulatory cis elements which would not be possible with only one reference. Especially in the 

case of regulatory elements, line specific transposon insertions bringing their own regulatory 

elements might play an important role (Chuong et al., 2017).  

 

Standardized Genome Annotations 

In order to find and functionally annotate causal genes underlying a QTL region, it is first 

necessary to identify these genes in the underlying DNA sequences (Figure 1, Figure 2 left 

panel). While gene finding can still be considered an art, tools such as MAKER-P (Campbell et al., 

2014) and BRAKER2 (Hoff et al., 2016) have simplified this task considerably. In cases where 

sufficient RNASeq expression data is available, programs such as StringTie (Pertea et al., 2016) 

can be used to transform these data into a first draft gene space. This expression-driven gene 

calling improves with the use of full length cDNA sequencing, made possible by long-read 

technologies. However, expression-driven gene annotation can only detect genes for which data 

set exist where these genes are expressed. This necessitates that the samples are subjected to a 

wide range of conditions in order to activate expression of the full gene space.  

In comparison to gene finding, a comprehensive transposon detection method for plant 

genomes is still in a more experimental phase. There are currently no established pipelines that 

capture all transposon types in a single step. This does not pose a major problem when working 

with a new genome for which a well curated repeat library exists from closely related species. In 

such cases, a simple homology search against repeat libraries provided by repeat databases 
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such as RepBase (Bao et al., 2015) or PGSB-REdat (Spannagl et al., 2017) will be sufficient to 

provide a draft transposon annotation. Suitable matching tools are either RepeatMasker (Smit et 

al., 2016) or vmatch (http://www.vmatch.de/), which greatly improves running times for large 

genomes (Mascher et al., 2017, Avni et al., 2017). For novel species without curated repeat 

libraries, the transposon annotation is more cumbersome as a de novo detection of species 

specific transposons needs to be performed first (Lerat et al., 2010). Here, packages like REPET 

(Flutre et al., 2011) perform well for smaller genomes. Transposons, formerly considered as 

junk DNA, are now believed to be a major contributor to genotype diversity. Their role in 

phenotype diversity has been shown for many well-studied single examples (e.g. Butelli et al., 

2012, Lutz et al., 2015) and also in some genome wide approaches (e.g. Bolger et al., 2014, 

Makaraevitch et al., 2015). Given the emerging importance of transposons in the study of stress 

and developmental responses, their consistent annotation and analysis is crucial and will likely 

provide many interesting insights and, when pangenomes are available, allow for tracking 

transposon evolution in a species. 
Once genes and transposons have been structurally annotated, the next step is to ascribe each 

gene a biological function,  n   p o  ss known  s ‘f n t on    nnot t on’. W      s ng on -off 

textual annotations can be beneficial when inspecting small QTL regions for potential 

candidates, using a-priori biological knowledge is no longer feasible for large-scale analyses. 

Therefore, a full genome annotation will usually first rely on an automatic functional annotation 

based on domain analyses and sequence similarity searches. In order to provide consistency, 

most tools that automatically annotate genomes frequently employ formalized ontologies such 

as the GO or MapMan ontology. The use of these (or other well-defined) ontologies enables 

consistency of the annotation terms between different genomes.  

These are many tools available which automatically annotate genes using ontologies, such as the 

Mercator automated annotation tool (Lohse et al., 2014), BLAST2GO (Conesa and Gotz, 2008), 

KEGG Automatic Annotation Server (KAAS) (Moriya) and TRAPID (van Bel et al., 2013) 

(reviewed in Bolger et al., 2017a). The overarching goal of these tools is the rapid automatic 

annotation of genes to a high standard, approaching that of manual annotation.  

 

Phenotypes and their standardization 

An  mpo t nt go   of p  nt g nom  s  nd ot    ‘om  s’  pp o    s  s to b tt    nd  st nd  nd 

predict plant phenotypes. Despite the challenges involved in plant genomics research, the 

generation and analysis of genomic data is largely outpacing the production and interpretation 

of phenotyping data (Furbank & Tester, 2011, Cobb et al., 2013). The reason for this 

‘p  notyp ng bott  n  k’  s t   f  t t  t p  nts       g  y p  st  ; on  g notyp  m y  x  b t 

many different phenotypes depending on environmental conditions. Considerable efforts have 

been invested into the automation of plant phenotyping (Fiorani & Schurr, 2013, Fahlgren et al., 

2015, Shakoor et al., 2017), which has dramatically improved the consistency and throughput of 

plant phenotyping.  

How v     v n mo   t  n  n g nom  s o  ot    ‘om  s’ d s  p  n s  p  nt p  notyp ng  s   m  t -

dimensional challenge, especially in the case of crop species. This is because complex, 

 omm       y  mpo t nt t  g ts  s     s “y   d  mp ov m nt ”   s  t f om   v    ty of 
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physiological, morphological, anatomical and chemical aspects of plant performance. Therefore, 

many phenotyping efforts aim to understand one or more of these components, such as 

photosynthesis, root architecture, or above ground biomass and subsequently build on crop 

models to scale to yield (Parent & Tardieu, 2014).  

Given the developmental changes observed over time from seedling to mature plant, emphasis 

of most newly-developed phenotyping techniques is on non-destructive approaches, such as (3-

dimensional) imaging with RGB (red, green and blue) cameras (Figure 1), thermal and 

hyperspectral imaging and/or fluorescence measurements of photosynthesis. Analyses of 

physiological processes such as enzyme activities (Gibon & Rolin, 2012), transpiration or carbon 

flux (carbon gain through photosynthesis, carbon loss through leaf, stem and root respiration) 

are far more challenging as automation in these fields is not straightforward. Automated 

sampling of leaf material by means of robots will represent an important advance (Alenya et al., 

2012). 

A single genotype has the potential to display a range of different phenotypes depending on the 

environmental conditions it is subjected to. One challenge for researchers is to consider and 

address logistical issues that arise when coordinating physiological studies. For example large, 

in-depth studies (such as for GWAS and QTL analyses) require considerable experimental space 

and resources necessary for the growth and analysis of a wide array (>200) of plant genotypes. 

Proper attention must be given to the environmental conditions, ensuring they are consistent 

across all replicates. Constant environmental conditions allow for a better assessment of 

physiological responses and most analyses are typically carried out with plants growing 

individually in pots, either in a growth room with small plants such as Arabidopsis, or in the 

glasshouse with larger, but agriculturally more relevant species such as Triticum or Zea. Small 

pot sizes ensure enough space for many replicates as well as easy handling in automated 

phenotyping stations, but may also limit plant growth (Poorter et al., 2012a). Environmental 

conditions are generally under tight control in growth rooms and, to a lesser extent, in 

glasshouses. Nevertheless, both growth room and glasshouse environments are significantly 

more stable than the fluctuating environment plants experience when subjected to field 

conditions. Consequently, genotypes that perform well in controlled environments may not 

necessarily be the ones that perform the best in the field. Care has to therefore be taken when 

choosing and testing relevant conditions, i.e. light and temperature (Poorter et al., 2016). This is 

especially true in cases where plants are tested under suboptimal conditions, such as a low 

nutrient or water supply (Ingestad, 1987; Bloom, 2014). Limiting pot size, or improper timing of 

induced stresses could make the entire phenotypic analysis irrelevant (Passioura, 2012). 

Finally, in cases where plant performance in the field is the ultimate aim, one has to keep in 

mind that a genotype that thrives well when grown individually in a pot may not necessarily be 

the genotype that will perform best under conditions where plants are grown at high densities, 

such as in agriculture (Tollenaar and Wu, 1999).  

Given the important role the environment plays in plant growth and development, a 

comprehensive report of environmental conditions during experiments is of paramount 

importance, both for experiments carried out under controlled conditions as well as in the field 

(Poorter et al., 2012b). This enables the comparison of outputs of various experiments and to 

develop the ideotypes for different environmental scenarios (Chenu et al., 2011). Additionally, 

improved data sharing and standardization in reporting, particularly in regard to phenotype 

responses, is especially important in the agricultural sciences (Zamir, 2013). Making historic 
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phenotypic data publicly available would allow plant researchers to share results, compare 

phenotypes, and analyse data that has been deposited in the past in order to identify new, and 

sometimes rare alleles that improve productivity. Finally, the low-barrier accessibility of data 

would invite computer scientists and computational biologists to develop or improve current 

algorithms for phenotypic data analysis (Minervini et al., 2015) and support the integration of 

scientific fields. 

Although this is not always easy given the wide array of plant traits that are measured and the 

specific developmental time points during which those data are collected, efforts on data 

standardization are rapidly improving (Figure 1) (Krajewski et al.   01 ; Ćw  k-K p zyńsk  et 

al., 2016). This will undoubtedly facilitate broader application of techniques such as genome 

wide association studies (GWAS; Millet et al., 2016) using high-throughput field phenotyping 

(Pauli et al., 2016) (Figure 2). However, it is also important to keep in mind that there is not 

only a need for advancing phenotypic analysis and data integration, but also for better insights 

into the application of knowledge obtained under controlled conditions for the improvement of 

plant performance in the field (Poorter et al., 2016, Junker et al., 2016). 

 

Phenotypic data storage 

One key challenge in the plant sciences is the definition of appropriate data management 

procedures and infrastructures to preserve research data as a valuable scientific asset. This task 

has been centralized for genomic and expression data for all fields of the life sciences with the 

Short Read Archive (in the US) and European Nucleotide Archive (in Europe). Phenotypic data, 

due to its high divergence, cannot easily be tackled by a highly streamlined and generalized 

platform. However, in line with the value of original data, funding agencies (Mons et al., 2014) 

and scientific journals are increasingly requesting scientists to publish research data under the 

FAIR (findable, accessible, interoperable, and reusable) data principles (Wilkinson et al., 2016). 

To make data reusable and interoperable in the plant phenotyping community, MIAPPE 

recommendations (i.e. required Minimal Information about Plant Phenotyping Experiments) 

are being developed to ensure a proper description of all necessary metadata, including the 

 nv  onm nt (K  j wsk   t   .   01   Ćw  k-K p zyńsk  et al., 2016).  

Nonetheless, complex, heterogeneous, or unstructured research data frequently remains 

publicly unavailable, often due to the lack of infrastructure needed to handle this data. In other 

cases, the data is published but remains obscured within the supplemental materials. While 

such data is human interpretable, the lack of standardized formatting and data semantics makes 

automated approaches difficult and error prone.   

To provide a generalized resource with an emphasis on phenotypic data, the FAIR-aware e!DAL 

software library was developed. Its aim was to lower the technical barriers and minimize the 

effort of researchers to make data publicly available (Arend et al., 2014). In contrast to popular 

data publication platforms such as Figshare (Singh, 2011) or DRYAD (White et al., 2008), e!DAL 

enables access to large volume research data stored in-house by assigning Digital Object 

Identifiers (DOIs). While Figshare and DRYAD offer a comprehensive functionality, they are only 

free up to a relatively low data volume. This makes them an ideal solution for sharing 

condensed tables or reduced figures but these resources quickly become expensive and time-
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consuming for larger phenotypic datasets. While there are other generic data repository 

infrastructure libraries available, e.g. Fedora (Lagoze et al., 2006), they do not provide a ready-

to-use implementation like e!DAL does. Based on e!DAL, the Leibniz Institute of Plant Genetics 

and Crop Plant Research (IPK) Gatersleben and the German Plant Phenotyping Network jointly 

initiated the Plant Genomics and Phenomics Research Data Repository (PGP) (Arend et al., 

2016), which provides amongst others the first full MIAPPE- omp   nt (Ćw  k-K p zyńsk  et 

al., 2016) phenotypic datasets (Arend et al., 2016b, Chen et al., 2018). The PGP repository 

currently provides 150 data records linked by Digital Object Identifiers and annotated by 

technical metadata. This comprised of more than 1.2 million files with a volume of over two 

Terabytes and is coupled to the ELIXIR European bioinformatics infrastructure, which allows a 

single sign-on service. Furthermore, another unique feature of e!DAL-PGP is the integrated 

peer-review process, which guarantees a certain data quality for every released dataset. The 

intuitive submission process supports researchers in describing and sharing their phenotypic 

data to exploit the full scientific potential of their data. 

The MIAPPE compliant form of data storage promises to overcome standardization issues 

especially for experimental factors, as discussed in the previous section. Thus, these datasets 

will be immediately useful for experimental reproduction or offer a secondary use. Once enough 

data has accumulated it can be mined from different databases or e!DAL installations using e.g. 

the digital object identifiers and potentially identifying relevant datasets by MIAPPE tags, 

offering a true multi-player international data structure. This allows large-scale data producers 

to share their data without a centralized resource by relying on existing infrastructure. 

Afterwards, the collective dataset might be subjected to machine learning approaches discussed 

below. 

However, to profit from existing phenotypic data straight away, it is potentially useful to 

simplify the environment to a single factor, such as water availability (see above and Poorter et 

al., 2012b) and the  n t of m  s   m nt to   s mp   (onto og    ) t  m ( .g. “d ys to f ow   ng”). 

A similar approach focussing on phenotypes is chosen by the AraPheno database, which collects 

several hundred phenotypes for the model plant Arabidopsis (Seren et al., 2017), many of which 

are derived from one large-scale study by a multi-author group (Atwell et al., 2010). 

Due to the knowledge about the underlying populations, the data can be transmitted into a 

standardized GWAS pipeline in AraGWAS, which relies on standardized statistics and will 

therefore offer more comparable results (Togninalli et al., 2018). 

Finally, it can be useful to store and summarize data in even more simply, i.e. to only keep data 

relating to QTL for a specific species (Nijven et al., 2017) or a group of species (Ni et al., 2009), 

as this provides, at the very least, a way to compare between different analyses and a means to 

confirm results when a plant researcher or breeder conducts a similar analysis. 

 

Bridging Genotypes and Phenotypes  

Associating genotypes and phenotypes has become much more simple, as statistics have 

m t   d  nd st t  of t     t too s t  t   n b   s d on    s  ’s d sktop to  sso   t  d t   .g.  n 

GWAS type settings (Figure 2) have been developed. These tools range from the efficient mixed 
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model (EMMA) type family, through FAST-LMM (Lippert et al., 2011) to TASSEL (Bradbury et 

al., 2007), to name but a few which are reviewed in this issue. 

Additionally, user friendly online tools such easyGWAS (Grimm et al., 2016) or GWAPP (Seren et 

al., 2012) exist. These tools only require phenotypic data if using Arabidopsis. This is because 

these tools analyze the phenotypic data against an internally stored set of genomic data from a 

reference panel. 

However, high-throughput phenotyping of multiple traits allows to not only associate traits with 

genotypes, but also to associate traits with each other (e.g. Poorter et al., 2014, Figure 2). Once 

again, this works best within the same experimental setting, as under these conditions the 

environment and m n g m nt  s by d f n t on ‘ d nt    ’. How v     t  s       t  t nov    ns g ts 

would require pooling of multiple datasets or very large datasets comprising many different 

phenotypic values, which has been done in AraPheno/AraGWAS (see above).  

Another large advantage of an approach that relates phenotypes to phenotypes is that 

comparatively few variables are concerned, making statistical overfitting a minor problem. This 

 s b    s  p  notyp   d t  (on    g  pop   t ons) do s not s ff   f om “p>>n”   . . the number 

of variables (phenotypes, p) is usually not larger than the number of samples (n). As an 

example, the Atwell study (2010) recorded 107 diverse phenotypic values in between 90 to 

more than 180 accessions. Thus, many techniques from the extensively studied field of gene 

network reconstruction (reviewed by Emamjomeh et al., 2017) work well, if not better when 

applied to phenotypes, given a large enough population. Indeed, for plant gene network 

analyses, gene expression data is often simply correlated, without putting too much detail into 

environmental or perturbation conditions. The only consideration is that expression data sets 

should represent a range of different conditions and not favour certain perturbations over 

others. This could either be done by hand e.g. in CSBDB.DB (Steinhauser et al., 2004) or 

automatically e.g. in the case of ATTED-II (Obayashi et al., 2018). 

However, whilst a simple correlation analysis between phenotypes is a good start for an 

analysis and thus supported in AraGWAS (Togninalli et al., 2018) and Phenome-networks, more 

sophisticated approaches can be used. Indeed multiple different statistical and machine learning 

approaches are already being used today. 

Firstly, as a way to bridge e.g. well-refined molecular measurements such as metabolic profiles 

to physiological parameters, one can use partial least square (PLS). This technique allows for 

the determination of relationships between outcome variables and predictor variables. Gago et 

al. (2017) used this to relate canopy and stomatal conductance from a vineyard to a metabolite 

matrix. Typically, PLS results are then analyzed using variable importance prediction in order to 

determine important predictors (i.e. metabolites in this case). In the case of Gago (2017) they 

found e.g. phenylpropanoids and myo-inositol to be predictive for both conductance values. 

Alternatively, machine learning can be employed to predict important factors such as biomass. 

As an example, Maddison et al. (2017) used classical machine learning techniques (feature 

selection coupled to support vector regression) to predict biomass outcomes from non-

structural carbohydrates in Miscanthus, extending earlier observations by Sulpice and 

colleagues in Arabidopsis (2013). 
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However, these approaches imply that certain variables are considered a priori, more important 

than others. Whilst this is clearly the case for Miscanthus biomass, deep phenotypic data allows 

for the uncovering of novel associations hitherto not observed between the individual variables. 

The QTL+phenotype supervised orientation (QPSO) approach, developed in the van Eeuwijk lab 

(Wang et al., 2014, Wang et al., 2015), aims to generate directed networks between phenotypic 

traits by using known sparse QTL to orient the network, extending earlier work on gene 

network reconstruction and cleverly combining different data domains.    

However, when only phenotypes are concerned, one can consider (full) partial correlation 

analysis, which removes the influence of other variables on a variable pair or Bayesian network 

reconstruction. Common to all these methods is that they try to find relationships between two 

entities that are not dependent on the other variables. As an example, consider abscisic acid 

(ABA), which influences both stomatal conductance (Wilkinson et al., 2002) and primary root 

growth (Rowe et al., 2016) in response to drought stress. Assuming an overly simplified model 

where stomatal conductance and primary root growth were only dependent on the ABA 

concentration, all three items would be correlated. However, controlling statistically for ABA 

would reveal that stomatal conductance and primary root growth were unrelated.   

In any case, none of these take hidden (not measured) but potentially important and causal 

variables into account. In addition, whilst these methods do not link traits or physiological 

variables with the underlying genomic basis (except for QPSO), they do provide structural 

insights about trait interrelationships. This understanding can be used to modify a target trait 

by genetically modifying another trait, whose genetic basis is already understood. However, it 

has to be noted that all modelling insights are restricted to the data at hand, meaning many 

missing variables will make this more difficult. 

Phenotypic prediction using phenotype ontologies 

Another valid abstraction approach is to couple phenotypes to genes or genomic regions, 

leveraging a meaningful phenotypic ontology (Zamir et al., 2013, Hoehndorf et al., 2015, Deans 

et al., 2015, Coppens, et al., 2017, Figure 2 top left). This strategy has been employed for many 

years in the case of animal and humans, reaching from phenotypically described and formalized 

mouse data to integrated environments and reasoning, bridging data from different species 

(Robinson et al., 2014; Mungall et al., 2017, Rodríguez-García et al., 2017). These data being 

animal-human centric are centered around disease associations, however, the plant community 

has (at least in the case of Arabidopsis) a massive resource for single knock outs using T-DNA 

  n s (O’M    y  nd E k     010  K   nbo  t ng et al., 2017). As a result, many ontologically 

defined phenotypic annotations are already available for knock outs and other transgenics in 

The Arabidopsis Information Resource (TAIR) and other databases (Akiyama et al., 2013, Lloyd 

and Meinke, 2013).  

 

Therefore, data about phenotypes resulting from knock outs could be integrated with GWAS 

studies using the phenotype ontology data integration framework developed by the animal 

community (Hoehndorf et al., 2015). Thus, typical candidate approaches where genes 

underlying a QTL region are investigated manually could be extended by selecting candidate 
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genes, based on their phenotypes and/or based on where in a phenotype network they reside. 

Indeed, the Planteome project tries to assess and integrate some of these data already using a 

clever use of biomedical ontologies (Cooper et al., 2018).  

 

The Blessings and Curses of machine learning 

In t   p st f w y   s “d  p” m    n -learning methods, and particularly artificial neural 

network based approaches have led to revolutionary results, particularly in image analysis. For 

example, this has greatly spurred identification of plant features such as root tips and where 

they are localized in an image (Pound et al., 2017) to count leaves (Uebbens et al., 2018) or to 

derive vegetation indices from RGB images (Kahn et al., 2018). In addition, this has led to the 

development of methods to detect plant diseases (Mahlein et al., 2017, Fuentes et al., 2017, 

Mohanty et al., 2016) and plant stress phenotyping (Ghosal et al., 2018). The latter application 

of deep learning to plant abiotic and biotic stress phenotyping has recently been reviewed by 

Singh et al. (2018). 

The underlying frameworks are constantly driven forward by Google, Facebook and other 

companies offering readily usable frameworks such as Tensorflow 

(https://www.tensorflow.org/) or Caffe2 (https://caffe2.ai/). In addition these big data 

centered companies develop dedicated hardware promising to greatly accelerate training and 

analysis tasks. Thus it is not surprising that plant Image data is analyzed using a plethora of 

machine learning approaches (Pound et al., 2014, Tsaftaris et al., 2016). However convolutional 

neural networks have the potential to greatly advance the field of plant image analysis (Pound 

et al., 2017, Uebbens and Stavenes, 2017, Figure 1).  

One challenge with image analysis is that large-scale datasets with data and ground truth 

outcomes are required. The former can be made readily available through plant phenotyping 

platforms, but finding the ground truth for a limited number of training datasets currently relies 

mostly on human experts. However, as this is costly and time consuming, smart solutions, such 

as those relying on citizen science (Giufrrida et al., 2018) are needed. A recent clever proof of 

concept study, which used the Amazon “mechanical turk platform” (anonymous users are paid 

for small tasks), performed better than for-credit students (Zhou et al., 2018). Without such 

data, algorithms can be compared based on standard datasets, such as those supplied by the 

International Plant Phenotypic Network (Minervini et al., 2014).  This dataset is suitable for 

tasks such as plant detection and localization in images, as well as leaf detection, localization 

and counting in images. This reliance on training datasets is necessary because there is, as of 

yet, no application of unsupervised reinforcement learning methods for image analysis 

purposes.  

Other applications of machine learning, such as prediction of plant performance or the 

integration of heterogeneous datasets, are even less developed as researchers are currently 

embracing more traditional and/or data science driven methods for these applications. As an 

example, Chen et al., (2018) used regression and random forests, but not deep learning to 

predict plant biomass from plant images, whereas Coppens et al. (2017) reviews data 

integration.  
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Plant phenotypic data promises to be an interesting vista for machine learning approaches 

(Figure 2 top). Indeed, early studies suggested that machine learning approaches for phenotype 

predictions stemming from a sufficiently genotyped population could be meaningful, especially 

in the p>>n setting where more predictors from genomics data than plant samples are available 

(Crossa et al., 2017). As an example, Grinberg et al. tried to predict phenotypes using classical 

genomic Best Linear Unbiased Prediction (BLUP) as well as several machine learning 

techniques. The latter clearly outperformed BLUP in the case of yeast with very controlled 

environments, whereas in the case of wheat and rice, BLUP performed particularly well when 

there was population structure (Grinberg et al., 2018). 

 

The non model/ minor crop plant perspective 

As has been shown above, both genomic and phenomic datasets are becoming more and more 

mature and cost-efficient. Currently it is the model plant Arabidopsis rather than crop plants 

which contain the most extensive datasets and which may enable ontology driven phenotype 

prediction. Indeed, this is largely due to a number of points: i) the availability of the machine-

readable ontology term enriched phenotypic datasets for well-defined genes; ii) the largest 

wealth of functional data for gene annotation, which is related to the former point; iii) the use of 

standardized populations from the 1001 genome consortium facilitating abstracting at the 

phenotype level; and iv) standardization driven e.g. by TAIR. Also, for genetic and genomic 

studies, it is necessary to note the importance of accurate phenotyping. The most advanced (in 

terms of crop plants) is most likely maize, which despite its tremendous genetic variety is 

tackled in a well-planned and standardized way, driven both (pan)genomically (Gore et al., 

2009, Hirsch et al., 2016) and phenomically (see e.g. AlKhalifa et al., 2018 for a well described 

dataset) and supported by user friendly tools providing access to these resources such as 

TASSEL (Bradbury et al., 2007). However, while standardization is gaining traction and big 

datasets are becoming more available for major crops, minor crops remain less supported. 

Add t on   y  w  n st dy ng t  s “g notyp -p  notyp ”  nt    t on   t  s  mpo t nt to   v  

access to detailed phenotypic data. In many cases, the selection and evaluation of phenotypes 

have been poorly developed in the experimental design of genetic and genomics studies (Houle 

et al., 2010). Thus, efforts to identify gold standard experimental procedures and scoring 

protocols may contribute to the harmonization of phenotypic data, and therefore to the 

improvement of data accessibility (Shrestha et al., 2012). In addition, the existence of biases is 

another new, important challenge in attaining knowledge from new high-throughput 

techniques.  

That said, for non-mod   sp    s g n     “ yb   nf  st   t   s”   n   so b   s d (M     nt et 

al., 2016) and specialized information systems, such as those for grapevine (Adam-Blondon et 

al., 2016) or the Rosaceae community (Jung et al., 2017) have been developed. Indeed, while 

necessarily less data is available for non-model (minor) crop plant communities (e.g. an apple 

researcher); they can learn from the lessons and mistakes made with big crops and within the 

International Plant Phenotyping Consortium.  
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Finally, it can be expected that even data from the model plant Arabidopsis will be transferable 

to dicots (and thus many horticultural minor crops) or at least related crops (i.e. Brassicaceae) 

on a large-scale basis going beyond simple gene annotation. 

 

 Conclusions 

The impact which the genomics revolution has made on plant science is undeniable and 

innovative pangenomic approaches allowing the integration of data of related species are 

beginning to take hold in the plant field. We are therefore in the middle of a genomics data 

explosion. We are also at an exciting time point witnessing the next revolution in phenomics 

(Tardieu et al., 2017) and we begin to see how machine learning and data science driven 

approaches are trickling into the area of bridging genomics and phenomics data. These 

developments are making plant science a truly modern science, inspired by artificial 

 nt    g n     obot  s syst ms  nd    ss     p  nt p ys o ogy. A w o   n w “b   d” of 

quantitative and computer science-oriented plant scientists (Friesner et al., 2017) is therefore 

required to truly modernize the discipline. 
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Box 1 (Summary)  
 Plant genome sequencing has evolved to soon become a commodity approach for small 

genomes 

 Phenotypic Data standardization recommendations are provided by MIAPPE 

 Many tools and databases facilitate bridging genotypes and phenotypes 
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Box 2 (Open Questions) 
 Algorithms working on multiple genomes of a species are still in development 

 It is still an open question how to best combine short and long reads  into assemblies  

 More rigorous phenotype ontologies and machine learning approaches are likely to 

improve our understanding about plants 
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Tables 
Table 1. Glossary table. 

 

Term Definition 

BLUP 'Best Linear Unbiased 

Predictions' 

A method used to estimate the “random” effects of a 

mixed model. For a plant researcher this is of relevance 

when genotypes are considered a “random” effect. 

(reviewed in Piepho et al., 2008) 

de novo assembly 
The method of assembling a genome from scratch when 

there is no reference sequence available. 

GWAS 'Genome-Wide 

Association Studies' 

An observational study which tries to associate a genome 

wide set of variants (e.g. markers/polymorphisms) to 

determine whether a variant is associated with a particular 

trait. Usually requires many genotypes and relies on natural 

populations and/or panels with diverse cultivars as 

opposed to biparental populations.. 

machine learning 

The process of training computers to autonomously extract 

important information from a data-set and identify 

patterns. Important subfields for a plant researcher include 

(i) classification (e.g. is a plant diseased or healthy given an 

image); (ii) regression (e.g. predict plant biomass from 

several images); (iii) Clustering (e.g. are there subtypes of 

plants in the experiment based on the measurement) 

MIAPPE 'Minimum Information 

About Plant Phenotyping 

Experiment' 

Presents guidelines and a checklist for describing plant 

phenotyping experiments so that they are understandable 

and reproducible. 

Ontology 

An ontology is extending controlled vocabularies (i.e. fixed 

lists of terms to be used) by relating these terms to each 

other. In the simplest case it could describe one term to 

always imply another term (e.g. if monocot, dicot and plant 

could represent a controlled vocabulary and the addition of 

monocot IS_A plant; dicot IS_A plant would start to add 

relationships towards an ontology). 

QTL 'Quantitative Trait Locus' 

A region of DNA containing one or more genes which are 

associated to the expression of a quantitative phenotypic 

trait.  

Second Generation sequencing/ 

next generation sequencing 

Usually sequencing by synthesis based, high throughput 

sequencing platforms which can sequence millions of DNA 

strands in parallel, but compared to Sanger sequencing have a 
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higher error rate and limited read length e.g. 50 to 600 bases, 

depending on the specific instrument used. Some platforms offer 

a paired-end mode, whereby both ends of a DNA fragment are 

sequenced. 

Third Generation sequencing 

Single-molecule sequencing platforms which can create multi-

kilobase reads, but which have much higher error rates than 

Sanger or Second generation sequencing platforms. 

Chromosomal Pseudomolecules 

The largest sequences assembled and ordered by genome 

sequencing projects, each representing a single chromesome in 

the genome. These are not necessarily complete i.e. they might 

contain stretches of “N”s. 

Single Nucleotide Polymorphism 

(SNP) 

A genomic variant consisting of a single nucleotide substituted 

for an alternative nucleotide. 

Overlap-Layout-Consensus (OLC) 

method 

A method of genome assembly particularly suited to datasets 

from long-read sequencing platforms, originally developed for 

Sanger sequencing data. 

De Bruijn Graph method 

A method of genome assembly particularly suited to datasets 

from short-read sequencing platforms, due to its scalability to 

large numbers of reads. 

contigs 
Assembled sequences which contain no unknown (‘N’) bases.  

polish 
A post-assembly quality improvement procedure, which aims to 

identify and correct small scale errors.  

Insertions / deletions (InDel) 

A genomic variant where one or more bases have been added 

and/or removed, resulting in a shorter or longer sequence than 

originally present. 

Copy number variation (CNV) 
An InDel which increases or decreases the number of copies of a 

specific DNA sequence. 

Reduced Representation Libraries 

(RRL) 

A protocol to create a sequencing library which aims to contain 

sequences only from selected subsets of the source genome. 

Restriction site  Associated DNA 

sequencing (RAD-seq) 

A protocol using restriction enzymes to target specific sequences 

from a genome for including in a sequencing library. 

Variable Importance Prediction 
A formalized method to predict the importance of variables in 

PLS type analyses.  
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Figure Legends 

Figure 1. Preparatory Analyses for Genomics and Phenomics data for new 

genomes. 

Figure 2. Combining Genomic and Phenomic data. 

(The GWAS image was taken from Voiniciuic et al., 2016).  

Figure 3. Approaches to genome sequencing.  

Currently, when approaching genome sequencing, the method used depends on the read lengths 

available: (a) When more short reads are available, they are first assembled into contigs which 

are then scaffolded, guided by the long reads. When more long reads are available, two 

assembly options exist. Either (b) short reads are used to first correct the long reads, which are 

then assembled or (c) the long reads are first assembled after which the short reads are used to 

‘po  s ’ t    ss mb y. As t  s   pp o    s  os   nfo m t on  t      st p    m t od (d) which 

could combine long and short reads in a single step (theoretically leading to an improved 

genome assembly)  would be optimal.  
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