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Fröhlich et al., 2018, Cell Systems 7, 1–13
December 26, 2018 ª 2018 The Author(s). Published by Elsevier
https://doi.org/10.1016/j.cels.2018.10.013
Authors
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SUMMARY

Mechanistic models are essential to deepen the un-
derstanding of complex diseases at the molecular
level. Nowadays, high-throughput molecular and
phenotypic characterizations are possible, but the
integration of such data with prior knowledge on
signaling pathways is limited by the availability of
scalable computational methods. Here, we present
a computational framework for the parameterization
of large-scalemechanisticmodels and its application
to the prediction of drug response of cancer cell lines
from exome and transcriptome sequencing data.
This framework is over 104 times faster than state-
of-the-art methods, which enablesmodeling at previ-
ously infeasible scales. By applying the framework to
a model describing major cancer-associated path-
ways (>1,200 species and >2,600 reactions), we
could predict the effect of drug combinations from
single drug data. This is the first integration of high-
throughput datasets using large-scale mechanistic
models. We anticipate this to be the starting point
for development of more comprehensive models
allowing a deeper mechanistic insight.

INTRODUCTION

High-throughput experimental techniques are key for the

comprehensive understanding of biological processes (Garnett

et al., 2012; Marcotte et al., 2016; Seashore-Ludlow et al.,

2015; The Cancer Genome Atlas Network, 2012). The analysis,

integration, and interpretation of high-throughput data require

computational methods. At the heart of this endeavor are usually
Cell Systems 7, 1–13, Dec
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mathematical models (Aldridge et al., 2006; Eduati et al., 2017).

As widespread statistical models do not provide mechanistic

insights, mechanistic models become increasingly important

(Sanghvi et al., 2013). Mechanistic models featuring ordinary dif-

ferential equations (ODEs) aim at a quantitative description of

biological processes by systematic integration of prior knowl-

edge and experimental data. These models have been used

for the analysis of signal processing mechanisms (Bachmann

et al., 2011), for the identification of drug targets (Schoeberl

et al., 2009), as well as the development of prognostic signatures

(Eduati et al., 2017; Fey et al., 2015). In the field of cancer

research, mechanistic modeling has facilitated the study of

oncogene addiction (Weinstein and Joe, 2006), synthetic-lethal

phenotypes (Kaelin, 2005), and many other relevant phenomena

(Zhang et al., 2009).

The development of a mechanistic model requires the defini-

tion of the model structure and the estimation of the unknown

model parameters. The model structure is usually derived from

prior knowledge available in scientific publications and data-

bases. Models of varying detail have been developed and

tailored to various pathways (Li et al., 2010), which ensures man-

ageability of the development effort, but frequently neglects

crosstalk. Large-scale pathway maps such as the Atlas of

Cancer Signaling Network (ACSN) (Kuperstein et al., 2015) and

Recon 2.2 (Swainston et al., 2016) address this issue by covering

a majority of known molecular processes. These large-scale

models contain thousands of biochemical reactions, the rates

of which depend on unknown kinetic parameters. As precise

literature values for many of these kinetic parameters aremissing

and predictions with imprecise literature values may lead to

pronounced prediction uncertainties (Gutenkunst et al., 2007),

these parameters must be estimated from experimental data.

In principle, this can be achieved using optimization methods,

which iteratively minimize an objective function, i.e., the distance

between model simulation and experimental data (Raue et al.,

2013; Villaverde et al., 2015). Yet, this requires repeated
ember 26, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 1
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Figure 1. Model Structure and Properties

(A) Sketch of modeled signaling pathways. The developed model describes the synthesis and protein-protein interactions for protein products of 108 genes and

36 activating mutations. The visualization depicts drugs (purple), selected molecular species (orange), and cell viability as a phenotypic readout (yellow).

(B) Distribution of modeled molecular species on compartments and functional classes.

(C) Comparison of complexity of the proposed model (red circle) with curated models from the BioModels database (Li et al., 2010) (gray circles) and selected

examples of models covering similar pathways (green circles).

(D) Comparison of number of genes or proteins in the proposed model with the selection of models from (C).

See also Figures S1 and S2 and Table S1.
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numerical simulations. As—even for medium-scale models—

millions of simulations may be necessary, the computational

burden is often immense (Jagiella et al., 2017). Accordingly,

parameterizing large-scale pathway models is often deemed

intractable and has not been done in practice (Babtie and

Stumpf, 2017). A scalable method for parameterization of

large-scale mechanistic models is therefore essential for the

community, as it enables the comprehensive integration of prior

knowledge and experimental data.

Here, we introduce a computational framework for the param-

eterization of large-scale ODE models, which reduces computa-

tion time by multiple orders of magnitude compared to state-

of-the-art methods. We demonstrate the applicability of this

framework by considering the problem of predicting the drug

response of cancer cell lines from somatic mutations and gene

expression levels. To this end,wedeveloped a large-scalemech-

anisticmodel of cancer signaling, which can be individualized us-

ing sequencing data. We demonstrate the parameterization of

the model from thousands of drug assays from over 100 human

cancer cell lines and validate the predictive power of the model.

The mechanistic model provides several predictions that cannot

be obtained using standard statistical models. Among others, we

show that the parameterized model can accurately predict the

effect of drug combinations from single drug data.
2 Cell Systems 7, 1–13, December 26, 2018
RESULTS

Large-Scale Mechanistic Model Integrates Knowledge
of Cancer Signaling Pathways
To predict the drug response of cancer cell lines, we developed a

mechanistic model integrating signaling modules reflecting the

canonical human ERBB, RAS, and PI3K-AKT signaling pathways

(Sanchez-Vega et al., 2018), as well as regulation of the transcrip-

tion factors (TFs) MYC and AP1 (Wierling et al., 2015) (Figure 1A).

The considered signalingmodules are targeted by a large number

of anti-cancer drugs. The model describes synthesis, degrada-

tion, translocation, complex formation, phosphorylation, and

various other types of reactions for proteins, including functional

variants (Figures 1B and S1). We assembled this model using

the web-based platform PyBioS (Klipp et al., 2005; Wierling

et al., 2007) (STAR Methods, section Model Development) and

provide it as annotated systems biology markup language

(SBML) file (Supplementary File 1). Themodel is based on curated

information fromConsensusPathDB (Herwig et al., 2016), a meta-

database integrating more than 20 public databases (e.g.,

DrugBank [Wishart et al., 2006], KEGG [Kanehisa et al., 2010],

and Reactome [Croft et al., 2011]) and additional publications.

The model accounts for 108 genes and 36 activating mutations

yielding a total of 1,228 molecular species in 4 compartments
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(Figure 1B) involved in 2,686 reactions. The modeled mutations

cover 7 of the 10 most frequent driver mutations reported by

Rubio-Perez et al. (2015) and account for 22.1% of driver muta-

tions observed in patient samples. The model describes the

polypharmacologic action of 7 different small molecule kinase in-

hibitors (Table S1); this includes main and off-targets (in the path-

ways). Four of the considered inhibitors are FDA-approved. For

17 additional FDA-approved kinase inhibitors, one or more main

targets are included in the model, but their action is currently

not described. In total, the model covers main targets for 27.3%

of FDA-approved targeted cancer therapies.

The drugs considered in this study, like most other drugs,

interact with multiple targets (Davis et al., 2011; Klaeger et al.,

2017). Our model captures multiple of these targets and pos-

sesses a good overlap with the drug-target interactions reported

in the literature (Figure S2A and Table S1). The average number

of implemented targets per drug is 4.3 (Figure S2A). Indeed, the

model implements almost all drug-target interactions within the

pathways considered in our model, reported by Davis et al.

(2011) and Barret et al. (2008)—the manuscripts that primarily

informed model construction. The model implements more

drug targets than what is reported by Klaeger et al. (2017), who

did not measure affinities for, e.g., multiple members of the

ERBB-family. However, our study of drug-target interactions

outside the model pathways revealed that only a fraction of the

interactions is captured (Figures S2B and S2C). Again, Davis

et al. (2011) report more interactions than Klaeger et al. (2017)

as the latter study considers a smaller number of kinases tar-

geted by the drugs. While some of the observed bindings might

not influence the activity of the respective kinases, there is an

overall reasonable agreement between binding affinities and

kinase activity measured by Anastassiadis et al. (2011) (Fig-

ures S2D and S2E). Hence, although the proposed model pro-

vides a comprehensive description of the polypharmacology

within the canonical human ERBB, RAS, and PI3K/AKT cancer

signaling pathways, our analysis suggests that even larger

models are required for a rigorous mechanistic description of

the polypharmacology of anti-cancer drugs.

The mechanistic modeling of signal transduction and drug

actions is complemented by a simple model for relative cell

viability. The relative cell viability describes the number of healthy

cells in a treated sample compared to an untreated control. This

is the main readout of the two largest screening projects, the

Cancer Cell Line Encyclopedia (CCLE) (Barretina et al., 2012)

and the Genomics of Drug Sensitivity in Cancer (GDSC) (Yang

et al., 2013) project. Originally employed by the CCLE, the

GDSC now also adopted the CellTiterGlo assay as a viability

assay—after a controversial discussion (Haibe-Kains et al.,

2013; Haverty et al., 2016). The CellTiterGlo assay quantifies

ATP levels as proxy for the number of healthy cells. Still, several

concerns regarding reproducibility of results have been raised

(Hafner et al., 2017; Niepel et al., 2017). The (relative) cell viability

is the net sum of cell division and cell death, which are governed

by a complex interplay of cellular signaling processes regulating,

e.g., the balance between pro-growth and (anti-)apoptotic sig-

nals in response to extracellular stimuli or the presence of

activating mutations within respective signal transduction cas-

cades. A major function in the regulation of cell proliferation

has been attributed to TF activation, e.g., of the MYC, AP1,
and FOXO TFs, and regulation of target gene expression in

response to extracellular or oncogenic stimuli. In the proposed

model, we used the weighted sums of the simulated molecularly

activated state of these TFs as a surrogate for viability (see STAR

Methods, section Model Development). The relative cell viability

is determined by the ratio of the cell viability in the treated and

untreated conditions. This semi-mechanistic description pro-

vides a simple model of downstream regulatory processes.

To quantify the scale and comprehensiveness of our model,

we compared it to curated mechanistic pathway models avail-

able in the BioModels database (Li et al., 2010) and also—in

more detail—to a set of reference models that describe the

ERBB, RAS, or AKT pathways. The reference set includes three

models from the BioModels database, e.g., the models with the

highest number of species (Chen et al., 2009) and the highest

number of reactions (Capuani et al., 2015), and four additional

models (Bouhaddou et al., 2018; Hass et al., 2017; Zhang and

Liu, 2002), which were not published in the BioModels database.

The proposed model describes more biochemical species

and reactions than any other of the curated models (Figure 1C).

Only the model by Bouhaddou et al. (2018) covers more

unique protein or gene species (Figure 1D). The Bouhaddou

model describes pathways, which, along with their constituting

genes or proteins, are not included in our model. However, the

comparably small overlap in included genes and proteins of

the Bouhaddou model and the proposed model, as well as the

lower number of included reactions (Figure 1C), suggests a lower

comprehensiveness of the Bouhaddou model. Overall, most of

the analyzed models do not describe the action of any drugs

and do not include synthesis reactions for all modeled protein

species, which prohibits the integration of transcriptomic data.

In summary, the proposed model exceeds, to the best of our

knowledge, all published models in terms of scale and compre-

hensiveness and is one of the few models that are suitable for

the predictions of drug sensitivity from transcriptomic and

genomic data.

Genomic Data Provides a Basis for Individualization of
the Mechanistic Model
The mechanistic model provides a generic template for a subset

of signaling processes in human cells and a link to cell viability.

To obtain a model for a particular cancer cell line, we individual-

ized the mechanistic model by incorporating gene expression

levels as synthesis rates for proteins and their mutated functional

variants (Figure 2A). We assumed that all other kinetic parame-

ters, such as transport, binding, and phosphorylation rates,

depend only on the chemical properties of the involved biochem-

ical species. Accordingly, these parameters differ between pro-

teins and their functional variants, while they are assumed to be

identical across cell lines. This enables the simultaneous consid-

eration of multiple cell lines and drugs for model parameteriza-

tion, thereby increasing the available training sample size.

Furthermore, this assumption allows us to predict the drug

response of new cell lines solely from information about gene

expression levels and functional variants.

In this study, we considered data for 120 human cancer cell

lines from 5 tissues (breast, large-intestine, lung, pancreas,

and skin) provided in the CCLE. We processed the included

genetic characterization of cell lines in the untreated condition
Cell Systems 7, 1–13, December 26, 2018 3
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Figure 2. Individualization of the Model with Genomic and

Transcriptomic Data

(A) Individualization of the generic mechanistic model for two exem-

plary cell lines: RERFLCAI (wild-type KRAS) and SW403 (wild-type

and mutated KRAS). KRAS signaling model is illustrated from syn-

thesis to complex formation. Degradation reactions are omitted.

(B) Comparison of the occurrence frequency of mutations included in

the model between the training and test sets extracted from the

Cancer Cell Line Encyclopedia and the InTOGen database by Rubio-

Perez et al. (2015), which provides an extensive characterization of

somatic mutations in human tumors.
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using a standardized bioinformatics pipeline (STAR Methods,

section Experimental Model and Subject Details). Of the

modeled driver mutations, 14 are present in more than one cell

line (Figure 2B).

Scalable, Parallel Optimization Method Enables Model
Parameterization
The mechanistic model includes more than 4,100 unknown pa-

rameters, i.e., kinetic constants and weighting factors. Most of

these parameters are unknown and cannot be measured reliably

under physiologically relevant conditions. To determine these

unknown parameters such that available data and future exper-

iments can be quantitatively described, we trained the model

using measured viability data from 120 cell lines treated

with 7 different drugs at up to 9 concentrations provided in the

CCLE. In total, the selected CCLE subset comprises more than

6,900 experimental conditions. To assess the prediction uncer-
4 Cell Systems 7, 1–13, December 26, 2018
tainty, we performed 5-fold cross-validation with 5 pairs

of training (80%; 96 cell lines) and test datasets (20%;

24 cell lines).

To parameterize the model from the training data, we

developed a computational framework. Similar to estab-

lished approaches, this framework minimizes the sum

of squared residuals of measured and simulated rela-

tive viability. This non-linear and non-convex ODE-con-

strained optimization problem was solved using multi-

start local optimization, an efficient and reliable approach

that outperformed global optimization methods in several

studies (Hross and Hasenauer, 2016; Raue et al., 2013)

(see STAR Methods, section Parameterization). As the

optimization problem is high dimensional, state-of-the-

art methods, such as forward sensitivity analysis (Raue

et al., 2013), required 53 104 CPU hr (>6 CPU years) (Fig-

ure 3A) for a single evaluation of the objective function

gradient. This is due to (1) the large-scale ODE model,

(2) the large number of parameters, and (3) the

large number of experimental conditions. As the gradient

has to be evaluated hundreds of times for a single optimi-

zation, available toolboxes were not applicable.

To render parameterization tractable, we addressed

challenges 1–3. First, we reduced the CPU time per

model evaluation by using a sparse linear solver (Davis

and Palamadai Natarajan, 2010) for ODE integration

(0.5% non-zero entries in the Jacobian). Second, we em-

ployed a tailored variant of adjoint sensitivity analysis

(Fröhlich et al., 2017) (see STARMethods, section Adjoint
Sensitivity Analysis), which improves scaling with the number of

parameters. These two methodological advancements reduced

the computation time over 37,000-fold (Figure 3A). Third, we es-

tablished scalability with respect to the number of experimental

conditions by parallelization on the level of cell lines (Figure 3A).

Using 8 cores (7 workers), we observed a 6.4-fold acceleration.

In total, our flexible and easily extendable parameterization

framework reduced the expected wall time by over 240,000-fold.

Using 400 cores and a parallelization over local optimizations,

our computational framework enabled the parameterization for

all cross-validations in less than 1 week. In comparison, state-

of-the-art approaches would have required hundreds of thou-

sands of years. The local optimization achieved a substantial

reduction of the sum of squared residuals within a few iterations,

and then the curve flattened out (Figure 3B). To ensure amanage-

able computational cost, the optimization was stopped after

100 iterations. To filter insufficient optimization runs and to
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Figure 3. Parameterization of the Mechanistic Model

(A) Computation time for one evaluation of the objective function gradient, which determines the per-iteration time for a single local optimization step. For the

non-parallelized evaluation, the time was computed based on representative samples (see STAR Methods, section Numerical Benchmark). The gradient

evaluation time was dramatically reduced by using adjoint sensitivities, exploiting sparsity, and parallelization.

(B) Objective function traces for 10 different local optimization runs for the first cross-validation set. Initial conditions for the local optimization runs are sampled

from a Latin hypercube. Although higher initial objective function values were observed, the corresponding axis was cropped at 104. The 5 best optimization runs

are colored in red and were used for subsequent analysis.
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improve robustness, we used ensemble averaging (see STAR

Methods, section Ensemble Averaging) over the 5 optimization

runs that achieved lowest objective function value in each

cross-validation for all following analysis and prediction.

Mechanistic Model Yields Quantitative Description of
Experimental Data and Generalizes to Test Data
The mechanistic model, parameterized using our scalable

computational framework, describes the drug dose-dependent

viability of cell lines. A comparison of model simulations with

measured data revealed a good agreement and little variation in

the prediction (Figure 4A). Overall, the dose response distribution

across cell lines is captured well: the model accurately predicts

that cell lines respond to drugs at concentrations that are higher

than the experimentally measured kinase affinities (IC50/KD

values) thatwerehard-coded into themodelequations (FigureS3).

The observed difference between kinase and growth inhibition

efficiency could, e.g., be explained by the fact that tight inhibi-

tion of target kinases, which requires concentrationsmuch higher

than the IC50, is often required for effective growth inhibition.

For a more quantitative analysis, we evaluated the model-data

mismatch in terms of Pearson correlation coefficient (r) and

root-mean-square error (RMSE). The correlation displayed a

pronounced dependence on the drug concentration (Figure 4B),

while the RMSE was effectively constant with respect to drug

concentration. A careful inspection of measured data and model

simulations (Figure S4) suggested that differences in correlations

can be explained by differences in the dynamic range of

measured relative viability across concentrations: if the dynamic

range of measured relative viability was close to the level of mea-

surement errors, as it is the case for low concentrations where

cell-lines unanimously show little to no response to the drugs,

we observed poor correlations despite good agreement be-

tween model simulations and measured data.

To avoid this problem, we aggregated measurements and

simulations across concentrations and drugs and consistently

found an overall high correlation (0.85 ± 0.01) and low RMSE
(0.14 ± 0.01) (Figure 4C). Our analysis of the dependence of

RMSE and correlation on drug and tissue of origin revealed

relatively small differences across drugs and tissues. We only

found significant differences to both the overall correlation and

overall RMSE for the drugs PD0325901 (pcorr = 6.6 3 10�4;

pRMSE = 8.3 3 10�3) and PLX4720 (pcorr = 1.2 3 10�2; pRMSE =

2.53 10�2), and the pancreas tissue (pcorr = 3.23 10�4; pRMSE =

4.8 3 10�3). We did not find any association between mutations

or drug response pattern and the training error (Figure S5).

To assess the consistency of available datasets and the gener-

alizability of the model predictions, we compared model simula-

tions for cell lines in the training set to measured data from the

GDSC database. Our analysis of the GDSC data revealed a

substantially lower correlation (0.51 ± 0.01) and higher RMSE

(0.25 ± 0.01) (Figure 5A) compared to the CCLE data. To provide

a reference for these values, we computedRMSE and correlation

between measured data from CCLE and GDSC. As the two

databases employ different drug concentrations in their viability

assays, we interpolated data from the CCLE using sigmoid inter-

polation. The computed correlation (0.49 ± 0.01) and RMSE

(0.26 ± 0.01) are marginally weaker than what was achieved

with the mechanistic model but significant with pcorr = 1.8 3

10�2 and pRMSE = 3.8 3 10�3. This mediocre agreement of

data from different databases was already characterized in pre-

vious studies (Haibe-Kains et al., 2013) and has been attributed

to differences in assay protocols (Haverty et al., 2016), evaluation

methods (Fallahi-Sichani et al., 2013; Pozdeyev et al., 2016), as

well as shortcomings in the employed assay protocols (Hafner

et al., 2017; Niepel et al., 2017). Accordingly, the slightly better

performance of the mechanistic model compared to sigmoid

interpolation is encouraging, but the low magnitude of differ-

ences is understandable as assay protocols are currently not

considered in the mechanistic model.

To evaluate the predictive power of the parameterized mech-

anistic model, we turned to the test sets of the cross-validation

(Figure 5B, left) as well as an additional independent test set con-

taining 31 cell lines from four tissues not included in the training
Cell Systems 7, 1–13, December 26, 2018 5
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Figure 4. Analysis of Fitting Properties of the Model

(A) Representative examples of model simulations for six combinations of drugs (x-label) and cell lines (bold text on bottom, left). The five plotted lines are the

median fit for the five best optimization runs for every cross-validation set.

(B) Pearson correlation and root-mean-square error (RMSE) of simulation and measured viability for the response at different drug concentrations. Shaded area

indicates 95% confidence intervals over cross-validations.

(C) Correlation and RMSE statistics over cross-validations for individual drugs and tissues. Error bars indicate 95% confidence intervals. Statistically significant

(p < 0.05) differences from the full distribution, according to a paired-sample t test after Bonferroni-Holm multiple testing correction, are indicated by stars.

See also Figures S3–S5.
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data (kidney, soft tissue, ovary, stomach; Figure 5B right). Our

analysis of correlation and RMSE revealed a good quantitative

agreement of measured and predicted relative viability for the

test set (r = 0.69 ± 0.09; RMSE = 0.19 ± 0.03) and the indepen-

dent test set (r = 0.62 ± 0.03; RMSE = 0.17 ± 0.01) (Figure 5C).

To assess the importance of parameterization for the agree-

ment between model predictions and measurements, we also

evaluated correlation and RMSE for 10 sets of randomly drawn

parameters. Each set of 10 random parameter vectors was

drawn uniformly from the specified parameter domain, and

an ensemble model using the 5 best-performing parameter

vectors was constructed. For the unparameterizedmodel, corre-

lation was consistently low (0.18 ± 0.05 to 0.22 ± 0.05) and RMSE

was consistently high (0.25 ± 0.01 to 0.29 ± 0.01), which high-

lights that proper parameterization was essential for the predic-

tive power of the mechanistic model.

To provide a reference for the performance of the parameter-

izedmechanistic model, we trained several well-established sta-

tistical models on the same training set. The statistical models

include a random forest (Breiman, 2001), sparse linear and

nonlinear regression model (Tibshirani, 1996), as well as a

network-constrained sparse regression model (with network

derived from the mechanistic model) (Chen et al., 2015). These

methods were among the top performers in previous drug sensi-

tivity prediction DREAM challenges (Costello et al., 2014). The

training of all statistical models was performed using state-of-

the-art toolboxes (see STAR Methods, section Statistical

Analysis). On the test set, the random forest model achieved

the highest correlation (0.73 ± 0.05) and lowest RMSE (0.17 ±
6 Cell Systems 7, 1–13, December 26, 2018
0.02) (Figure 5D), which is statistically indistinguishable from

the performance of the mechanistic model. On the independent

test set, graph-constrained regularization for sparse generalized

linear models (glmgraph) achieved the highest correlation (0.70 ±

0.01) and lowest RMSE (0.16 ± 0.01) (Figure 5E), which ismargin-

ally better than themechanisticmodel (pcorr = 4.83 10�3; pRMSE =

7.4 3 10�4). Accordingly, although this is the first time large-

scale mechanistic models are used for prediction on this scale,

they have already similar predictive power as long-established

statistical models.

Pronounced Parameter Uncertainties Do Not Imply
Pronounced Prediction Uncertainties
Experimental noise and data availability, which are ubiquitous

features of biological experiments, limit the accuracy of the

parameter estimates (Villaverde and Banga, 2014). This limita-

tion is quantified in terms of structural and practical parameter

identifiability as well as parameter uncertainty (Chis et al.,

2011; Raue et al., 2009). As the parameter uncertainties can in-

fluence the prediction uncertainty, a rigorous quantification is

desirable.

Profile likelihood calculation (Raue et al., 2009) and Markov-

chain Monte Carlo sampling (Ballnus et al., 2018; Schmidl,

2012) are powerful methods for the rigorous quantification

of parameter uncertainties. Yet, the largest mechanistic model,

to which these methods have been successfully applied,

possessed about 100 parameters and experimental conditions

(Bachmann et al., 2011; Hug et al., 2013). The high computa-

tional cost currently prohibits the application of these methods
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Figure 5. Validation of Model Prediction for Single Drug Treatment

(A, C, D, and E) Comparison of correlation coefficients and RMSE between measured and predicted viability for training, test, and independent datasets from

CCLE and GDSC. Bar height indicates average across cross-validations; error bars show the 95% confidence interval of the mean. A dashed line indicates

reference values; statistically significant (p < 0.05) differences from this reference, according to a paired-sample t test after Bonferroni-Holm multiple testing

correction, are indicated by stars.

(A) Comparison of correlation and RMSE on GDSC data of the training set cell lines for the parameterized mechanistic model and a sigmoid interpolation.

(B) Overview of CCLE datasets used to evaluate the classification accuracy: (1) test set for cell lines originating from the same tissues on which the model was

trained and (2) independent test set using cell lines from different tissues.

(C) Comparison of correlation and RMSE across training, test, and independent test set on CCLE data for themechanistic model with optimized (red) and random

parameters (gray).

(D and E) Comparison of correlation and RMSE for themechanisticmodel and statistical models for test set and independent test set. For the Lasso approach, the

parameter d defines up to which network distance interactions were considered.
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to the considered model (Babtie and Stumpf, 2017). Therefore,

we assessed the uncertainties using alternative methods and

cautiously analyzed the results.

We performed an asymptotic uncertainty analysis using the

Fisher information matrix (FIM)5. We computed the FIMs for the

endpoints of the five best optimization runs of every cross-

validation and evaluated their eigenvalue spectra (Figure 6A,

top). The observed eigenvalue spectra were surprisingly similar

across cross-validations and optimization runs, which sug-

gested a rather consistent local topology of the objective func-

tion across the sampled parameter space. A large fraction of

the eigenvalues was numerically indistinguishable from zero,

which shows that a large fraction of parameters is structurally

and thus also practically non-identifiable. The broad distribution

of eigenvalues implies pronounced parameter sloppiness

(Gutenkunst et al., 2007). Parameter sloppiness does not neces-

sarily imply practical non-identifiability (Chis et al., 2016), but the

low average value of non-zero eigenvalues suggests an even

larger fraction of practically non-identifiable parameters than

indicated by the numerically zero eigenvalues.

To follow up on this analysis, we computed the standard devi-

ation of log-parameter estimates from the best 5 optimization

runs across all cross-validations (Figure 6B). We found a large

number of parameters that have a standard deviation close to

zero. At first sight, this may suggest a good identifiability of these

parameters. Yet, our asymptotic uncertainty analysis of the FIM

suggested that many parameters are structurally non-identifi-

able. Accordingly, the geometry of the optimization problem

needs to be considered when analyzing the distribution of local

optimization results (Fröhlich et al., 2014): as the regularization
imposed by the employed interior point algorithm promotes a

log-value of zero for non- or poorly identifiable parameters, the

low standard deviation of values located at zero indicates

poor identifiability. In fact, all parameters with a log parameter

standard deviation smaller than 0.2 have log-parameter esti-

mates that are statistically not different from 0 (p < 0.005; t test

with Bonferroni-Holm multiple testing correction). This corrobo-

rates the hypothesis that most of the parameters are poorly

identifiable.

To study the impact of poor parameter identifiability on predic-

tions, we assessed the uncertainties of state variables and the

cell viability output using the FIM (see STAR Methods, section

Uncertainty Analysis). The analysis of the eigenvalue spectra

(Figure 6A, middle, bottom) revealed a substantially higher frac-

tion of non-zero eigenvalues and a higher average of non-zero

eigenvalues. This suggests that low-uncertainty predictions are

possible despite the pronounced poor identifiability. To test

this, we analyzed the variance of predicted proliferation on the

training and test set across the 5 considered cross-validations

(Figure 6C). We found a generally low variance of model simula-

tions, which increases with drug concentration. To put this into

perspective, we decomposed the mean squared error (MSE)

as the sum of prediction variance and squared prediction bias

and computed the fraction that is explained by the prediction

variance. Similar to variance, the respective fraction of the

MSE increases with drug concentration but globally remains

below 50%. This suggests that the observed MSE is predomi-

nantly due to a prediction bias and not due to prediction uncer-

tainty. The source of the bias is currently unclear but overfitting

and the fact that differences in cell lines might not be fully
Cell Systems 7, 1–13, December 26, 2018 7
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Figure 6. Parameter and Prediction Uncer-

tainty Analysis

(A) Eigenvalues densities of the Fisher information

matrix for parameters, state variables, and viability

readouts. Small eigenvalues correspond to large

uncertainties of readout combinations defined by

respective eigenvectors. One distribution for each

of the best 5 optimization runs for each of the

5 cross-validations is shown. Eigenvalues below

10�45 are not shown in the density plot, but the

corresponding fraction of eigenvalues is indicated

in the bar plot on the left.

(B) Histogram and scatterplot of mean and stan-

dard deviation of parameter estimates. Standard

deviations and means were computed from the

final values over the 5 best optimization runs for

each of the 5 cross-validations. Dashed lines

indicate 1s, 2s, and 3s significance intervals

(without multiple testing correction).

(C) Variance of ensemble model relative viability

predictions at different drug concentrations

for the training (red) and independent test

set (blue). Lines indicate average value, and

shaded areas indicate 95% confidence intervals

computed over all data points. Reference mean

squared error for both datasets is presented as

dashed lines, where thick lines correspond to

mean and thin lines indicate 95% confidence in-

tervals computed over all data points. Decompo-

sition of mean squared error into variance and

bias2 for the highest concentration in the inde-

pendent test set is illustrated on the right edge of

the figure.

(D) Distribution of parameter estimates for equi-

librium constants differing substantially from zero.

The background distribution of the parameter es-

timates is indicated on the top. For all displayed

translocation reactions, the forward reactions are

defined as the translocation from the cytoplasm to the nucleus or plasma membrane. For all displayed complex formation reactions, the forward reactions

are defined as the binding of two constituting sub-complexes or species. The nominal value 1 is indicated as dashed line.

Please cite this article in press as: Fröhlich et al., Efficient Parameter Estimation Enables the Prediction of Drug Response Using a Mechanistic Pan-
Cancer Pathway Model, Cell Systems (2018), https://doi.org/10.1016/j.cels.2018.10.013
encoded in gene expression levels are plausible contributors to

biased predictions.

Mechanistic Model Unravels Molecular Mechanisms for
Sensitivity and Resistance from Viability Measurements
The parameters of the proposed mechanistic model are reaction

rate constants. Unlike parameters of statistical models, these re-

action rate constants provide information about the underlying

biological reaction network. Yet our analysis revealed large

parameter uncertainties (Figure 6). As previous studies on

small-scale models suggested that products or fractions of pa-

rameters often have lower parameter uncertainties, we computed

equilibrium constants as a ratio of on and off rates of reversible

reactions (Vehlow et al., 2013). We assessed the uncertainty of

the equilibrium constants and their difference from 1. As the em-

ployed interior-point optimization algorithm preferentially pushes

non-identifiable parameters toward 1 (see STAR Methods, sec-

tion Parameterization), consistent differences from 1 imply that

the corresponding parameters are important to explain the

observed drug sensitivity.

In total, nine equilibrium constants were estimated to be

significantly different from 1 (Figure 6D; p < 0.05, t test with

Bonferroni-Holm multiple testing correction). Three equilibrium
8 Cell Systems 7, 1–13, December 26, 2018
constants are associated with receptor dimerization reactions,

which are known to be important in cancer signal transduction

(Chen et al., 2009). Four equilibrium constants are associated

with localization to the nucleus and plasma membrane. One

equilibrium constant is associated with the binding of acti-

vated NrasQ61R to Pik3ca, which leads to the activation of

the AKT. This reaction enables differential, mutant-specific as-

sociations with downstream signaling transducers, which have

previously been characterized to be important for Kras mutant

variants in the non-small cell lung cancer context (Ihle et al.,

2012). One equilibrium constant is associated with the binding

of BRAF:PLX4720 and pRAF1, which is known to play an

important role in the paradoxical activation through BRAF

and CRAF homo- and heterodimerization, a well-known resis-

tance mechanism in melanoma (Kholodenko, 2015.; Su

et al., 2012).

Although most parameters were non-identifiable (Figure 6),

our model-based analysis of viability data identified several mo-

lecular mechanisms important for drug response. Indeed, 5 out

of 9 identified reactions have previously been reported to be

important. This confirms that large-scale mechanistic modeling

can extract molecular insights from phenotypic data, which is

not possible using statistical modeling approaches.
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Resistance and Susceptibility Markers Elucidate Drug
Primary Mode of Action
The CCLE dataset has previously been used to identify bio-

markers for drug resistance and susceptibility (Barretina et al.,

2012). For logistic regression, negative regression coefficients

indicate genes that convey drug resistance, positive coefficients

indicate genes that convey drug susceptibility, and the absolute

value of coefficients indicates the magnitude of influence. Genes

with large positive coefficients are good candidates for bio-

markers that can be used for patient stratification.

For mechanistic models, equivalent coefficients can be

computed following the concept of model-based biomarkers

introduced by Fey et al. (2015). The concept of model-based bio-

markers interprets the kinetic model as a complex non-linear

regression model, where respective regression coefficients can

be computed as the sensitivity of output variables (cell viability)

with respect to input variables (e.g., transcription levels). Here,

we computed these coefficients for themechanistic model using

adjoint sensitivity analysis. Due to the non-linear nature of the

mechanistic model, the computed coefficients are cell-line spe-

cific. This allows elucidation of genes that can act as resistance

markers in some cell lines and susceptibility markers in other

cell lines.

To identify primary markers for resistance and susceptibility,

we tested for significant differences of the distribution of abso-

lute sensitivity coefficients in a two-sided t test. As the number

of genes with statistically significant p value (p < 0.1; Bonfer-

roni-Holm multiple testing correction) was high, we selected 15

coefficients with the lowest p value for each drug, which yielded

a set of 22 genes, includingmutation variants. Using these candi-

date genes, we derived a skeletal signaling structure, which pro-

vides a high-level abstraction of the mechanistic model for the

considered cell lines and drugs (Figure S6A): the signal is initi-

ated at receptor tyrosine kinases (ERBB2, EGFR) and mediated

to downstream signaling pathways through adapter proteins

(SHC1), guanine exchange factors (VAV2), phospholipases

(PLCG1), and kinases (SRC). Mutated species (NRAS, KRAS,

BRAF) may activate downstream signaling independent of re-

ceptor signaling and activate the canonical Raf (BRAF, RAF1)-

Mek (MAP2K1/2)-Erk (MAPK1/3) signaling pathway, which acti-

vates TFs such asMYC. The signal transduction can be inhibited

by phosphatases (PPP2CA). To assess the impact of (1) the

model structure and (2) the model training on the result, we

repeated the same evaluation with the random initial parameters

of each optimization run, i.e., untrained parameters. This yielded

a substantially longer list of 36 genes, which included 16 genes

from the analysis with the trained model. This suggests that

the model structure already encodes information and narrows

the list of relevant genes but that the training results in a re-

weighting that is essential for generalization of genes that are

relevant for resistance and susceptibility to different drugs.

This strong overlap of identified genes across drugs suggests

that this skeletal structure defines a signaling program proto-

types that, if active, can be targeted by drugs or convey resis-

tance. To explore this hypothesis, we classified nodes as resis-

tance markers if the average sensitivity for a specific drug was

statistically significantly bigger than zero and as sensitivity

markers if significantly smaller than zero. All remaining nodes,

which have absolute value but not signed value significantly
different from zero are classified as ambiguous markers. Com-

parison of the classification for receptor targeting drugs vande-

tanib, lapatinib, and erlotinib revealed high similarity of classifi-

cations across drugs as well as consistent classification of

markers within pathways (Figures S6B–S6D): EGFR-SRC-STAT

signaling was consistently identified as the primary pathway

responsible for the heterogeneity in drug susceptibility, whereas

MAPK and PI3K signaling were responsible for the heterogeneity

in drug resistance. Interestingly, ERBB2 may convey both resis-

tance and susceptibility to vandetanib and erlotinib, which have

EGFR, but not ERBB2, as the main target. In contrast, ERBB2 is

a clear susceptibility marker for lapatinib, which targets both

EGFR and ERBB2. Linear logistic models cannot reproduce

such ambiguous behavior, indicating that themechanistic model

facilitates a more fine-grained analysis. Furthermore, the mech-

anistic model provides additional information about the signal

flow, which is not provided by statistical models.

Combination Treatment Outcomes Predicted from
Single Drug Data
A key advantage of themechanistic model is the capacity to pre-

dict latent variables, i.e., quantities that were not experimentally

measured. To this end, we predicted the outcome of treatments

with two drugs using the mechanistic model, which was solely

trained on data from single drug data. Such predictions are

interesting since the exhaustive experimental characterization

of combination treatments is experimentally impractical due to

the large number of required experiments. Accurate predictions

of combination treatments from single treatment data would

allow a cost-effective pre-selection of promising drug candi-

dates for experimental follow-up, which is highly relevant for

modern personalized medicine (Fitzgerald et al., 2006).

We considered the dataset published byO’Neil et al. (2016) re-

porting the response of cancer cell lines to single drugs as well

as to combinations of two drugs at different concentrations

(Figure 7A). The dataset includes 10 cell lines (NCIH1650,

NCIH23, NCIH520, UACC62, RPMI7951, ZR751, SKMES1,

HT144, MDAMB436, and SKMEL30) and 3 drugs (erlotinib, lapa-

tinib, and PD0325901) contained in our training set. For the single

drug viability measurements by O’Neil et al. (2016), the mecha-

nistic model trained on the CCLE data achieves a correlation of

0.80 ± 0.02 and an RMSE of 0.16 ± 0.01 (Figures 7B and 7C).

Accordingly, the agreement of the data by O’Neil et al. (2016)

with the CCLE data is much higher compared to the previously

analyzed agreement between GDSC data and CCLE data (Fig-

ure 5B). For every cross-validation, we only considered the

measurements from cell lines, which were also contained in

the training set.

Following the previous analysis for single drug treatments, we

evaluated correlation and RMSE between measured and pre-

dicted relative viability. The mechanistic model displayed a

good agreement with the drug combination data (r = 0.75 ±

0.03), which is similar to the correlation observed for single

drug treatments. Furthermore, the mechanistic model achieves

a better correlation than established reference models based

on Bliss independence (Bliss, 1939) (BI) (r = 0.67 ± 0.01;

p = 0.04) and highest single agent (Lehár et al., 2007) (HSA)

model (r = 0.67 ± 0.01; p = 0.03) (Figure 7A). As these reference

models are usually used to define synergistic and antagonistic
Cell Systems 7, 1–13, December 26, 2018 9
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Figure 7. Prediction of the Effect of Drug

Combinations from Single Treatment Data

(A) Experimental data and predictions from the

mechanistic (mech, red), bliss independence (BI,

blue), and highest single agent (HSA, green) models

for the erlotinib-lapatinib combination in the

NCIH1650 cell line.

(B and C) (B) Quantification of Pearson correlation

and (C) root-mean-square error (RMSE) for single

drug data and drug combination data for the

models from (A). Bar height indicates average

across cross-validations, error bars show the 95%

confidence interval of the mean.

(D) Residual (measured relative viability—predicted

relative viability) densities for the models from (A).

Lines indicate the mean, and shaded areas the

corresponding 95% confidence intervals across

cross-validations.

(E) Scatterplot of model predictions versus experi-

mental data for the mechanistic model for the first

cross-validation.
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interactions, a higher correlation of the mechanistic models

means that synergy and antagonism were frequently correctly

predicted. BI and HSA models achieve a better RMSE (Fig-

ure 7C), as the mechanistic model tends to overestimate the

viability (Figures 7D and 7E). Yet, a consistent over-estimation

of relative viability is acceptable, if not desirable, for the identifi-

cation of promising drug combinations, as it results in a small

false-positive rate. Importantly, the high correlation ensures

proper prioritization for experimental follow-up. Accordingly,

the mechanistic model provides accurate and valuable predic-

tion for drug combination treatments based on the biochemical

processes.

DISCUSSION

We generated a large-scale mechanistic model that integrates

large amounts of prior knowledge and expands upon previous

large-scale models by implementing kinetic rate laws, mutation

variants of key regulators, and possibilities for individualization.

As the model can be individualized to particular cell lines and

covers many relevant driver mutations, the model provides a

valuable resource for analysis of various cancer types and

drug treatments. Furthermore, as the model already describes

the action of drugs on on- and off-targets, it can—unlike

models with tens to hundreds of species—contribute to a

mechanistic understanding of polypharmacology. In particular,

the inclusion of dose-response data for non-tumor cell lines

could deepen our understanding of off-target toxicity. Concep-

tually, the model could also be integrated with other large-scale

models, e.g., Recon 2.2 (Swainston et al., 2016), to provide

a basis for a whole-cell computational model of human

(cancer) cells and complement work on micro-organisms

(Karr et al., 2012).

To parameterize this model, we developed a flexible computa-

tional framework that provides scalability with respect to the

number of parameters and number of state variables and em-

ploys parallelization to handle the large number of experimental

conditions. The final wall time requirement for all optimization

runs (�4 3 103 hr) was more than one order of magnitude lower
10 Cell Systems 7, 1–13, December 26, 2018
than the wall time required for a single gradient evaluation using

established methods (�6 3 104 hr). This allowed, to the best of

our knowledge, for the first time, the parameterization of a

large-scale mechanistic model from experimental data from

over 100 cell lines, each under dozens of experimental condi-

tions. The computational efficiency of the approach renders

iterative rounds of optimization, hypothesis generation, and

model refinement of large-scale mechanistic models from multi-

ple high-throughput datasets feasible within a reasonable time

frame. Our implementation of the model and method is available

as Supplementary File 1 and can be freely reused by other

research groups. The modularity of the method allows straight-

forward application to different models as well as datasets.

The assessment of cell viability—a key readout for cancer

therapy—revealed that the parameterized model achieves a

prediction accuracy comparable to established statistical

models. Hence, the large-scale mechanistic model we derived

and parameterized can predict the drug response of cancer

cell lines from sequencing data. A broad advantage of mecha-

nistic models is the possibility to predict latent variables, such

as equilibrium constants of individual reactions or the response

to combination drug treatments. The prediction of experimen-

tally not measured, i.e., latent, quantities is generally not

possible with conventional statistical methods.

Our uncertainty analysis of the model suggested that—

despite pronounced parameter uncertainties—prediction un-

certainties were low and accounted only for a minor fraction

of errors in predicted viability. Still, high parameter uncertainties

related to structural and practical non-identifiabilities impede

the mechanistic interpretability and are likely to be more

problematic for predictions at the molecular level. We expect

that these parameter uncertainties can be substantially

reduced by considering molecular data in the training process,

e.g., proteomic and phosphoproteomic data. Such datasets

are currently not available from published comprehensive

screens but are being collected in ongoing efforts such as the

Library of Integrated Network-Based Cellular Signature (Koleti

et al., 2018) program. Complementary, scalable computational

methods for the rigorous assessment of parameters and
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prediction uncertainties need to be developed. Unlike profile

calculation and sampling, uncertainty analysis based on

asymptotic theory and optimization results provide only a part

of the picture. Indeed, we found that the variability between

optimizer runs and cross-validation results has to be interpreted

with caution (Fröhlich et al., 2014).

Beyond parameter values, also the model structure is subject

to uncertainty. While the model is based on extensive literature

and was manually curated, interactions might still be missing

or incorrect. Some methods have been demonstrated to detect

such problems (Kondofersky et al., 2016; Penas et al., 2017);

however, it is unlikely that these methods scale sufficiently

well. An alternative might be to consider ensembles of models

featuring different model structures and employ the concepts

of bagging and boosting (Opitz and Maclin, 1999). First applica-

tions of this in the field of mechanistic modeling are available

for models with dozens of biochemical species (Henriques

et al., 2017).

We anticipate that the computational framework we intro-

duced will address the growing demand (Babtie and Stumpf,

2017) for methods that allow the systematic integration of het-

erogeneous datasets with large-scale mechanistic models. So

far, only statistical and machine learning methods were appli-

cable, limiting the mechanistic insights and the exploitation of

prior knowledge. High-quality mechanistic models—such as

the one introduced in this manuscript—can identify actionable

targets and guide personalized treatments and are thus of great

relevance to researchers and clinicians in systems biology and

systems medicine.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

CCLE Data
In this study, we employ previously published data for human cancer cell lines.

We downloaded RNAseq BAM-files for 780 CCLE cell lines from the Cancer Genomics Hub (https://cghub.ucsc.edu/) in April 2014.

The same data, including additional cell lines is now available for download in the Cancer Genomics Cloud (https://cgc.sbgenomics.

com/). Gene expression was quantified as Reads Per KilobaseMillion (RPKM) using genemodels from Ensembl Release 73. Mutation

data was downloaded from the CCLE data portal (https://portals.broadinstitute.org/ccle/data/, file CCLE_hybrid_capture1650_hg19_

NoCommonSNPs_NoNeutralVariants_CDS_2012.05.07.maf). RNA allele frequencies for the mutations were determined from the

downloaded RNAseq BAM-files using SAMtools mpileup (http://www.htslib.org/). Drug response data were downloaded from:

https://data.broadinstitute.org/ccle_legacy_data/pharmacological_profiling/CCLE_NP24.2009_Drug_data_2015.02.24.csv.

We identified 10 different tissues for which known driver mutations and respective pathways were implemented in the model and

for which RNAseq data was collected in sufficiently many originating cell-lines. Cell lines from tissues that includemany cell lines with

RNAseq data were included in the training/test set while cell lines from tissues with few cell lines with RNAseq data were included in

the independent set. This yielded a total of 123 cell lines originating from the tissues breast, large-intestine, lung, pancreas and skin,

which were included in the training/test data-set and 31 cell lines originating from the tissues kidney, soft tissue, ovary and stomach

which were included in the independent test set. For the training/test data we considered 120 of the 123 available cell lines to ensure

equally sized training and test sets in all cross-validations.

To generate test and training datasets from the processed CCLE data, we performed 20-80% splits on the cell-line level, which

yielded 5 training sets with 96 cell lines and test sets with 24 cell lines. The split was performed such that the tissue distribution in

the individual training sets is maximally similar. The number of experimental conditions in the training sets varies from 5390 to

5403 due to incomplete data for individual cell lines.
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GDSC Data
We used postprocessed drug response data provided by Pozdeyev et al. (2016) (http://tanlab.ucdenver.edu/QAPC/Downloads/

Drug_Sensitvity_Metrics.zip). For the individualization of cell-line specific simulations we used the same postprocessed RPKM

that we extracted for the analysis of CCLE drug response data.

METHOD DETAILS

Model Development
Themechanistic model was developed using PyBioS (Wierling et al., 2007), a web-based platform formodeling of complexmolecular

systems.We exploited several features of PyBioS, including themodular formulation of large-scale models based on individual path-

ways and their interactions. For model development we employed information from ConsensusPathDB (Herwig et al., 2016). The

information was manually curated and implemented in the model using a standard operating procedure (SOP). The SOP ensured

the model quality and the compatibility of different pathway models. The following paragraphs concisely describe the model devel-

opment in accordance to these SOPs and outline the model topology.

Models for the ERBB, RAS and AKT, AP1 andMYCpathways were generated in PyBioS asmodules to bemerged into a consistent

and comprehensive model of multiple cancer-related signaling pathways. Information from scientific literature and pathway data-

bases were considered for incorporation into the pathway modules. PyBioS is using templates for the annotation of individual reac-

tion types, such as protein biosynthesis, translocation, decay, (auto-/de-)phosphorylation, complex formation, GTP (de-)activation or

cleavage reactions. The reaction kinetics used by the templates follow a mass action law structure for reversible or irreversible re-

actions. PyBioS is using ENSEMBL gene identifiers for the unique annotation of the model species such as genes and proteins. The

ERBB module covers interaction of three different receptor tyrosine kinases (EGFR, ERBB2, ERBB4) and the non-kinase receptor

ERBB3 with at least one of the eleven ligands that are known to interact with at least one of these receptors. Ligand receptor com-

plexes undergo autophosphorylation reactions reflecting auto-activation on tyrosine residues of the receptor’s cytoplasmic domain

that serve as docking sites for distinct adapter molecules, e.g. GAB1, GRB2. Annotation of these phosphorylation sites in the model

and relevant binding partners is based on literature search and annotations in databases, such as the UniProt database (http://www.

uniprot.org/). Further complex formation reactions in the model reflect recruitment of proteins such as SOS1 or PIK3CA that in turn

trigger activation of RAS and AKT signaling, well known events of ERBB signaling in cancer cells. AKT and RAS signaling activation in

cancer can be triggered by several receptor tyrosine kinases as well as by activating mutations of key pathway components, e.g.

HRAS, KRAS, NRAS, PIK3CA or AKT. Within the RAS module, activated RAS primarily triggers RAF/MEK/ERK kinase cascade

activation and also triggers activation of the AKT signaling module via complex formation with PIK3CA and subsequent generation

of the second messenger phosphatidylinositol-(3,4,5)-trisphosphate (PIP3). The functional effects of RAS or PIK3CA activating

mutations are identical to the signaling elicited by the non-mutated species but modeled as independent of upstream activating

events. Within the AKT module, PIP3 activates AKT1, AKT2 and AKT3 via binding to PDPK1 and subsequent phosphorylation of

AKT isoforms. The functional effect of activated AKT is thenmodeled through phosphorylation reactions of distinct substrate proteins

that are known to activate or repress other signaling pathways, e.g. MTOR (AKT1S1, RHEB), apoptosis (BAD) or the G1S cell cycle

checkpoint (CDKN1A/B). Activation of transcription by MYC, AP1 and FOXO factors is modeled as phosphorylation reactions

through ERK or AKT, and therefore phosphorylated species are used as primary readouts for pathway activation in absence of

more complex modules reflecting transcriptional co-regulation.

Based on this ERBB/RAS/AKT model and CCLE drug screening data, we integrated drugs targeting key pathway components

such as erlotinib (EGFR and ERBB2) or selumetinib (ERK) by generating reversible complex formation reactions of drugs with their

(main and off-) target species, namely ligand receptor complexes in case of erlotinib or protein species in case of selumetinib. KD

values for these complex formation reactions were set according to kinase inhibitor screen data (Barrett et al., 2008; Davis et al.,

2011). All values are reported in the SBML file.

The phosphorylation and complex formation reactions within the ERBB, RAS and AKT signaling modules provide links to other

signaling pathways and thereby reflect crosstalk between pathways. However, modules secondarily affected by ERBB, RAS and

AKT are of similar complexity and their inclusion into the model used in this study would have significantly extended the ODE system

and thereby the number of parameters for optimization.

Based on the reaction details (substrates, products, enzymes, stoichiometries and kinetic laws) the reaction rate equations for the

biochemical reaction network were generated. This provides a system of ordinary differential equations (ODEs) describing themodel.

Each pathway module was checked for structural consistency, i.e. for each module the relative behavior of different readout species

of the respective modules weremanually checked based on a systematic structural testing of key species such as ligands, receptors

and other regulators which were defined during the annotation of the model. Activating simulations were performed for the external

activators (ligands, if part of the respective model), knock-out simulations for receptors (if part of the respective model), and knock-

out and over-expression in silico experiments for additional activator species were performed and the expected down-stream struc-

tural behavior based on the biological expectation or evidence was validated. These structural tests were performed with all kinetic

parameters set to one. Finally all pathway modules, modules of mutated genes/proteins and drug/target interactions were merged

into a comprehensive final model using PyBioS and exported in SBML format.
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Model Encoding in SBML
The developed model is made publicly available as a supplement to this manuscript. The model features extensive annotation,

including UniProt and Ensembl IDs. Phosphorylations are indicated in the name of the species by a preceding ‘‘P[$X;$Y;.]-‘‘

where $X and $Y specify the phosphorylation site using a one letter amino acid code, followed by the amino acid number.

Mutations are indicated in the name of the species by a preceding ‘‘MutAA[$Z]-‘‘, where $Z specifies the mutation site using

standard sequence variant nomenclature. Stoichiometric coefficients $N of complex constituents are indicated by a trailing

‘‘[$Nx]’’ for $N>1.

The SBML file encodes an ordinary differential equation (ODE) model of the form

dx

dt
=S$vðx; q;d; cÞ; xð0Þ= x0;

with concentration vector x and its initial condition x0, stoichiometric matrix S and flux vector v. The parameter vector q provides the

reaction rates, e.g. binding affinities. The vector d provides the drug concentrations and the vector c provides the expression levels

for the gene products and respective variants for a cell line. The flux vector vðx; q;d; cÞ is derived according to the law of mass action.

As the highest order reactions implemented in the model are complex formation reactions with two binding partners, vðx; q;d; cÞ is
linear in q and up to quadratic in x. The dependency on d and c is explained in the following.

To consider different drug treatments and cell lines, only d and c have to be changed. In the SBML model, the species encoding

drug concentrations have the same name as the respective drug and are located in compartment_2 (extracellular). To consider

different cell lines the vector c has to be changed. In the SBML file, the Reads Per Kilobase of transcript per Million (RPKM)

values are encoded as local parameters r$X_k_RPKM2protein of the respective synthesis reactions reaction_$X, where $X is the

reaction id. The synthesis rate is defined as product of the RPKM value (r$X_k_RPKM2protein), a gene specific scaling constant

(r$X_k_GeneSpecificScaling) and a species that encodes the presence of the respective gene (annotated with ENSEMBL ID). For

all simulations, we always used the RPKM values of the untreated condition. In the current implementation the gene specific scaling

constants are always set to 1 and not estimated during parameterization. The parameter vector q is generic and can be used for

different cell-lines and drug treatments. The SBML model implements a representative parameter estimate.

In the SBML model the viability output variable is specified as an assignment rule. The viability output is computed as fraction of

weighted sums of concentrations of active forms of transcription factors

yc;d =

PN
i u

pos
i xposi;c;d

1+
PM

j u
neg
j xnegj;c;d

;

in which xposi;c;d and xnegi;c;d denote the concentrations of transcription factors, for a particular cell line and drug treatment combination,

with a positive and negative influence on viability, respectively. The corresponding weights are denoted by u
pos
i and u

neg
i and were

estimated during model parameterization. The model captures the effect of N= 12 transcription factors, which in their molecularly

active state have positive influence on cell viability: P[S63;S73]-JUN[2x], P[S252;S265]-FOSL1:P[S63;S73]-JUN, P[T69;T71]-

ATF2:P[S63;S73]-JUN, P[S374;T325;T331]-FOS:P[S63;S73]-JUN P[Y701]-STAT1[2x], P[Y705]-STAT3[2x], P[Y694]-STAT5A[2x],

P[Y699]-STAT5B[2x], MAX-001:P[S62]-MYCN, MAX:P[S62]-MYC, P[S324;S383]-ELK1, and P[S133]-CREB1 (active states). Further-

more,M= 4 transcription factors, that in their molecularly active state have negative influence on cell viability, were included: FOXO1,

FOXO3, FOXO4 and FOXO6 (inactive states). In all cases only the species with nuclear localization were considered to be active.

The model employs experimentally derived drug-target binding affinity (KD) values for the drugs CHIR-265, erlotinib, lapatinib,

PLX4720, selumetinib, sorafenib and vandetanib, which were obtained from Davis et al. (2011). For PD0325901 the model employs

the inhibitory concentrations (IC50), which was measured in a cell-free assay by Barrett et al. (2008).

We note that the model includes several components that were not used in the presented analysis. This includes the option to

specify gene specific scaling constants to individually adjust synthesis rates. Furthermore, the small molecular kinase inhibitor

sorafenib was modeled. However, as none of the considered cell lines responded to sorafenib and as sorafenib targets several

components that are not captured by the model, the corresponding response data was not considered in this study.

Numerical Simulation
The compilation and numerical simulation of the model was performed using the MATLAB toolbox AMICI (Fröhlich et al., 2017)

(https://doi.org/10.5281/zenodo.579891). AMICI employs the backward differentiationmethod implemented in the SUNDIALS solver

package (Hindmarsh et al., 2005). We used the KLU linear solver with AMD reordering and relative and absolute error tolerance 10-8.

As the viability measurements were taken after 72 to 84 hours, we assumed that the signaling had reached a steady state.

Consequently, we simulated the model until all species reached steady state. To find the steady state for the untreated condition

of a cell line, the forward simulation was initialized with zero initial conditions and run until a time t for which the maximal absolute

value of the regularized relative derivative was smaller than 10-6,

max
i

;

����ðS$vðxðt; q;dÞ; q;d; cÞÞixi + 10�6

����<10�6
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where x denotes the state of the system at time t or drug concentration vector d = 0 and cell line c. For all treated conditions of a cell

line, the forward simulation was initialized with the steady state of the corresponding untreated condition and run until the same

convergence criterion was met. As the model contains non-linear reaction rates, the existence of a unique stable steady state is

theoretically not guaranteed. Interestingly, all simulations reached steady state for the considered model topology.

The forward and backward simulation of experimental conditions was parallelized using the MATLAB command parfor, which

implements OpenMP parallelization. As our cluster infrastructure features 8 core nodes, we parallelized each gradient computation

over 8 cores (1 master, 7 workers), thereby avoiding inter-node communication overhead. The different local optimizations were

performed on different nodes.

Stability Analysis
In the context of large-scale ODEmodels of metabolic networks, previous studies have reported substantial problems with instability

of steady states (Smallbone and Mendes, 2013). Instability of steady states may lead to problems in numerical simulations and can

necessitate the premature termination of simulations (Khodayari and Maranas, 2016). For the proposed model we did not encounter

diverging solutions or other numerical problems that could be attributed to the instability of steady states. In a retrospective analysis,

we performed linear stability analysis for all estimated parameter values and found that the largest eigenvalue of the Jacobian is

always strictly smaller than -10-4 (Figure S7). This corroborates the finding that the model is generally numerically well behaved.

QUANTIFICATION AND STATISTICAL ANALYSIS

Parameterization
To estimate the model parameters q, we used the measurement data for the viability in the treated condition relative to the untreated

condition, yc;dm =yc;0m , provided in the CCLE dataset. These data were fitted using a sum-of-squared-residuals objective function

JðqÞ= 1

2

X
c˛C

X
d˛Dc

 
yc;dm

yc;0m

� yc;dðqÞ
yc;0ðqÞ

!2

;

in which c˛C is cell-line specific and d˛Dc denotes the drug concentration. This objective function is equivalent to the negative log-

likelihood function under the assumption of additive independent and identically distributed standard normally distributed measure-

ment noise for the relative viability measurements. To minimize the objective function we used multi-start local optimization (Raue

et al., 2013) implemented in the MATLAB toolbox PESTO (https://doi.org/10.5281/zenodo.579890). Parameters were constrained

to a [10-2,102] hypercube. For each local optimization run, parameters were drawn log-uniformly from this hypercube, followed by

100 optimization iterations of the MATLAB fmincon interior-point algorithm in logarithmic parameters. An exemplary implementation

of these methods is provided at https://doi.org/10.5281/zenodo.1472794 in the file runSyntheticExample.m in folder estimation_

example. The MATLAB interior-point implementation applies a regularization that is symmetric around the center of the parameter

domain (here 100=1) to every parameter. As the regularization term attains the lowest value at this center point, the optimization will

preferentially estimate parameters to value 1, as long as this does not lead to worse objective function values. Parameter estimates

with value 1 were consistently observed for parameters with no influence on model outputs, such as parameters of reactions that

involve mutated species that were present in none of cell-lines in the training set.

A high-performance-computing-ready standalone executable was generated from the parameterization pipeline implemented in

MATLAB using the MATLAB Compiler toolbox. For every cross-validation we performed 10 local optimization runs. As no commu-

nication was necessary between optimization runs, each could be submitted as a separate job to the cluster. In total we submitted 50

jobs using 8 cores each, resulting in a total parallelization over 400 cores.

Adjoint Sensitivity Analysis
To compute the gradient of the objective function, we employed adjoint sensitivity analysis (Fröhlich et al., 2017). Adjoint sensitivity

analysis facilitates the computation of the gradient of a scalar function gðqÞ, which typically is the objective function gðqÞ = JðqÞ.
However, the established approach assumes that the individual summands of the objective function can be assessed using a single

simulation of a single model. For the objective function we formulated in the previous section, a single summand requires the simu-

lation of two experimental conditions, one treated and the untreated condition for a particular cell line. Hence, single simulation would

have to combine simulation of one cell-line in two experimental conditions, which would require a single ODE model with twice the

number of state variables and repeated simulation of the control condition. While this would be feasible, it seemed impractical and

computationally unnecessary demanding.

In this study, we exploited the fact that we only consider the viability output as a scalar observable, yc;dðqÞ=yc;0ðqÞ, for every exper-
imental condition. Instead of using adjoint sensitivities to calculate the objective function directly, we instead computed the gradients

of gðqÞ= yc;dðqÞ and gðqÞ = yc;0ðqÞ. Using vyc;dðqÞ=vq and vyc;0ðqÞ=vq, the gradient is

vJðqÞ
vq

=
X
c˛C

X
d˛Dc

 
yc;dm

yc;0m

� yc;dðqÞ
yc;0ðqÞ

!
vyc;dðqÞ

vq
yc;0ðqÞ � yc;dðqÞ vyc;0ðqÞ

vq

yc;0ðqÞ2 :
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This approach should reduce the computation time compared to the established approach at least by a factor of two. The effective

model size for adjoint sensitivity analysis using this approach is equal to the size of the pathway model and simulation has to be

performed only for a single experimental condition.

We note that the original adjoint sensitivity approach is also applicable to models with more than one output variable.

Numerical Benchmarking of Forward and Adjoint Sensitivity Analysis
To compare different methods for gradient evaluation, we assessed the computation time for a single gradient evaluation on the full

training set. For sequential and parallel gradient evaluation using adjoint sensitivity analysis, we measured computation time. As this

would have been too time consuming for forward sensitivities, we first assured that the computation time for individual experimental

conditions is comparable and then extrapolated to all experimental conditions. The computation time was evaluated on the training

set of the first cross-validation for 10 randomly sampled parameter vectors. For the difference between forward and adjoint sensitivity

analysis and sparse and dense solvers, we only evaluated the simulation time for the untreated condition of a single cell-line. The

performance was evaluated based on 100 samples with a randomly drawn parameter vector and a randomly drawn cell-line. The

computation time was then normalized such that the median for the sparse adjoint approach matched the computation time for

the full training set.

Ensemble Averaging
We used ensemble averaging to reduce the effect of overfitting and the variance of predictors. For themechanistic model we used an

ensemble model based on five optimization runs that achieved the lowest objective function value. The model was individualized to

cell lines from the test and independent test set and simulated with parameter values from these optimization runs. Predictions were

then computed asmedian over these five simulations. The ensemble averaging was solely based on results from the training set. The

test and independent test set were only used for validation.

Uncertainty Analysis
To assess the uncertainty of parameters we considered the eigenvalue spectrum of the Fisher Information Matrix (FIM). Small eigen-

values indicate large uncertainties in the direction of the respective eigenvector while large eigenvalues indicate small uncertainties.

The eigenvalue spectrum was evaluated for the best five optimization runs for every cross-validation.

The FIM was computed by summing the dyadic product of adjoint sensitivities over all experimental conditions

FIMq =
X
c˛C

X
d˛Dc

1

yc;0ðqÞ4
�
vyc;dðqÞ

vq
yc;0ðqÞ � vyc;0ðqÞ

vq
yc;dðqÞ

�T�
vyc;dðqÞ

vq
yc;0ðqÞ � vyc;0ðqÞ

vq
yc;dðqÞ

�
:

As the number of experimental conditions (�5,400) exceeds the number of parameters (�4,100) the FIMq could theoretically have

full rank.

For parameter derived readouts z, such as viability readouts as well as state variables, a similar quantification of the uncertainty is

possible by considering a transformation FIMz of FIMq. The transformation is obtained bymultiplication with the respective parameter

derivatives

FIMz =
vz

vq
FIMq

vz

vq

T

:

For state variables the formula for sensitivity of the steady state with respect to the model is according to the implicit function

theorem

vx

vq
= �

�
S$

vv

vx

��1

S$
vv

vq
;

assuming that the system is in steady state,

S$v = 0:

For the assessment of the uncertainties of the steady state based on FIMz, we only considered state variables with non-zero steady

state. The state variables with steady state equal to zero correspond to molecular species that are not expressed.

Statistical Modeling
For the comparison of model performances, we trained a series of statistical models for the quantitative prediction of cell viability at

different drug concentrations, based on the exact same training data sets, cross-validation setup and test data sets that were used

for the mechanistic model. The model quality was evaluated for three sets of predictor variables: 1) mutation genotype data; 2) gene

expression data; and 3) genotype and gene expression data. In addition, we also provided the network topology as input to some of

the models. Model training was performed for each drug and each drug concentration independently by nested cross-validation,

where the outer 5-fold cross validation loop split the data into training set (80% of the data) and test set (20% of the data). For

each model and each training set we estimated the model parameters by optimizing the performance measured as root mean
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squared error (RMSE) in the inner cross validation loop splitting the training data again into training and validation sets or by boot-

strapping of the training data (random forest).

We used the R implementations of the following models: 1) linear regression with LASSO penalty (glmnet package); 2) Random

Forest (randomForest package); 3) graph regularized linear regression (glmgraph package); and 4) linear regression with LASSO

penalty on augmented data, including additional interaction terms. The interaction terms were defined based on the network topol-

ogy used in the mechanistic model. The adjacency matrix was extracted from the Jacobian of the right-hand side of the differential

equation. For a pair of genes, the Jacobian was reduced to rows or columns corresponding to species that include the corresponding

proteins in any form (phosphorylated, cleaved or bound). Two genes were defined to be adjacent when the corresponding submatrix

of the Jacobian has at least one non-zero entry. We augmented the data set either with all pairwise interactions (products of

individual variables) between variables of the same type (genotype or gene expression) or interactions between genes that are

connected by paths in the network not longer than d = 1, 2 or 3 steps. The optimal parameter l for LASSO models, l1 and l2 or

the graph regularized LASSO model were selected as the largest l that produces an RMSE within one standard error of the

minimal RMSE (Hastie et al., 2009) in an 8-fold inner cross validation. Random forest regression models were trained by selecting

parameters that minimize the out-of-bag error (Breiman, 2001). We optimized over the number of variables randomly sampled as

candidates for each split, the number of trees in the forest ranging from 50 to 500 and the maximum leaf node size criterion ranging

from 1 to 1/3 of the data set. All models were then applied to the test set and performance was assessed as the RMSE or Pearson

correlation coefficient between predicted and observed cell viability.

Finally, we used themodels trained in each round of the cross validation and applied them to an independent test set. Performance

was assessed as the RMSE or Pearson correlation coefficient between predicted and observed cell viability and averaged over the

models trained in each of the five cross validation rounds.

DATA AND SOFTWARE AVAILABILITY

Themodel, code for the simulation and inference aswell as the result files are available onCodeOcean: https://doi.org/10.24433/CO.

0756760d-cb46-4ef1-9d9a-07c4cef40baa and Zenodo: https://doi.org/10.5281/zenodo.1472794.
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