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Abstract 15 

RNA sequencing (RNA-seq) is gaining popularity as a complementary assay to genome 16 

sequencing for precisely identifying the molecular causes of rare disorders. A powerful 17 

approach is to identify aberrant gene expression levels as potential pathogenic events. 18 

However, existing methods for detecting aberrant read counts in RNA-seq data either lack 19 

assessments of statistical significance, so that establishing cutoffs is arbitrary, or rely on 20 
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subjective manual corrections for confounders. Here, we describe OUTRIDER (OUTlier in RNA-21 

seq fInDER), an algorithm developed to address these issues. The algorithm uses an 22 

autoencoder to model read count expectations according to the co-variation among genes 23 

resulting from technical, environmental, or common genetic variations. Given these 24 

expectations, the RNA-seq read counts are assumed to follow a negative binomial distribution 25 

with a gene-specific dispersion. Outliers are then identified as read counts that significantly 26 

deviate from this distribution. The model is automatically fitted to achieve the best correction of 27 

artificially corrupted data. Precision–recall analyses using simulated outlier read counts 28 

demonstrated the importance of combining correction for co-variation and significance-based 29 

thresholds. OUTRIDER is open source and includes functions for filtering out genes not 30 

expressed in a data set, for identifying outlier samples with too many aberrantly expressed 31 

genes, and for the P-value-based detection of aberrant gene expression, with false discovery 32 

rate adjustment. Overall, OUTRIDER provides a computationally fast and scalable end-to-end 33 

solution for identifying aberrantly expressed genes, suitable for use by rare disease diagnostic 34 

platforms. 35 

Introduction 36 

No clear pathogenic variant can be pinpointed for many patients suspected to suffer a 37 

Mendelian disorder after undergoing whole exome or whole genome sequencing1,2. A possible 38 

reason is that the pathogenic variant is regulatory. Accurately identifying pathogenic regulatory 39 

variants is difficult. One difficulty is that, an individual harbors a very large number of rare non-40 

coding variants, with about 60,000 non-coding single nucleotide variants compared with 475 41 

protein-affecting rare variants per genome (with MAF < 0.005)3. A second difficulty is that our 42 
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understanding of regulatory sequences is much poorer than our understanding of coding 43 

sequences. 44 

Two recent studies have shown that using RNA sequencing (RNA-seq) to directly investigate 45 

gene expression defects in patients’ cells provides a promising complementary method for 46 

pinpointing pathogenic regulatory defects4,5. RNA-seq can help to reveal splicing defects, the 47 

mono-allelic expression of heterozygous loss-of-function variants, and expression outliers (i.e. 48 

genes aberrantly expressed outside their physiological range)4,5. The two studies used different 49 

approaches to identify expression outliers. Cummings et al.4 computed Z-scores on the  50 

logarithm of gene-length normalized read counts by subtracting the mean count and dividing by 51 

the standard deviation. Expression outliers were identified as read counts with an absolute Z-52 

score greater than 3. No test of statistical significance was performed. This expression outlier 53 

analysis did not yield any convincing candidates. In contrast, the study by Kremer et al.5 54 

identified 4 out of 6 newly diagnosed individuals as expression outliers. Read count outliers 55 

were identified as those with an absolute Z-score greater than 3 and further being statistical 56 

significant according to DESeq2, a statistical test originally developed for differential expression 57 

analyses6, which was applied by testing each sample in turn against the rest of the cohort. 58 

DESeq2 is based on the negative binomial distribution, which can be used to model 59 

overdispersed count data7. The application of a statistical test, appropriate for count data, may 60 

be one reason for the difference in success rates between the studies. However, the reason for 61 

the difference remains unclear because of the relatively small number of diagnosed cases, the 62 

absence of ground truth, and the lack of a direct comparison between the two approaches 63 

based on the same data. 64 

The two studies did not only differ in whether or not a statistical test was applied but also 65 

differed in the way the data was corrected for confounders. Cummings et al.4 used RPKM 66 
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(reads per kilobase per million mapped reads) expression values. These control for variations in 67 

sequencing depth but not for other sources of co-variation among the read counts. Controlling 68 

for further sources of co-variation is important because the identification of a gene as aberrantly 69 

expressed depends on the context, for example the sex of the donor. Genes encoded on the Y 70 

chromosome are not present, and thus not expressed, in women. However, in men, loss of the 71 

expression of a Y chromosome-encoded gene can be an aberrant expression event. Hence, not 72 

taking the sex of the donor into account would not allow for the detection of aberrantly silenced 73 

Y chromosome-encoded genes in males. While the sex of the donor is usually available and can 74 

be easily controlled for, other contexts for gene expression, such as the exact tissue of origin of 75 

the sample, the sample’s cell type composition, the genetic background, and technical biases, 76 

may not be known a priori, yet causing similar but less intuitive variations. Kremer et al.5 77 

corrected expression levels for sex, biopsy site as inferred from the HOX gene set, and common 78 

technical sources of variation, which were identified by visual inspection of a hierarchical 79 

clustering of the samples. In a study that identified expression outliers, although not for the 80 

diagnosis of rare diseases, Li et al.8 corrected for sex and the top three genotype principal 81 

components, as well as for hidden confounding effects estimated using the probabilistic 82 

estimation of expression residuals (PEER) method9. However, the algorithms controlling for co-83 

variations in RNA-seq read count data used in the studies of Li et al.8 and Kremer et al.5 were 84 

neither assessed nor tuned to detect aberrantly expressed genes. 85 

Here, we introduce OUTRIDER (OUTlier in RNA-seq fInDER), an algorithm that provides a 86 

statistical test for outlier detection in RNA-seq samples while controlling for co-variations among 87 

the gene read counts. The modeling of co-variation is performed by an autoencoder that 88 

controls for read count variations caused by factors not known a priori. Its parameters are 89 

optimized automatically for correcting read counts corrupted in silico. Autoencoders were 90 

introduced to find low-dimensional representations of high-dimensional data through a hidden 91 
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layer10–12. They have been shown to be useful for extracting meaningful biological features from 92 

RNA-seq data13 and imputing missing values in single-cell RNA-seq data14. A subclass of 93 

autoencoders, the so-called denoising autoencoders, are used to reconstruct corrupted high-94 

dimensional data through exploiting correlations in the data15. In OUTRIDER, the autoencoder 95 

approach is used to correct for the common co-variation patterns among genes. In this article 96 

we describe the OUTRIDER algorithm, its implementation, as well as its performance and 97 

results on two data sets. 98 

Material and Methods 99 

Data sets 100 

The read counts for the rare disease cohort were downloaded from Supplementary Data 1 101 

published as part of the study by Kremer et al.5 102 

(https://www.nature.com/articles/ncomms15824). GTEx read counts were obtained from the 103 

GTEx Portal (V6p counted with RNA-SeQCv1.1.8, https://www.gtexportal.org/home/datasets)16. 104 

Read counts for the Kremer et al. data set were computed according to the UCSC annotation 105 

build hg1917, considering the full gene body. In contrast, GTEx is based on the Gencode v19 106 

annotation18, and the read count of a gene is defined as the number of paired-end read pairs 107 

overlapping exons of that gene only. FPKM (fragments per kilobase per millions of reads) 108 

values were obtained using DESeq26, where the gene length was defined as the aggregated 109 

length of all the exons. We then filtered for expressed genes, defined as genes for which at 110 

least 5% of the samples had a FPKM value greater than 1 (Figure S1A and B). We further 111 

filtered out samples with a sequencing depth less than the mean sequencing depth minus three 112 

standard deviations (Figure S1C and D). 113 
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Statistical model  114 

We assume that the read count 𝑘!" of gene 𝑗 = 1,… , 𝑝 in sample 𝑖 = 1,… , 𝑛 follows a negative 115 

binomial (NB) distribution, with gene-specific dispersion parameter θ!, and mean 𝜇!" equal to the 116 

product of a control factor 𝑐!" and a gene-wise adjustment factor 𝑎!: 117 

𝑃 𝑘!" = NB 𝑘!" 𝜇!" = 𝑎! ∙ 𝑐!" , θ! .    ( 1 ) 118 

Both 𝑐!"  and 𝑎! are required to be >0.01 during fitting because the NB distribution is not defined 119 

for 𝜇 ≤ 0. The correction factor 𝑐!" is the product of the sample-specific size factor 𝑠!, and the 120 

exponential of the sum of the co-variation factor 𝑦!" and the mean log read count per gene 121 

𝑥! = mean! log !!"!!
!! 

: 122 

𝑐!" = 𝑠! ∙ exp 𝑦!" + 𝑥!      ( 2 ) 123 

The size factors 𝑠! capture variations within the sequencing depth; they are robustly estimated 124 

as the median of the ratios of the gene read counts to their geometric means19. The co-variation 125 

factors 𝑦!"  capture co-variations across genes; they are modeled using an autoencoder of 126 

encoding dimension 𝑞 < 𝑝. Specifically, 127 
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𝐲! = 𝐡!𝐖! + 𝐛       ( 3 ) 128 

𝐡! = 𝐱!𝐖,       ( 4 ) 129 

where the 𝑝×𝑞 matrix 𝐖 is the encoding matrix and its transpose the decoding matrix, the q-130 

vector 𝐡!  is the encoded representation and the p-vector 𝐛  a bias term. The input to the 131 

autoencoder, 𝐱!, is a vector of the log counts divided by the size factors centered on the gene 132 

mean: 133 

𝑥!" = log !!"!!
!! 

– 𝑥!,      ( 5 ) 134 

where we add one to prevent computing the logarithm of zero. In the following, we call the 135 

combination of Equations (2 - 5) the autoencoder, or short: 𝑐!" = AE 𝑘!" . 136 

Fitting the autoencoder parameters 137 

To fit the autoencoder, we set the adjustment factors 𝑎!  to 1 because the goal of the 138 

autoencoder is to model as much as possible of the read count co-variation. We found that joint 139 

estimations of the dispersion parameter and the autoencoder led to poor results, possibly 140 

because one compensated for the other one. We therefore set the initial dispersion parameters 141 

for all the genes to a common value (𝜃 = 25) that is arbitrary yet realistic. This value 142 

corresponds to a coefficient of variation for large read count expectations of 20%. The 143 

coefficient is also known as the biological coefficient of variation20. A biological coefficient of 144 

variation of 20% is typically seen for RNA-seq data sets of human cell lines with identical 145 

genetic background21. 146 
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For a given encoding dimension 𝑞, adjustment factors 𝑎!, and dispersion parameters 𝜃!, the 147 

parameters of the autoencoder 𝐖 and 𝐛 are fitted by maximizing the likelihood (Equation 1) 148 

using the L-BFGS algorithm22 as provided by the R optimization function optim(). A detailed 149 

derivation of the gradient is given in the supplemental methods. 150 

Fitting the encoding dimension 151 

The optimal encoding dimension is obtained by assessing the autoencoder’s performance in 152 

correcting corrupted data. We artificially introduce corrupted read counts randomly with a 153 

probability of 10!!  by shifting the true read counts 2 standard deviations on a log scale 154 

randomly up or down. The introduced values are rounded to the nearest integer. 155 

With 𝐶 denoting the set of index pairs of corrupted read counts, and 𝐤!  the vector of read counts 156 

for sample i after the injection of the corrupted read counts, an evaluation function was defined 157 

as: 158 

evaluation = − !
|!|

log NB 𝑘!" 𝜇!" = 𝑎! ∙ AE 𝐤! ,𝜃!,! ∈!    ( 6 ) 159 

The optimal encoding dimension for this evaluation function can be selected from the integer 160 

range [1;100] by computing the loss for each value for a given 𝜃 = 25. 161 

Estimation of the dispersion and adjustment parameters 162 

Once the autoencoder and thus the control factors 𝑐!" is fitted, the adjustment 𝑎! and dispersion 163 

𝜃! are obtained by maximizing the log-likelihood of Equation (1). To estimate the parameters, 164 
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the negative log-likelihood is minimized for each gene independently using BFGS optimization, 165 

as implemented in the optim() function of R23–26. Initial values are estimated as 𝑎! =
!
!

!!"
!!"

 for 166 

the adjustment and 𝜃! =
!!
!

!!
!! !!

 for the dispersion if 𝜎!! >  𝜇!, or 1 otherwise. 167 

P-value computation 168 

After determining the fit parameters, the algorithm computes two-sided P-values using the 169 

following equation: 170 

𝑃!" = 2 ∙min !
!
, 𝑁𝐵 𝑘!" 𝜇!" , θ!

!!"
!!! , 1− 𝑁𝐵 𝑘!" 𝜇!" , θ!

!!"!!
!!! . ( 7 ) 171 

The term ½ is included to handle cases when both other terms exceed ½, which is possible 172 

because of the discrete nature of the NB distribution.  173 

Expression levels of different genes for the same sample are correlated because of biological 174 

confounding effects such as co-regulation, which cannot be entirely excluded even after 175 

correction by the autoencoder. The computed P-values can therefore be correlated. Multiple 176 

testing correction was performed using the Benjamini–Yekutieli false discovery rate (FDR) 177 

method, which holds under positive dependence27. 178 

Z-score computation 179 

Z-scores 𝑍!" are computed on a logarithmic scale, as follows: 180 
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𝑍!" =
!!"!!!

!

!!
!       ( 8 ) 181 

where 𝑙!" is the log2 corrected count calculated as 𝑙!" = log!
!!"!!
!!"

, 𝜎!! is the standard deviation 182 

of 𝑙!" for gene j, and 𝜇!!  is the mean of 𝑙!" for gene j. 183 

Controlled counts 184 

To obtain comparable counts across samples after controlling for various effects, we compute 185 

the following controlled counts: 𝑘!"! =
!!"!!
!!" 

𝑐!. These are all of the same magnitude, independent 186 

of the control method applied. When 𝑐!" are size factors, the mean of all 𝑐!"  is approximately 1 187 

and the count 𝑘!"!  is of the same magnitude as the raw count 𝑘!" . When 𝑐!" is the estimated 188 

mean, this equation provides a similar controlled count. 189 

Benchmark by injection of outliers 190 

To assess the sensitivity and specificity of alternative outlier detection methods, artificial read 191 

count outliers were injected with pre-specified amplitudes (Z-scores). This process was 192 

separate from the injection of corrupted data described earlier in “Fitting the encoding 193 

dimension.” The outlier injection scheme described in this section was used to independently 194 

assess OUTRIDER’s performance in comparison with the Z-score approach. 195 

To obtain a data set with samples that contained only a few outliers, all GTEx samples from the 196 

skin tissue not exposed to the sun were fitted and tested and only the non-outlier samples as 197 

described above in which fewer than 0.1% of all the genes were aberrantly expressed were 198 
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used for the benchmark set. The read counts were then replaced with a probability of 10-4 by an 199 

outlier read count 𝑘!"! , defined as: 200 

𝑘!"! = round 𝑠! ∙ 2!!" , 

where 201 

𝑙!" = 𝑧! ∙ sd 𝑙! + 𝑙!. 202 

Implementation 203 

OUTRIDER is implemented as an R package that is available through GitHub 204 

(https://github.com/gagneurlab). 205 

Results 206 

We considered two RNA-seq data sets, which we refer to as the Kremer and the GTEx data 207 

sets. The Kremer data set contains 119 RNA-seq samples from skin fibroblasts of patients with 208 

a suspected rare mitochondrial disorder5. This data set was analyzed in a previous study with 209 

the systematic effects corrected by manual inspection of sample correlation matrices5. In this 210 

study 4 genes were identified as aberrantly expressed out of 6 pathogenic genes detected by 211 

RNA-seq analysis and validated by functional assays5. This data set therefore served as our 212 

benchmark data set for rare disease applications. The GTEx data set contains 271 RNA-seq 213 

samples obtained from the not sun exposed skin tissue in the Genotype-Tissue Expression 214 

project (GTEx V6p16). We focused on these skin samples because the tissue was similar to the 215 

tissue of origin of the Kremer data set. The donors of the GTEx samples did not suffer from any 216 
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condition and were not under treatment. Nevertheless, aberrant gene expression in these 217 

samples has been reported8. 218 

For both data sets, we filtered out genes not expressed across the whole data set, resulting in 219 

10,559 genes in the Kremer set and 18,250 genes in the GTEx set (Figure S1A and B). In the 220 

GTEx set, we additionally filtered out two samples because of a low sequencing depth, resulting 221 

in 269 samples (Figure S1C and D). Both data sets exhibited a strong correlation structure with 222 

very distinct sample clusters (Figure 2A and Figure S2A). These correlations may have arisen 223 

from biological variations such as the sex of the donor, the origin of the tissue, population 224 

structure, or from hidden confounders such as poorly understood systematic technical 225 

variations5,8. Applying the autoencoder on the read counts allowed co-variations to be estimated 226 

and corrected for. The dimension of the autoencoder was fitted using a scheme in which 227 

artificially corrupted read counts were injected and presented as the input to the autoencoder, 228 

maximizing the likelihood of the original, uncorrupted data. Based on the GTEx data set, we 229 

obtained 20 as optimal encoding dimension while 13 was optimal for the Kremer data set. We 230 

note that encoding dimensions close to the optimum yielded similar results. After the correction 231 

was applied, the co-variation clusters disappeared from both data sets (Figure 2B and Figure 232 

S2B). 233 

Testing for aberrant expression revealed aberrant samples in both data sets 234 

The OUTRIDER algorithm models RNA-seq read counts as a NB distribution with a mean that is 235 

the expected value provided by the autoencoder. Expression outliers are detected as significant 236 

deviations of the observed read counts from these expected values, assuming negative 237 

binomial distributions with gene-specific dispersions. Quantile–quantile plots for individual genes 238 
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indicated that OUTRIDER reasonably modeled the count distribution (Figures 3B and D and S3) 239 

and that the resulting P-values can be used to detect outliers (Figure 3). 240 

Globally, at an FDR threshold of 0.05 (Benjamini–Yekutelli method27), we detected aberrantly 241 

expressed genes in 168 and 63 samples for the GTEx and Kremer data sets, respectively 242 

(Figure 4A and B), with 90th percentiles of 10 and 4 aberrant genes per sample. The number of 243 

significant outliers exhibited a skewed distribution across samples in both data sets, consistent 244 

with the results of Kremer et al.5. This suggested that some samples differed from others to a 245 

considerable extent. This may have been due to strong technical artifacts in the library 246 

preparation or because the samples were from donors that were genetically distant from the 247 

others or who had diseases with a severe regulatory impact. Regardless of the cause, it was 248 

difficult to narrow down the candidate pathogenic aberrantly expressed genes in these samples 249 

to a short, practical list (Figure 4C and D). We therefore introduced a cutoff (number of outliers 250 

> 0.1% of expressed genes) to filter out these samples. This resulted in 19 outlier samples 251 

(7.1%) in the GTEx data set and 4 outlier samples (3.4%) in the Kremer data set, as well as 252 

much improved global quantile–quantile plots (Figure 4E and F). 253 

Recall benchmark 254 

To benchmark OUTRIDER, we injected outlier read counts and tested the fraction that could be 255 

recalled. We used the 269 skin tissue samples not exposed to the sun from the GTEx data set, 256 

from which we removed 19 outlier samples. Aberrant counts were then injected into this count 257 

matrix of 250 samples and 18,250 genes. Using a frequency of 10-4, we injected 434 aberrant 258 

counts to create three scenarios: i) all underexpressed, ii) all overexpressed, and iii) 50% 259 

overexpressed and 50% underexpressed. Each scenario was repeated for three different 260 

simulated amplitudes (with Z-score values of 3, 4, and 6). 261 
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We then ran OUTRIDER, controlling either for sequencing depth alone or for co-variations using 262 

the autoencoder. Thereby, we monitored the recall of injected read count outliers and the 263 

precision, i.e. the number of injected outliers among the reported outliers using the different 264 

detection methods (Figure 5). Note that, the precision and recall in this setup were 265 

underestimated because the original data also contained genuine outliers. We observed that the 266 

proposed correction strategy outperformed controlling only for sequencing depth in almost all 267 

simulations. The size factor approach performed better only for very extreme overexpressed 268 

outliers (|Z| = 6). However, in this case, the recall of OUTRIDER with the autoencoder 269 

decreased by less than 5% compared to using sequencing depth alone. 270 

The two most commonly used Z-score cutoffs4,8 (|2| and |3|) recalled almost all the outliers 271 

(median=99%) in each simulation, yet at the cost of a high false discovery rate (precision < 272 

0.02). In contrast, applying a significance cutoff corrected for multiple testing reduced the rate of 273 

false discoveries and hence increased the precision, which confirms the importance of a P-274 

value based strategy. 275 

In the scenario of overexpressed genes, the precision–recall curves with and without 276 

significance overlapped. (Figure 5, middle column). This indicated that Z-scores and P-values 277 

for high counts gave essentially the same rankings. The advantage of P-values is that they 278 

provide a principled way to establish a cutoff that takes statistical significance and multiple 279 

testing into account. With low gene expression levels, the overlap of the precision–recall curves 280 

was less strong (Figure 5, right column). Only genes with a sufficiently high mean expression 281 

level (mean count >80 with recall >55% and precision >60%; Figure S4B) yielded significant P-282 

values to recall the injected aberrantly low outliers. This is due to the non-negative nature of 283 

counts, where even large Z-scores do not result in significant deviations from the mean 284 

expression level (Figure S4). This limited the recall because a significant fraction of genes had a 285 
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mean expression level that was too low. Overall, these results demonstrated that it is important 286 

to control for co-expression and to assess significance. 287 

Applying OUTRIDER to the Kremer data set and filtering out the outlier samples resulted in a 288 

recall of 47 events (66%) identified by Kremer et al. (Figure S5) based on the 48 previously 289 

undiagnosed samples. Additionally, OUTRIDER detected 33 new expression outliers of which 290 

19 were down-regulated. OUTRIDER was able to recall 5 out of the 6 pathogenic events (3 291 

expression outliers, 1 mono-allelic expression, 2 splicing defects) validated by Kremer et al.. 292 

While Kremer at al. additionally detected the mono-allelically expressed gene ALDH18A1 as an 293 

expression outlier it was not significant using OUTRIDER. In this case, a compound 294 

heterozygous defect was detected in ALDH18A1, where only the missense mutation was 295 

expressed. Hence, there was a reduction of about 40% of the overall gene expression. 296 

Nevertheless, ALDH18A1 was the gene with the second most extreme P-value among the 297 

down-regulated genes in this sample. Furthermore, ALDH18A1 can also be detected with a test 298 

for mono-allelic expression5, arguably the most appropriate aberrant expression category in this 299 

case. Two further genes, CLPP and MCOLN1, diagnosed by Kremer et al.5 by testing for 300 

splicing defects, were detected by OUTRIDER as expression outliers. Those cases exhibited 301 

reduced gene expression due to severe splicing defects. 302 

Discussion 303 

We have introduced OUTRIDER, a new end-to-end solution for identifying aberrantly expressed 304 

genes within RNA-seq data, controlling for hidden confounders in an automated fashion, and 305 

providing statistical significance estimates. OUTRIDER combines an autoencoder, which allows 306 

for automatic correction of technical and biological variations among genes, and a statistical test 307 
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based on a negative binomial distribution. A precision–recall analysis demonstrated the 308 

advantage of correcting for co-variations and employing significance-based thresholds. 309 

OUTRIDER has three advantages over preceding methods. First, it computes P-values, which 310 

can be adjusted to control the false discovery rate. Z-score-based approaches lack P-values, so 311 

the setting of cutoffs is arbitrary. Second, the parameters of the model are automatically fitted 312 

evaluating the ability of the model to correct for simulated corrupted read counts. Third, 313 

OUTRIDER is implemented and made available as an open source R package (from 314 

https://github.com/gagneurlab/OUTRIDER). The package provides plotting functionality and 315 

allows full analyses to be made with only a few lines of code. Furthermore, the package comes 316 

along with a comprehensive vignette guiding the user through a typical analysis. 317 

We implemented OUTRIDER so that it is not restricted to the autoencoder, allowing the outlier 318 

test to be used with any other normalization method. In particular, autoencoders with additional 319 

layers could be employed to capture nonlinear relationships. However, the analysis of 320 

correlations post-control did not suggest the need for a more complex autoencoder. This is 321 

consistent with the study of Way and Greene, who modeled co-variations in RNA-seq samples 322 

using a single-layer autoencoder13. Independently of the way the correction is modeled, 323 

OUTRIDER offers functionality for finding the optimal parameter set using a modeling scheme 324 

based on corrupted count data. An advantage of this hyperparameter optimization is that no 325 

manual intervention is needed to find the optimal parameters. 326 

Despite controlling for co-variations, some samples exhibited a much larger number of aberrant 327 

genes than others in both of the data sets investigated. This is consistent with the findings of 328 

Kremer et al.5. In outlier samples where hundreds of genes are identified as aberrant, it is 329 

difficult to draw any conclusion about the cause of such aberrant expression profiles. We 330 

therefore label those samples as outlier samples and recommend to investigate them and their 331 
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global expression profile changes in a separate analysis. Some of these global changes may 332 

have a technical basis, such as the two discarded samples from the GTEx data set with 333 

aberrantly low coverage, whereas others may reflect the phenotype of the disease. Alternative 334 

methods have been developed to detect such samples; these exploit global measures such as 335 

the Mahalanobis distance to measure the dissimilarity of a sample from the population and to 336 

identify aberrantly expressed gene sets28,29.  337 

We have not addressed the handling of replicate samples because we do not expect them to be 338 

performed by default in diagnostic settings. The reason for this is that outliers are events that 339 

show strong effects, so replicates are not essential for detecting these types of events. If a 340 

putative disease-causing event is detected, such as an aberrantly expressed gene, follow-up 341 

experiments involving assays complementary to RNA-seq are preferred over replicates to 342 

establish the functional link of the event to the disease1,30. In contrast, if an RNA-seq sample is 343 

suspected to have a technical problem, a new library can be prepared, and the new data is 344 

substituted for the former. Neither of these situations results in replicate samples. When 345 

replicates are available, users can combine the P-values of replicate samples using Fisher’s 346 

method for combining P-values31 by assuming independence of the read counts conditioned on 347 

the expected means predicted by the autoencoder. 348 

In general, the autoencoder controlling scheme and the read count modeling approach benefit 349 

from additional sequencing data; the more data that can be combined, the better the estimation 350 

of the typical patterns within a population will be. This holds true when the overall data is equally 351 

distributed across population structures or sequencing protocols, because each sample is 352 

assumed to be an independent representative of the whole population. This assumption was 353 

partially violated in this study because RNA-seq data sets such as GTEx comprise >85% 354 

Caucasian individuals16. Such overrepresentation of a given population in the data set is 355 
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disadvantageous to our method, and additional samples from underrepresented groups would 356 

be especially beneficial. More testing is needed to assess whether our strategy for controlling 357 

raw read counts can control for different data sources including data from multiple sequencing 358 

platforms or control data sets. The ability to control for different protocols enables count data to 359 

be combined from multiple sources. This would allow studies with a few samples to merge their 360 

results with sources such as the publicly available GTEx data set16. Currently, the best practice 361 

is to use the same cell handling and library preparation protocol which reduces the analyzable 362 

data set and therefore limits the statistical power. 363 

The initial aim of developing OUTRIDER was to create an expression outlier detection 364 

framework for RNA-seq data in a diagnostic setting. Our primary focus was to identify aberrantly 365 

expressed genes in RNA-seq samples from patients with rare diseases. OUTRIDER will be 366 

useful for the identification of potentially disease-causing genes in patients for whom current 367 

methods, such as WES and WGS, only provide variants of unknown significance. However, our 368 

approach is not restricted to such data or experiments. In principle, OUTRIDER could model 369 

any count data derived from next-generation sequencing. Previous studies that established links 370 

between rare variants and aberrant gene expression, such as the study of Li et al.8, could 371 

benefit from OUTRIDER’s refined outlier detection approach. Our approach could also be 372 

applied to data such as DNA accessibility from ATAC-seq reads. In this case, promotor regions 373 

or enhancers would be used as features instead of gene bodies. Finally, the methodology of 374 

OUTRIDER could be adapted to detect splicing outliers or outliers in proteomics or 375 

metabolomics. 376 
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Supplemental Data 377 

The Supplemental Data accompanying this article includes five figures and a detailed derivation 378 

of the loss function’s gradient. 379 
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Figures 482 

 483 

Figure 1: Context-dependent outlier detection. The algorithm identifies gene expression 484 

outliers whose read counts are significantly aberrant given the co-variations typically observed 485 

across genes in an RNA sequencing data set. This is illustrated by a read count (left panel, fifth 486 

column, second row from the bottom) that is exceptionally high in the context of correlated 487 

samples (left six samples) but not in absolute terms for this given gene. To capture commonly 488 

seen biological and technical contexts, an autoencoder models co-variations in an unsupervised 489 

fashion and predicts read count expectations. By comparing the earlier mentioned read count 490 

with these context-dependent expectations, it is revealed as exceptionally high (right panel). 491 

The lower panels illustrate the distribution of read counts before and after applying the 492 

correction for the relevant gene. The red dotted lines depict significance cutoffs.  493 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/322149doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/322149


 26 

 494 

Figure 2: Controlling count data with autoencoders. (A) Correlation matrix of row-centered 495 

log-transformed read counts for the skin samples not exposed to the sun from the GTEx data 496 

set (of 269 samples and 18,250 genes). Red indicates a positive correlation and blue a negative 497 

correlation. The color code on the left indicates a normal sample as green and an outlier sample 498 

as orange. The dendrogram represents the sample-wise hierarchical clustering. (B) Same as for 499 

A, but with the autoencoder controlled read counts.  500 

A B

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/322149doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/322149


 27 

 501 

Figure 3: Using the negative binomial distribution for significance assessment. (A, C) 502 

Normalized RNA sequencing read counts plotted against their rank. (B, D) Quantile–quantile 503 

plots of observed P-values against expected P-values with confidence area at 5% significance 504 

level. Outliers are shown in red (FDR < 0.05). Panels A and B show data for the gene 505 

AL627309.8 with no detected expression outlier, and panels C and D show data for the gene 506 

SLC39A4 with two expression outliers.  507 
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 508 

Figure 4: RNA sequencing expression outlier detection. (A, B) Number of aberrant genes 509 

(FDR < 0.05) per sample for the GTEx (A) and Kremer data sets (B). The orange bars represent 510 

abnormal samples (with >0.1% aberrantly expressed genes). (C, D) P-values versus Z-scores 511 

for a representative normal sample (C) and a representative abnormal sample (D). Genes with 512 

significantly aberrant read counts are marked in red. (E, F) Quantile–quantile plots for the data 513 

shown in panel A (E), and in panel B (F). Observed P-values are plotted against the expected 514 

P-values with confidence area.  515 

All rights reserved. No reuse allowed without permission. 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/322149doi: bioRxiv preprint first posted online May. 24, 2018; 

http://dx.doi.org/10.1101/322149


 29 

 516 

Figure 5: Outlier detection benchmark. The proportion of simulated outliers among reported 517 

outliers (precision) plotted against the proportion of reported simulated outliers among all 518 

simulated outliers (recall) for decreasing Z-score and for different methods. Plots are provided 519 

for three simulated amplitudes (by row, with simulated absolute Z-scores of 3, 4, and 6, top to 520 

bottom, respectively) and for all combined results (left column), for the subset of aberrantly high 521 

counts (middle column), and for the subset of aberrantly low counts (right column). The read 522 

counts were either controlled for sequencing depth only (black) or were also controlled for gene 523 

co-variation with the autoencoder (orange). The solid lines show the results restricted to 524 

significant counts only (FDR < 0.05) and the dashed lines show the results for all counts. Two 525 

commonly used Z-score cutoffs for outlier detection4,8 are marked with a diamond (|Z| > 2) and a 526 

cross (|Z| > 3).  527 
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Supplemental Data 528 

Supplemental Figures 529 

 530 

Figure S1: Filtering of genes and samples. (A) Histogram of the RPKM values for the GTEx 531 

data set grouped according to the filter status. Green indicates the genes that passed the filter 532 

and gray those that were filtered out. (B) The same as A, but for the Kremer data set. (C) The 533 

total sequencing depth sorted from low to high for all the GTEx samples. The red horizontal line 534 

represents the Z-score cutoff of -3. (D) The same as C, but for the Kremer data set.  535 
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 536 

Figure S2: Controlling count data with autoencoders. (A) Correlation matrix of row-centered 537 

log-transformed read counts for the Kremer data set (with 119 samples and 10,559 genes). Red 538 

indicates a positive correlation and blue a negative correlation. The color code on the left 539 

indicates a normal sample as green and an outlier sample as orange. The dendrogram 540 

represents the sample-wise hierarchical clustering. (B) Same as in A, but with the autoencoder 541 

controlled read counts.  542 
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  543 

Figure S3: Using the negative binomial distribution for read counts. (A) Quantile–544 

quantile plots for 24 randomly selected genes from the GTEx data set. (B) Same as in A, but 545 

for the Kremer data set.  546 
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 547 

Figure S4: Expression level-dependent recall. Precision versus recall for artificially injected 548 

low expression outliers with a Z-score of 6. (A) For all the injected outliers. (B) Split into 12 549 

equal bins according to the mean expression level of the genes. Only a small fraction of the 550 

injected outliers was significant for the two lowest bins, with a mean expression level smaller 551 

than 81 counts.  552 
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 553 

Figure S5: Benchmark of OUTRIDER using the Kremer data set. Venn diagram of the 554 

expression outliers detected by OUTRIDER (orange), expression outliers detected by Kremer et 555 

al. (violet), and pathogenic events validated by Kremer et al. (green) within 48 previous to 556 

Kremer et al. undiagnosed samples5. 557 
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