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3D-fluorescence spectroscopy   

The analyses of the samples were performed under specific settings as listed in Table S 1. The 

blank was subtracted from the 3D-Excitation-emission-matrices (3D-EEM) of the sample and 

furthermore, the sample 3D-EEM were corrected by applying the inner filter effect algorithm 

as well as the first and second order Rayleigh masking as provided by the Aqualog® software. 

Finally, the 3D-EEM were normalized to Raman units (R.U.)1.  

Table S 1: Settings chosen for the 3D-fluorescence spectroscopy. 

Parameter Setting 

Integration time 1 s 

Excitation increment 3 nm 

Emission increment 1.64 nm 

Excitation wavelength 230-599 nm 

Emission wavelength 212-621 nm 

Charge-coupled device (CCD) medium 

 

16S ribosomal RNA amplicon sequencing analysis 

Merged and combined reads were processed using USEARCH v9.2.612: i) quality filtering was 

done using the fastq_filter command3 with default settings; ii) denoising was performed by the 

derep_fulllength command, whereby the sizeout option was chosen; iii) sequences were sorted 

by abundance (sortbysize command), a minimum size of 2 was set (minsize 2); iv) OTUs were 

clustered de novo by applying the cluster_otus command; v) the OTU table was created using 

usearch_global command setting an identity threshold of 0.97 and searching for hits on the 

forward strand only (strand plus). 

 

PARAFAC analysis 

The PARAFAC analysis was performed as described by Stahlschmidt et al. (2016)1. Due to 

interfering signals, only excitation wavelengths in the range of 239 - 599 nm were taken into 
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account. Overall, 112 3D-EEM data were available of which 16 were excluded due to missing 

DOC concentrations and 9 were identified as outliers. The PARAFAC model was generated 

out of 28 and validated by 59 3D-EEM data. The quality of the model was assessed based on 

the Core Consistency, Total Variance and Split Half Analysis as proposed by Carvajal et al. 

(2017)4.  

 

FT-ICR-MS analysis 

Samples were directly injected in the solariX FT-ICR-MS from Bruker (Bruker Daltonik 

GmbH, Germany) with a flow rate of 120 µL/h at a nebulizer gas pressure of 2.2 bar and a dry 

gas flow rate of 4 L/min at 180 °C. A capillary voltage of 3600 V was applied. 300 scans per 

sample were accumulated within a mass range of m/z 147.4 – 1500 with a time domain of 

4 megawords. Spectra were first externally calibrated on clusters of a standard arginine solution 

and internal calibration was systematically done in the presence of natural organic matter 

reaching accuracy values lower than 1 ppm. Elemental formulae for each peak were calculated 

by an in-house written software tool5 with respect to sensible chemical constraints: N rule, O/C 

ratio ≤ 1, H/C ratio ≤ 2n+2 (CnH2n+2), element counts: C ≤ 100, H ≤ 200, O ≤ 80, N ≤ 3, S ≤ 2 

and mass accuracy window ± 0.5 ppm. Formulae were categorized into groups containing 

CHO, CHOS, CHNO and CHNOS molecular compositions. 
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Multivariate analysis 

Table S 2: All parameters from the OPLS model: residual sum of squares (SS), degrees of freedom (DF), mean 

squares (MS), the F-test (F), the p-values (p) and the standard deviation (SD). All the metadata that were included in 

the model are significant (p-values < 0.05). 

Metadata SS DF MS F p SD 

DOC [mg/L]             

Total corr 6 6 1   1 

Regression 5.99995 5 1.19999 25338.5 0.0047695 1.09544 

Residual 4.74E-05 1 4.74E-05    0.006882 

UVA254 [1/m]             

Total corr 6 6 1   1 

Regression 5.99995 5 1.19999 25001.4 0.0048015 1.09544 

Residual 4.80E-05 1 4.80E-05   0.006928 

Dissolved Oxygen 

[mg/L] 
            

Total corr 6 6 1   1 

Regression 5.99983 5 1.19997 6859.82 0.0091663 1.09543 

Residual 0.0001749 1 0.00017493   0.013226 

Nitrate-N [mg/L]             

Total corr 6 6 1   1 

Regression 5.99993 5 1.19999 16286.5 0.005949 1.09544 

Residual 7.37E-05 1 7.37E-05   0.008584 

Benzotriazole [-]             

Total corr 6 6 1   1 

Regression 5.99983 5 1.19997 6992.22 0.0090791 1.09543 

Residual 0.0001716 1 0.00017161   0.0131 

Carbamazepine [-]             

Total corr 6 6 1   1 

Regression 5.99987 5 1.19997 9001.11 0.0080021 1.09543 

Residual 0.0001333 1 0.00013331   0.011546 

Citalopram [-]             

Total corr 6 6 1   1 

Regression 5.99998 5 1.2 52451.7 0.003315 1.09544 

Residual 2.29E-05 1 2.29E-05   0.004783 

Diclofenac [-]             

Total corr 6 6 1   1 

Regression 5.99998 5 1.2 76813.8 0.0027393 1.09544 

Residual 1.56E-05 1 1.56E-05   0.003952 

Gabapentin [-]             

Total corr 6 6 1   1 

Regression 5.99998 5 1.2 65804.1 0.0029596 1.09544 

Residual 1.82E-05 1 1.82E-05   0.00427 
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Table S 2 continued 

Metoprolol [-]             

Total corr 6 6 1   1 

Regression 5.99999 5 1.2 135454 0.0020629 1.09544 

Residual 8.86E-06 1 8.86E-06   0.002976 

Primidone [-]             

Total corr 6 6 1   1 

Regression 5.99985 5 1.19997 8134.9 0.0084174 1.09543 

Residual 0.0001475 1 0.00014751   0.012145 

Sotalol [-]             

Total corr 6 6 1   1 

Regression 5.99999 5 1.2 101601 0.0023819 1.09544 

Residual 1.18E-05 1 1.18E-05   0.003437 

Sulfamethoxazole [-]           

Total corr 6 6 1   1 

Regression 5.99988 5 1.19998 10142 0.0075387 1.09543 

Residual 0.0001183 1 0.00011832   0.010877 

Tramadol [-]             

Total corr 6 6 1   1 

Regression 5.99697 5 1.19939 395.379 0.0381626 1.09517 

Residual 0.0030335 1 0.00303353   0.055078 

Venlafaxine [-]             

Total corr 6 6 1   1 

Regression 5.99966 5 1.19993 3483.48 0.0128627 1.09541 

Residual 0.0003445 1 0.00034446   0.01856 
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Results 

 
Figure S 1: UV absorbance at 254 nm throughout the system with respect to the HRT 

(n ≥ 18). The box represents the 25 – 75 percentiles, the whiskers indicate the 

maximum and minimum values.  

 

 
Figure S 2: Two components identified by PARAFAC analysis: a) component 1 fulvic acid-like (Ex 239/ Em 

451 nm), b) component 2 aromatic protein II (239/376 nm) as proposed by Chen et al. (2003)6. 
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Figure S 3: 3D-Excitation-Emission matrices of all samples throughout the infiltration system used for (-)ESI FT-ICR-MS analyses. 



 

S8 

 

 

 
Figure S 4: DO profile (n ≥ 22) throughout the system with respect to the HRT. Error 

bars indicate standard deviation.  
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Figure S 5: Relative removal of all targeted TOrCs throughout the infiltration system (n ≥ 7). The box represents 

the 25 – 75 percentiles. The whiskers indicate maximum and minimum values. 
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.  

 

Figure S 6: Percentage of most abundant microbial phyla throughout the system. Proteobacteria are shown in 

microbial classes. 

 

 
Figure S 7: Surfactants and selected transformation products known from literature7–13 (black circles) and those 

which were detected in EfOM (red dots) plotted according to their H/C and O/C ratios. Grey dots represent all 

masses which were detected in the EfOM meaning the influent to the system.  
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Figure S 8: Results from (-)ESI FT-ICR-MS analyses plotted in van Krevelen diagrams as elemental compositions (CHO, CHOS, CHNO and CHNOS) for masses detected in the 

influent and effluent samples, respectively. Bubble sizes depict the absolute intensities of each mass. 
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Figure S 9: Molecular composition and the relative abundance of each sample throughout the infiltration based on (-

)ESI FT-ICR-MS analyses. 

 

 
Figure S 10: Van Krevelen plots for each elemental composition (CHO, CHOS, CHNO, CHNOS) of three 

identified clusters based on MCIA. Bubble sizes depict the absolute intensities of each mass. 

 



 

S13 

 

 
Figure S 11: Van Krevelen plots for each elemental composition (CHO, CHOS, CHNO, CHNOS) of four identified 

clusters based on OPLS. Bubble sizes depict the absolute intensities of each mass. 
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