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Supporting Information

Bing Liu, et al.

SI Materials and Methods

Model inputs for global simulations. Sixty locations from key wheat growing regions in the
world were used for a global impact assessment (Table S1). Locations 1 to 30 are high rainfall or
irrigated wheat growing locations representing 68% of current global wheat production. These
locations were simulated without water or nitrogen limitation. Details about these locations can
be found in Asseng, et al. (1) and in Table S1. Locations 31 to 60 are low rainfall rainfed
locations with average wheat yield < 4 t ha. These locations represent 32% of current global
wheat production. In contrast to the high-rainfall locations 1 to 30, soil types and N management
vary among the low-rainfall locations 31 to 60 according region-specific practices.

To carry out the global impact assessment and exclusively focus on climate change, region-
specific cultivars were used in all 60 locations. Observed local mean sowing, anthesis, and
maturity dates were supplied to modelers with qualitative information on vernalization
requirements and photoperiod sensitivity for each cultivar. Modelers were asked to sow at the
supplied sowing dates and calibrate their cultivar parameters against the observed anthesis and
maturity dates by considering the qualitative information on vernalization requirements and
photoperiod sensitivity.

For locations 1 to 30 sowing dates were fixed at specific dates. For locations 31 to 60, sowing
windows were defined and a sowing rule was used. The sowing window was based on sowing
dates reported in literature (Table S1). For locations 41, 43, 46, 53, 54, and 59, sowing dates
were not reported in literature and estimates from a global cropping calendar were used (2). The
cropping calendar provided a month (the 15" of the month was used) in which wheat is usually
sown in the region of the location. The start of the sowing window was the reported sowing date
and the end of the sowing window was set two months later. Sowing dates and windows are
listed in Table S1. Sowing was triggered in the simulations on the day after cumulative rainfall

reached or exceeds 10 mm over a 5-day period during the predefined sowing window. Rainfall
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from up to 5 days before the start of the sowing window was considered. If these criteria were
not met by the end of the sowing window, wheat was sown on the last day of the sowing
window.

For locations 35, 39, 47, 49, and 55 to 57, anthesis dates were reported in literature. For the
remaining sites, anthesis dates were estimated with the APSIM-Wheat model.

Maturity dates were estimated from a cropping calendar for sites 31 to 32, 37 to 38, 41 to 46,
49 to 54, and 58 to 59 where no information from literature was available. For locations 31 to 60,
observed grain yields from the literature (Table S1) were provided to modelers with the aim to
set up wheat models to have similar yield levels, as well as similar anthesis and maturity dates.
No yields were reported for sites 49 and 56, so APSIM-Wheat yields were estimated and used as
a guide.

Locations 1 to 30 (no water or N limitations) were simulated using the same soil information
from Maricopa, USA. Soil information for locations 31 to 60 were obtained from a global soil
database (3). The soil closest to a location was used, but for locations 39 and 59, soil carbon was
decreased after consulting local experts. Soil profile hydrological parameters and soil organic
carbon used for locations 1 to 60.

Initial soil nitrogen was set to 25 kg N ha NOs and 5 kg N ha NH4 per meter soil depth and
reset each year for locations 31 to 60. Initial soil water for spring wheat sown after winter at
locations 31 to 60 was set to 100 mm of plant available water, starting from 10 cm depth down to
100 mm was filled in between permanent welting point and field capacity. The first 10 cm were
kept at permanent welting point and reset each year. If wheat was sown after summer, initial soil
water was set to 50 mm plant available water, starting from 10 cm depth down to 50 mm was
filled in between permanent welting point and field capacity. The first 10 cm were kept at the
permanent welting point and reset each year.

For locations 31 to 60, fertilizer rates were determined from Gbegbelegbe, et al. (4) except for
site 59 (Ethiopia) where N fertilizer was set to 60 kg N ha™. Fertilizer rates were set low (20 to
50 kg N hal) at locations 31 to 32, 48, 51, 53, 60; medium (60 kg N ha?) at locations 33 to 43,
45 to 47, 49 to 50, 52, 54, 57 to 59; and relatively high (100 to 120 kg N ha?) at locations 44, 55

to 56. All fertilizer was applied at sowing.
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Crop Models. Thirty-one wheat crop models (Table S2) within the Agricultural Model
Intercomparison and Improvement Project (AgMIP; www.agmip.org), were used for assessing
impacts of 1.5°C and 2.0°C global warming above pre-industrial time on global wheat
production. All model simulations were executed by the individual modeling groups with

expertise in using the model they executed.

Future climate projections. In this assessment, projections for 1.5 and 2.0°C global warming
scenarios were taken from five global climate models (GCMs) [MIROCS5, NorESM1-M,
CanAM4 (HAPPI), CAM4-2degree (HAPPI), and HadAM3P], which were selected from the Half
a degree Additional warming, Prognosis and Projected Impacts project (HAPPI; 5). The baseline
(1980-2010) climate data are from the AQMERRA climate dataset (6), which combines
observations, data assimilation models, and satellite data products to provide daily maximum and
minimum temperatures, solar radiation, precipitation, wind speed, vapor pressure, dew point
temperatures, and relative humidity corresponding to the maximum temperature time of day for
each location. Atmospheric carbon dioxide concentrations ([CO2]) of 360, 423, and 487 ppm
CO2 were used for baseline and 1.5 and 2.0°C global warming scenarios. There were 11
treatments (baseline, five GCMs for 1.5, and five GCMs for 2.0 scenario) simulated for 60
locations and 30 years:

1. Baseline (with 360ppm CO3)
GCM MIROCS (1.5°C with 423 ppm CO>)
GCM NorESM1-M (1.5°C with 423 ppm CO3)
GCM CanAM4 (HAPPI) (1.5°C with 423 ppm CO3)
GCM CAM4-2degree (HAPPI) (1.5°C with 423 ppm CO>)
GCM HadAM3P (1.5°C with 423 ppm COz)
GCM MIROCS (2.0°C with 487 ppm CO>)
GCM NorESM1-M (2.0°C with 487 ppm CO3)
GCM CanAM4 (HAPPI) (2.0°C with 487 ppm CO3)
10. GCM CAM4-2degree (HAPPI) (2.0°C with 487 ppm COz)
11. GCM HadAMS3P (2.0°C with 487 ppm CO>)

© © N o gk~ DN
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Climate scenarios. The impacts of temperature and CO> were further analyzed using a simple
delta method. Six treatments were simulated for the 60 global locations and 30 years of baseline
climate (1981-2010) with three temperature scenarios with main daily temperature increased by
0, 2, or 4°C factorized with two atmospheric CO> concentration, 360 (baseline) and 550 ppm.
The Baseline+2°C and Baseline+4°C scenarios were created by adjusting each day’s maximum
and minimum temperatures upward by that amount and then adjusting vapor pressures and
related parameters to maintain the original relative humidity at the maximum temperature time of

day.

Aggregation of local climate change impacts to global wheat production impacts. Before
aggregating local impacts at 60 locations to global impacts, we determined the actual production
represented by each location following the procedure described by Asseng, et al. (1). The total
wheat production for each country came from FAO country wheat production statistics for 2014
(www.fao.org). For each country, wheat production was classified into three categories (i.e., high
rainfall, irrigated, and low rainfall). The ration for each category was quantified based on the
Spatial Production Allocation Model (SPAM) dataset (https://harvestchoice.org/products/data).
For some countries where no data was available through the SPAM dataset, we estimated the
ratio for each category based on the country-level yield from FAO country wheat production
statistics. The high rainfall production and irrigated production in each country were represented
by the nearest high rainfall and irrigated locations (locations 1 to 30). Low rainfall production in
each country was represented by the nearest low rainfall locations (locations 31 to 60).
The global wheat grain and protein production impact was calculated using the following
steps:
1) Calculate the relative simulated mean yield (or protein yield) impact for climate change
scenarios for 30 years (1981-2010) per single model at each location.
2) Calculate the median across 31 models and five GCMs per location (multi-crop models
[CMs] and GCMs ensemble median). Note that CMs and GCMs simulation results were
kept separate only for calculating the separate CM and GCM uncertainties (expressed as

range between 25" and 75" percentiles).
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3) Calculate the absolute regional production loss by multiplying the relative yield (or
protein yield) loss from the multi-model ensemble median with the production
represented at each location (using FAO country wheat production statistics of 2014 (7)).
Calculate separately for high rainfall/irrigated and low input rainfed production. This
assumes that the selected simulated location is representative of the entire wheat-growing
region surrounding this location.

4) Add all regional production losses to the total global loss.

5) Calculate the relative change in global production (i.e., global production loss divided by
current global production).

6) Repeat the above steps for the 25" and 75™ percentile relative global yield impact from
the 31model ensemble.

Similar steps with global impacts were used for calculating the impacts on country scale
impacts, except that only the local impacts from corresponding locations in each country were
aggregated to the country impacts. The upscaling method used has been shown to give similar

temperature impacts than global-gridded and regression- model based approach (8, 9).

Environmental clustering of the 60 global locations. The 60 global wheat growing locations
were clustered in order to analysis the results by group of environments with similar climates. A
hierarchical clustering on principal components of the 60 locations was performed based on four
climate variables for 1981-2010: the growing duration (sowing to maturity) mean temperature,
the growing duration cumulative evapotranspiration, the growing duration cumulative solar
radiation, and the number of heat stress days (maximum daily temperature > 32°C) during the
grain filling period. All data were scaled (centered and reduced) prior to the principal component

analysis.

Data analysis. All data were analyzed and plotted using the R language and environment for
statistical analysis version 3.4.1 (10). The principal component and hierarchical clustering
analyses were done with the R package FactoMineR (11).



Table S1. Details of the 60 locations used in this study

Cultivar
g
£ 5
L E 3
Latitude / § 'TL; § 50%- Mean choosing Environ
Location longitude Elevation Irrigation 5 g _‘:5 Sowing date or anthesis  maturity anthesis ment
number Country Location (decimal) (ma.s.l) (Y/N) Name O > T window date date date type &
01 USA, NE Maricopa 33.06/-112.05 358 Y Yecora Rojo S 2 1 25Dec. 5 Apr. 15 May - 3
02 Mexico Obregon 27.33/-109.9 41 Y Tacupeto C2001 S 2 2 1Dec. 15 Feb. 30 Apr. - 3
03 Mexico Toluca 19.40/-99.68 2,667 Y Tacupeto C2001 S 2 2 10May 5 Aug. 20 Sep. - 1
04 Brazil Londrina -23.31/-51.13 610 Y Atilla S 3 3 20Apr. 10 Jul. 1 Sep. - 2
05 Egypt Aswan 24.10/32.90 193 Y Seri M 82 S 3 2 20Nov. 20 Mar. 30 Apr. - 3
06 The Sudan Wad Medani 14.40/ 33.50 413 Y Debeira S 3 2 20Nov. 25 Jan. 25 Feb. - 3
07 India Dharwar 15.43 /75.12 751 Y Debeira S 3 2 250ct. 15 Jan. 25 Feb. - 3
08 Bangladesh Dinajpur 25.65/ 88.68 40 Y Kanchan S 2 2 1Dec 15 Feb. 15 Mar. - 3
09 The Netherland  Wageningen 51.97/5.63 12 N Aminda W 6 6 5Nov. 25 Jun. 5 Aug. - 1
10 Argentina Balcarce -37.75/-58.3 122 N Oasis W 5 5 5Aug. 25 Nov. 25 Dec. - 3
11 India Ludhiana 30.90/ 75.85 244 Y HD 2687 S 1 1 15Nov. 5 Feb. 5 Apr. - 3
12 India Indore 22.72 / 75.86 58 Y HI 1544 S 0 1 250ct. 25 Jan. 25 Mar. - 3
13 USA, WI Madison 43.03/-89.4 267 N Brigadier W 6 6 15Sep. 15 Jun. 30 Jul. - 1
14 USA, KS Manhattan 39.14 / -96.63 316 N Fuller W 4 4 10ct. 15 May 01 Jul. - 1
15 UK Rothamsted 51.82 /-0.37 128 N Avalon W 3 3 150ct. 10 Jun. 20 Aug. - 1
16 France Estrées-Mons 49.88 / 3.00 87 N Bermude W 6 6 50ct. 31 May 15 Jul. - 1
17 France Orleans 47.83/1.91 116 N Apache W 5 4 200ct. 25 May 7 Jul. - 1
18 Germany Schleswig 54.53/9.55 13 N Dekan W 5 2 25Sep. 15 Jun. 25 Jul. - 1
19 China Nanjing 32.03/118.48 13 N NM13 W 4 4 50ct. 5 May 5 Jun. - 1
20 China Luancheng 37.53/114.41 54 Y SM15 W 6 4 50ct. 5 May 5 Jun. - 1
21 China Harbin 45.45 / 126.46 118 Y LM26 S 1 5 5Apr 15 Jun. 25 Jul. - 3
22 Australia Kojonup -33.84 /117.15 324 N Wyallkatchem S 2 4 15May 5 Oct. 25 Nov. - 3
23 Australia Griffith -34.17 / 146.03 193 Y Avocet S 2 4 15)un. 15 Oct. 25 Nov. - 3
24 Iran Karaj 35.92 /50.90 1,312 Y Pishtaz S 2 2 1Nov. 1 May 20 Jun. - 1



Table S1. Continued

25
26

27
28

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50

51
52
53

54
55

Pakistan
Kazakhstan

Russia
Ukraine

Turkey
Canada
Paraguay
Argentina
USA, GA
USA, WA
Canada
Canada
Spain

Italy

Italy
Greece
Hungary
Romania
Bulgaria
Finland
Russia
Kazakhstan
Uzbekistan
Morocco

Tunisia
Syria

Iran
Turkey
Iran

Pakistan
China

Faisalabad
Karagandy

Krasnodar
Poltava

Izmir
Lethbridge
Itapua

Santa Rosa
Watkinsville
Lind

Swift Current
Josephburg
Ventas Huelma

Policoro
Libertinia
Thessaloniki
Martonvasar
Alexandria
Sadovo
Jokioinen
Yershov
Altbasar
Samarkand
Sidi El Aydi /
Jemaa Riah
Nabeul / Tunis
Tel Hadya /
Aleppo
Maragheh
Ankara
Ghoochan /
Quchan
Urmar
Dingxi

31.42/73.12
50.17 /72.74

45.02 / 38.95
49.37 /33.17

38.60/27.06
49.70 /-112.83
-27.33 /-55.88
-36.37 /-64.17
34.03 /-83.41
47.00/-118.56
50.28 /-107.78
53.7/-113.06
37.16/-3.83
40.2 / 16.66
37.5/14.58
41.08/22.15
47.35/18.81
43,98 /25.35
42.13/24.93
60.80/ 23.48
51.36 /48.26
52.33/68.58
39.70 / 66.98
33.07/-7.00

36.75/10.75
36.01/36.56

37.38/46.23
39.92/32.85
37.66 / 58.50

34.00/71.55
35.46 / 104.73

192
356

30
161

14
904
216
177
220
522
10

631
848
14

267
36

113
73

154
107
102
289
742
648

167
263

1,472
895
1,555

340
2,009

zZzzZzzzzzzZzz2z2z2z 2222222 <<=<=<-=<=<

=2

=2

=2

Faisalabad-2008
Steklov-24

Brigadier

Brigadier

Basri Bey

AC Radiant

Based on Atilla
Based on Avocet
Based on Brigadier
Based on AC Radient
Based on Steklov-24
Based on Steklov-24
Based on Basri Bey
Based on Basri Bey
Based on Basri Bey
Based on Basri Bey
Based on Apache
Based on Brigadier
Based on Brigadier
Based on Steklov-24
Based on Steklov-24
Based on Steklov-24
Based on SM15
Based on Yecora

Based on Pishtaz
Based on Pishtaz

Based on SM15
Based on Fuller

Based on Pishtaz

Based on Yecora
Based on Pishtaz
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15 Nov.
20 May

15 Sep.
15 Sep.

15 Nowv.

10 Sept.

25 May — 25 Jul.
5Jun. -5 Aug.

25 Nov. — 25 Jan.
28 Aug. — 28 Oct.
18 May. — 18 Jul.
15 May. — 15 Jul.
18 Dec. — 18 Feb.
17 Nov.—-17 Jan.
26 Nov. — 26 Jan.
15 Nov. — 15 Jan.
15 Nov.—-15Jan. ¢
7 Oct. — 7 Dec.

15 Oct. — 15 Dec. ©
1 May —1Jul.

6 May — 6 Jul.

15 Mar. — 15 May ¢
5 Nov. - 5lJan.

5 Nov. =5 Jan.

1 Dec. -1 Feb.
20 Nov. —20 Jan.

13 Oct. — 13 Dec.
1Sep. -1 Nov
15 Oct. —15 Dec. ©

15 Nov. —15Jan. ¢
15 Mar. — 15 May.

15 Jun.

5 Apr.
15 Sep.

10 Jul.
15 Jul.

1Jun.
25 July.
15 Oct. ®
15 Dec. ©
22 Jun.
31 Jul.
28 Aug.
28 Aug.
15 Jun. ¢
15 May ©
30 May
22 Jun.
15 Jun. ¢
15 Aug. ©
15 Jul. e
15 Aug. ©
15 Sep. ¢
15 Sep. ¢
5 Jul.
1Jun.

15Jun.®
15Jun. ¢

15Jun. ¢
15 Jul. e
15Jun.®

15 May
2 Aug.

(12)
(13)
(14)
(15-17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(28)
(29)
(30)

(31)
(32)

(33)
(34)
(35)

(36)
(37)
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Table S1. Continued

56 China Xuchang 34.01/113.51 110 N Based on Wenmai W 4 4 100ct. —10 Dec. 25 Apr. 1Jun. f 2
57 Australia Merredin -31.50/118.2 3000 N Based on Wyalkatchem S 2 4 15 May—25 Jul. 5 Oct. 25 Nov. (38) 2
58 Australia Rupanyup / -37.00/ 143.00 219 N Based on Avocet S 2 4 1May- 1Jul -d 15 Nov. € (39)
Wimmera 2
59 Ethiopia Adi Gudom 13.25/39.51 2,090 N Based on Debeira S 2 4 15Jun. —15Aug.¢ -d 15 Dec. © (40) 1
60 South Africa Glen/ -28.95/26.33 1,290 N Based on Wyalkatchem S 2 4 15 May—-15Jul. -d 15 Nov. (41)
Bloemfontein 2

Location, name and characteristics of the cultivars, sowing date (locations 1-30) or sowing window (locations (31-60), and mean anthesis and physiological maturity date for the 30 locations (1-30) from high
rainfall or irrigated wheat regions and thirty locations from low rainfall (low input) regions (31-60) of the world used in this study.

3§, spring type; W, winter type.

b Vernalization requirement and photoperiod sensitivity of the cultivars range from nil (0) to high (6).

¢ Sowing date estimated using global cropping calendar.

dSee Figure S2.

¢ Maturity date estimated using global cropping calendar.
f Yan Zhu, personal communication, August 4, 2015.
g1, 2, 3 in environment type indicated temperate high rainfall, moderately hot low rainfall, and hot irrigated, respectively.

1



Table S2. List of the 31 wheat crop models used in the AgMIP Wheat study

Code Name (version) Reference  Documentation
AE APSIM-E (42-44) http://www.apsim.info/Wiki
AF AFRCWHEAT2 (45-47) Request from John Porter: jrp@plen.ku.dk
AQ AQUACROP (V.4.0) (48) http://www.fao.org/nr/water/aquacrop.html
AW APSIM-Wheat (V.7.3) (42) http://www.apsim.info/Wiki
CS CropSyst (V.3.04.08) (49) http://modeling.bsyse.wsu.edu/CS_Suite_4/CropSyst/index.html
DC DSSAT-CERES-Wheat (V.4.0.1.0) (50-52) http://dssat.net/
DN DSSAT-Nwheat (53, 54) http://dssat.net/
DR DSSAT-CROPSIM (V4.5.1.013) (51, 55) http://dssat.net/
El EPIC-I (V0810) (56-60) http://epicapex.tamu.edu/epic
EW EPIC-Wheat(V1102) (56-58, 61, http://epicapex.brc.tamus.edu
62)
GL GLAM (V.2 updated) (63, 64) https://www.see.leeds.ac.uk/research/icas/research-
themes/climate-change-and-impacts/climate-impacts/glam
HE HERMES (V.4.26) (65, 66) http://www.zalf.de/en/forschung/institute/lsa/forschung/oekom
od/hermes
IC INFOCROP (V.1) (67) http://infocrop.iari.res.in/wheatmodel/UserInterface/HomeModu
le/Default.aspx
LI LINTUL4 (V.1) (68, 69) http://models.pps.wur.nl/node/950
L5 SIMPLACE<Lintul-5 (68-71) http://www.simplace.net/Joomla/
SlimWater3,FAO-56,
CanopyT,HeatStressHourly
LP LPJmL (V3.2) (72-77) http://www.pik-potsdam.de/research/projects/Ipjweb
MC MCWLA-Wheat (V.2.0) (78-81) Request from taofl@igsnrr.ac.cn
MO MONICA (V.1.0) (82) http://monica.agrosystem-models.com
NC Expert-N (V3.0.10) — CERES (V2.0)  (83-86) http://www.helmholtz-muenchen.de/en/iboe/expertn
NG Expert-N (V3.0.10) — GECROS (V1.0) (85, 86) http://www.helmholtz-muenchen.de/en/iboe/expertn
NP Expert-N (V3.0.10) — SPASS (2.0) (83, 85-88)  http://www.helmholtz-muenchen.de/en/iboe/expertn
NS Expert-N (V3.0.10) — SUCROS (V2) (83, 85, 86, http://www.helmholtz-muenchen.de/en/iboe/expertn
89)
oL OLEARY (V.8) (90-93) Request from gjoleary@yahoo.com
S2 Sirius (V2014) (94-97) http://www.rothamsted.ac.uk/mas-models/sirius.php
SA SALUS (V.1.0) (98, 99) http://salusmodel.glg.msu.edu
SP SIMPLACE<Lintul-2 (100) http://www.simplace.net/Joomla/
CC,Heat,CanopyT,Re-Translocation
sQ SiriusQuality (V3.0) (101-105) http://www1.clermont.inra.fr/siriusquality
SS SSM-Wheat (106) Request from afshin.soltani@gmail.com
ST STICS (V.1.1) (107, 108)  http://wwwe.paca.inra.fr/stics_eng
WG WheatGrow (V3.1) (109-115) Request from yanzhu@njau.edu.cn
WO WOFOST (V.7.1) (116) http://www.wofost.wur.nl
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Table S3. Variability of simulated grain yields for different environments under baseline, 1.5°C
and 2.0°C warming scenarios
Coefficient of variation (%)

Type of environment Scenario Location Year Model GCM
All locations Baseline 56.1 1.5 22.4
1.5°C HAPPI 55.4 1.6 22.7 11
2.0°C HAPPI 55.4 1.6 23.3 1.2
Temperate high Baseline 47.9 1.6 23.7
rainfall or irrigated 1.5°C HAPPI 46.4 1.7 23.3 1.2
2.0°C HAPPI 46.1 1.7 23.9 1.3
Moderately hot low Baseline 37.8 5.3 27.7
rainfall 1.5°C HAPPI 37.0 54 28.1 1.9
2.0°C HAPPI 36.9 5.5 28.7 1.9
Hot irrigated Baseline 26.5 2.7 27.8
1.5°C HAPPI 27.1 2.8 28.5 0.6
2.0°C HAPPI 27.4 2.9 29.2 0.9

Variability due to location was calculated as coefficient of variation (CV) of simulated grain yields
for corresponding locations (mean of 30 years, 31 models, and five global climate models [GCMs]).
Variability due to year was calculated as CVs of simulated grain yields for 31 years (mean of
corresponding locations, 31 models, and five GCMs). Variability due to model was calculated as
CVs of simulated grain yields for 31 locations (mean of 30 years, corresponding locations and five
GCMs). Variability due to GCM was calculated as CVs of simulated grain yields for five GCMs
(mean of 30 years, 31 models and corresponding locations).

10



Temperate
high rainfall

Moderately hot
low rainfall

Hot
irrigated

Karagandy, Kazakhstan
Lethbridge, Canada -
Madison, USA 4
Schleswig, Germany -
Poltava, Ukraine
Ghoochan / Quchan, Iran
Rothamsted, UK
Thessaloniki, Greece
Wageningen, The Netherland -
Lind, USA -

Martonva sa r, Hungary
Estrées-Mons, France
Ankara, Turkey -
Orleans, France
Alexandria, Romania
Maragheh, Iran
Krasnodar, Russia
Sadovo, Bulgaria
Toluca, Mexico 4
Manhattan, USA
Luancheng, China 4
Libertinia, Italy 4

Karaj, Iran

Nanjing, China 4

Izmir, Turkey

Adi Gudom, Ethiopia 4
Altbasar, Kazakhstan -
Josephburg, Canada
Jokioinen, Finland -
Swift Current, Canada
Yershov, Russia 4
Dingxi, China
Samarkand, Uzbekistan 4
Rupanyup / Wimmera, Australia 4
Xuchang, China 4

Santa Rosa, Argentina
Glen/Bloemfontein, South Africa
Ventas Huelma, Spain -
Policoro, Italy 4

Sidi El Aydi / Jemaa Riah , Morocco
Merredin, Australia 4

Tel HadyalAleppo, Syria
Nabeul / Tunis, Tunisia 4
Londrina, Brazil 4

Itapuia, Paraguay
Urmar, Pakistan -

Harbin, China 4

Balcarce , Argentina
Kojonup, Australia 4
Watkinsville, USA
Griffith, Australia
Maricopa, USA 4
Ludhiana, India
Faisalabad, Pakistan 1
Dinajpur, Bangladesh <
‘Obregon, Mexico
Dharwar, India

Indore, India 1

Aswan, Egypt

Wad Medani, The Sudan -

(A) 1.5°C

w— GCM mean
~— GCM MIROC5
GCM NorESM1-M
GCM CanAM4
—— GCM CAM4
—— GCM HadAM3P

PR TR SR AN T S T ST SN TN SN TS TN T T TN SN T SN Y SO SN TS YN TN T SN YRS SO TN TS SN RO ST Y SN M T T AN T TS TN TAMNY SO AT S TN S T T ST AR S S

(B) 2.0°C

0

3 4

0

1

Change in annual mean temperature (°C)

Fig. S1. Projected changes in annual mean temperature with the five global climate models (GCMs) for the 60
representative global wheat growing locations under (A) 1.5 and (B) 2.0 scenarios (HAPPI). The locations in each
environment type were ordered by the annual mean temperature for the baseline period.
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Temperate
high rainfall

Moderately hot
low rainfall

Hot
irrigated

Fig. S2. Projected changes in growing season (sowing to maturity) mean temperature with the five global climate
models (GCMs) for the 60 representative global wheat growing locations under (A) 1.5 and (B) 2.0 scenarios
(HAPPI). The locations in each environment type were ordered by the growing season mean temperature for the

baseline period.

Lethbridge, Canada
Ghoochan/ Quchan, Iran
Thessaloniki, Greece
Poltava, Ukraine
Madison, USA A
Schleswig, Germany
Maragheh, Iran
Martonva sa r, Hungary
Lind, USA

Luancheng, China
Ankara, Turkey 4
Estrées-Mons, France
Wageningen, The Netherland -
Orleans, France
Rothamsted, UK

Karaj, Iran

Alexandria, Romania
Libertinia, Italy 4
Manhattan, USA
Sadovo, Bulgaria
Krasnodar, Russia
Nanjing, China

Izmir, Turkey -
Karagandy, Kazakhstan A
Toluca, Mexico

Adi Gudom, Ethiopia
Xuchang, China
Samarkand, Uzbekistan
Rupanyup / Wimmera, Australia 4
Policoro, Italy

Tel Hadyal/Aleppo, Syria
Sidi El Aydi / Jemaa Riah , Morocco 4
Jokioinen, Finland 4
Ventas Huelma, Spain
Nabeul / Tunis, Tunisia -
Glen/Bloemfontein, South Africa
Merredin, Australia 4
Dingxi, China

Santa Rosa, Argentina
Altbasar, Kazakhstan -
Josephburg, Canada
Urmar, Pakistan

Swift Current, Canada -
Itapla, Paraguay -
Londrina, Brazil 4
Yershov, Russia 4
Kojonup, Australia -
Watkinsville, USA -
Griffith, Australia
Balcarce , Argentina
Maricopa, USA -

Harbin, China 4
Ludhiana, India |
Faisalabad, Pakistan -
Dinajpur, Bangladesh
‘Obregon, Mexico
Aswan, Egypt 4

Indore, India

Dharwar, India 4

Wad Medani, The Sudan

= GCM mean
—— GCM MIROC5

—— GCM CAM4
———— GCM HadAM3P

GCM NorESM1-M
GCM CanAM4

0

2

12

3 4

0 1 2 3
Change in growing season mean temperature (°C)




15

Temperate
high rainfall

Moderately hot
low rainfall

Hot
irrigated

16

17
18
19

20

Karagandy, Kazakhstan - 1 5°C

Lethbridge, Canada
Madison, USA
Schleswig, Germany -
Poltava, Ukraine 4
Ghoochan / Quchan, Iran
Rothamsted, UK
Thessaloniki, Greece 4
Wageningen, The Netherland -
Lind, USA

Martonva sa r, Hungary
Estrées-Mons, France
Ankara, Turkey -
Orleans, France
Alexandria, Romania 4
Maragheh, Iran
Krasnodar, Russia
Sadovo, Bulgaria
Toluca, Mexico
Manhattan, USA
Luancheng, China
Libertinia, Italy 4

Karaj, Iran

Nanjing, China -

lzmir, Turkey

Adi Gudom, Ethiopia
Altbasar, Kazakhstan -
Josephburg, Canada
Jokioinen, Finland
Swift Current, Canada
Yershov, Russia 4

Dingxi, China
Samarkand, Uzbekistan
Rupanyup / Wimmera, Australia
Xuchang, China

Santa Rosa, Argentina
Glen/Bloemfontein, South Africa 4
Ventas Huelma, Spain 1
Policoro, Italy

Sidi El Aydi / Jemaa Riah , Morocco
Merredin, Australia 4

Tel HadyalAleppo, Syria 4
Nabeul / Tunis, Tunisia 1
Londrina, Brazil 4

Itapia, Paraguay
Urmar, Pakistan

Harbin, China

Balcarce , Argentina
Kojonup, Australia
Watkinsville, USA
Griffith, Australia -
Maricopa, USA -
Ludhiana, India
Faisalabad, Pakistan
Dinajpur, Bangladesh -
‘Obregon, Mexico
Dharwar, India

Indore, India 4

Aswan, Egypt 4

Wad Medani, The Sudan 4

/< GCM mean
—— GCM MIROCS
GCM NorESM1-M
- GCM CanAM4
“—— GCM CAM4
—— GCM HadAM3P

(B) 2.0°C

-30

-20

10 20 30 40

-30

-20

-10 0 10 20 30

Relative change in annual cumulative rainfall (%)

13

Fig. S3. Projected relative changes in annual cumulative rainfall with the five global climate models (GCMs) for the
60 representative global wheat growing locations under (A) 1.5 and (B) 2.0 scenarios (HAPPI). The locations in each
environment type were ordered by the annual mean temperature for the baseline period.
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Fig. S5. Hierarchical clustering on principal components of 60 representative global wheat growing
locations based on climate variables for 1981-2010. (A) Individual factor map with 30-years average and
coefficient of variation for four climate variables (TMN, growing season [sowing to maturity] mean
temperature; ET, growing season cumulative evapotranspiration; SRAD, growing season cumulative
solar radiation; HSD, number of heat stress days [maximum daily temperature > 32°C] during the grain
filling period). Blue, variables (Yield, average yield for the 1981-2010 baseline; Yield.cv, interannual yield
variability [coefficient of variation] of yield for the 1981-2010 baseline; rc1.5 and rc2.0, relative changes
in average vyield for the 1.5 and 2.0 scenarios [HAPPI], respectively; rc1.5.CV and rc2.0.CV, relative
changes in interannual yield variability for the 1.5 and 2.0°C warming scenarios, respectively; and
pPELY1.5 and pELY2.0, probabilities of extreme low yield [< 5% of baseline yield distribution] under the
1.5 and 2.0 scenarios, respectively) projected onto the same factorial plan but not used to construct the
axes. (B) Location/cluster map of the principal component analysis. The numbers refer to the location ID
given in Table S1.
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Fig. S6. Weather variables during wheat growing season (sowing to maturity) and crop duration in the
three main types of environments for the 1981-2010 baseline and under 1.5 and 2.0 scenario. (A)
Growing season mean temperature, (B) Number of heat stress days (maximum daily temperature >
32°C) during the post-flowering period. (C) Cumulative growing season evapotranspiration. (D)
Cumulative growing season rainfall. (E) Cumulative growing season solar radiation. (F) Growing season
duration. The width of the boxes is proportional to the percentage of global wheat production of each
type of environment. The 60 global locations where clustered using 30-year means and coefficient of
variability of the weather variables shown in this Figure S10. In each box plot, horizontal lines represent,
from top to bottom, the 10 percentile, 25" percentile, median, 75" percentile and 90" percentile. In
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Fig. S7. Impact of 1.5 and 2.0 scenario on wheat grain yield, cumulative evapotranspiration (ET) and
mean temperature. (A) Simulated change in grain yield versus baseline growing season (sowing to maturity) ET,
(B) baseline growing season mean temperature. (C) Simulated change in growing season temperature and

baseline growing season mean temperature under 1.5 (orange) and 2.0 (dark cyan) scenarios (HAPPI) and (D)

Simulated baseline growing season ET and baseline growing season mean temperature for 60 representative

global wheat growing locations. Relative changes of grain yield were the median across 31 crop models and five
GCMs, calculated with simulated 30-year mean grain yields for baseline, 1.5 and 2.0 scenarios (HAPPI), including
changes in temperature, rainfall, and atmospheric CO2 concentration, using region-specific soils, cultivars and crop

management. The size of symbols indicates the production represented at each location (using FAO country wheat

production statistics). Growing season temperature is the mean of 30 years during baseline period (1981-2010)

and the median across 31 crop models and five GCMs.
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Fig. S8. Simulated global impacts of climate change under 1.5 and 2.0 scenario on wheat production from

different environments. (A) All wheat area (60 locations). (B) Temperate high rainfall environment (26 locations).
(C) Moderately hot low rainfall environment (20 locations). (D) Hot irrigated environment (14 locations). Impacts
from the 60 global locations were weighted by FAO production area. Bars are ensemble median of 31 crop models
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concentration, and mean of 30 years using region-specific soils, cultivars, and crop management. Error bars
indicate the 25" and 75" percentiles across 31 crop models and five GCMs.
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Fig. S9. Projected impacts of 1.5 and 2.0 scenario on wheat yield interannual variability. (A) Relative
climate change impacts for the 1.5°C (circles) and 2.0°C (triangles) warming scenarios (HAPPI) compared
with the 1981-2010 baseline on interannual yield variability (coefficient of variation) at 60 global
locations. (B) and (C) Relative climate change impacts for the 1.5 and 2.0 scenarios compared with the
1981-2010 baseline on interannual yield variability (coefficient of variation) in temperate high rainfall or
irrigated (26 locations), moderately hot low rainfall (20 locations), and hot irrigated (14 locations)
environments. Horizontal thick solid lines are the median change of interannual yield variability for each
environment type. The circles are the 60 global locations shown in (A), their size indicates the production
represented at each location (using FAO country wheat production statistics) and their color the growing season
mean temperature at each location under the 1.5 and 2.0 scenarios. Within each environment type the circles
have been jiggled along the horizontal axis to make it easier to see locations with similar probability values. The
shaded areas show the distribution of the data.
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Fig. S14. Simulated multi-model ensemble median of changes in growing season (sowing to maturity) variables by
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140  location, year, and GCM. The distribution of CV for ‘GCM’ shows the CVs of simulated wheat grain yields
141 from the five GCMs within each combination of location, crop model, and year. In each box plot,

142 horizontal lines represent, from top to bottom, the 10" percentile, 25" percentile, median, 75

143 percentile, and 90" percentile of the simulations.
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