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Introduction

In general terms we all use the word “stress” to describe our
discomfort in coping with challenges of daily life. This is
mostly related to our subjective perceptions of workload
and/or other unexpected physical or mental efforts we are
exposed to. The term is derived from the concept of stress as
a reaction to internal and external stimuli requiring acute or
chronic adaptations, as introduced by Hans Selye in the
second half of the last century [1–3].
In 1998 on a WHO conference on stress a more compre-
hensive definition of the term was provided:

“Stress may be defined as a mechanism of acute and
chronic adaptation necessary for evolution and
survival. The integrated stress response is part of the
homoeostatic balance, and dysfunction of such
response may contribute to disease. Alternations of
the endocrine, neural and immune responses to stress
are involved both in etiology and the pathophysiology
of the most common health problems in modern
society.” (World Health Organization_WHO/RPS/
98.3).

In a biological sense stress is a two-edged sword repre-
senting a positive side (eustress) and a negative side (dis-
tress). On one hand, eustress helps to deal with challenges
of daily life and disease, and it is also a driver of evolution
and development. On the other hand, a chronic response to
stress with chronic activation of the endocrine stress axis

will trigger and contribute to metabolic and cardiovascular
diseases [4, 5].

Endocrine and neural responses to stress have been well-
defined and involve an activation of both the hypothalamic-
pituitary-adrenal axis (HPA) and the sympathoadrenal sys-
tem. A wide variety of external and internal stimuli,
including inflammation, infection, as well as physical and
mental stressors induces the release of corticotropin-
releasing hormone (CRH) from the paraventricular
nucleus (PVN) of the hypothalamus. CRH in turn is both a
central activator of the HPA axis, as well as the sym-
pathoadrenal system, since CRH mediates the release of
adrenocorticotropic hormone (ACTH) from the pituitary
and hence adrenocortical glucocorticoids as well as the
release of epinephrine from the adrenal medulla [4]. In
addition to CRH as a main regulator of the HPA axis there
are numerous CRH and ACTH-independent factors,
including neuropeptides, cytokines, the microbiota-gut-
brain axis [6], and even bacterial and viral pathogens that
are capable of activating the release of adrenal stress ster-
oids [7].

Finally, central activation of the autonomic nervous
system will lead to an acute activation of the adrenal
medulla by the splanchnic nerves triggering the release of
epinephrine and other neuropeptides. Interestingly,
splanchnic nerve stimulation will also provoke the release
of adrenal glucocorticoids and mineralocorticoids, which is
mediated in a paracrine way by the released catecholamines
[8].

Thus, there is a complex network of neuronal and cel-
lular interactions within the end organ of the endocrine and
neuroendocrine stress system. It is no coincidence that the
adrenal gland combines the steroid-producing adrenal cor-
tex and the catecholamine-producing adrenal medulla under
a common organ capsule. In fact, there is an active cellular
and functional interaction of cortical and chromaffin cells
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within the gland. Whereas adrenocortical glucocorticoids
are required for the biosynthesis of adrenomedullary epi-
nephrine, catecholamines regulate the release of steroids
and the cellular function of the adrenal cortex [9]. Fur-
thermore, patients with disorders of the adrenal cortex such
as Addison’s disease or congenital adrenal hyperplasia
display a dysfunction of the adrenal medulla resulting in an
impaired stress response [10–12].

In addition to the cellular crosstalk between the two
endocrine cell systems in the adrenal there is an important
role for the vasculature and the immune system. Nearly
each adrenal cell is in close proximity to endothelial cells
and the gland receives ten times more blood than expected
from its size [9]. Therefore, the intact physical and bio-
chemical communication between vascular and endocrine
cells is critical for the functional integrity and adaptation to
stress of the entire gland, as vascular vulnerability may lead
to ruptures, hemorrhage and adrenal failure with life-
threatening consequences for the patient [13, 14]. Similarly,
intact interactions with the systemic and resident immune
cells are critical for proper functioning of the adrenal and its
ability to cope with the increased stress of inflammation and
sepsis [13, 14].

In addition to this complex interplay of cellular and
neuronal networks in mounting and maintaining an ade-
quate adrenal stress response, regulation of the secretion of
peripheral and central stress hormones is under strict cir-
cadian and ultradian control [15]. Thus, the entire endocrine
stress system is embedded in an even more complex and not
fully explored cybernetic model of positive and negative
feedback regulations, which mature postnatally to become
fully functional only after puberty.

This leads to the obvious question of how stress in early
life may shape the development and maturation of the major
cellular response elements including the HPA axis. Before
we try to explore this intriguing question we should reflect
on what is known-up to now on the role of the classical
stress hormones on the regulation of stem cells in general.

Role of stress steroids on progenitor/stem cell
populations

Progenitor and stem cell populations are both required for the
successful homeostasis and adaptation of most tissues.
Human hematopoietic stem and progenitor cells provide
lifelong production of mature blood cells dependent on the
changing requirements of each individual. Therefore, hema-
topoiesis is a cellular process defined by a clear balance of
self-renewal and commitment to differentiation. Hemato-
poietic progenitors are also able to transdifferentiate into non-
hematopoietic cells and exhibit overlapping genetic programs
with mesenchymal and neural stem cells (NSCs). Importantly,
neuronal stem cells in mice have been reported to be sensitive

to steroid-induced cell death (apoptosis) through glucocorti-
coid receptor (GR) signaling [16], providing a model for the
sensitivity of neuronal stem cells to metabolic cellular turn-
over and/or cellular loss induced by stress.
Interestingly, we have identified CRH1 and CRH2 receptors
not only in NSCs but also in hematopoietic stem cells
(HSCs) [17]. CRH receptors are involved in the systemic
stress response and intriguingly CRH receptor expression is
increased among immature hematopoietic progenitors but
not in fully differentiated blood cells. Stimulation with CRH
decreases intracellular cAMP demonstrating active signal-
ing of this central stress hormone in HSCs [17]. Recently,
the CNS has been shown to regulate embryonic HSCs via
the HPA axis, as GR activation leads to HSC expansion
while GR loss reduces HSC formation [18]. Likewise
chronic stress exposures also activate HSC formation [19].

While, we are only beginning to understand the role of
stress hormones on HSCs, their roles on NSCs and neu-
rogenesis have been explored more comprehensively.
Most importantly stress hormones exert a differential
effect on neurogenesis depending on age, time, location,
and nature of the exposure. Conditions that strongly ele-
vate CRH, ACTH and glucocorticoids, such as physical
activity, enriched environmental housing, or mental stress
induce proliferation and survival of newborn neurons and
promote neurogenesis [20]. Conversely, chronic endo-
genous or pharmacological exposure of NSCs to gluco-
corticoids has been clearly associated with reduced
neurogenesis [20]. This has been linked to the activation
of GRs or to changes in the expression of genes associated
with cellular senescence [21–23]. Why the activation of
the HPA axis leads to enhanced neurogenesis in some
instances yet the loss of neural stem cells in others has not
been fully understood [20].

Proliferating neuronal progenitors express higher levels
of CRH receptors and are enhanced in the human fetal brain
[24]. Moreover, CRH-deficient mice show reduced pro-
liferation and increased apoptosis among neural progenitors.
Thus, it has been suggested that CRH, as the major mediator
of the adaptive response to stressors, could reverse damaging
effects of glucocorticoids on stem/progenitor cells [24].

If CRH could reverse the damaging effects of gluco-
corticoids it may be assumed that the negative feedback on
CRH with elevated glucocorticoid levels contributes to the
reduction of neurogenesis observed during chronic stress. In
addition, we and others have shown that during the acute
and chronic stress of inflammation and sepsis but also in
mental and metabolic disorders, several extra-hypothalamic
and extra-pituitary factors including cytokines, pathogens,
adipokines, growth factors, inflammatory lipids, morpho-
gens, catecholamines, and neuropeptides can stimulate
adrenal glucocorticoid release [7, 9]. Consequently, the
neuroprotective effect of CRH may get lost during both
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acute and chronic stress. Another explanation may relate to
the pattern of glucocorticoid secretion during stress as it has
been demonstrated that daily oscillations in glucocorticoids
control both proliferation and function of the circadian
clock in the hippocampus [25]. Indeed, clock genes play a
crucial role in neuronal differentiation of adult NSCs [26].

Thus, glucocorticoid regulation seems to be crucial for
the maintenance of adult neurogenesis and the adaptation of
NSC proliferation to environmental changes. As circadian
and ultradian glucocorticoid rhythmicity is impaired during
severe stress it may provide further explanation for the
negative effect of glucocorticoids on neurogenesis under
these conditions [15].

However, chronic activation of the endocrine stress
system does not only impair neural stem cells but also other
stem cell populations. For example, chronic restraint, an
established model to induce chronic physiological stress in
mice, leads to elevated levels of glucocorticoids and
decreases the function and repair potential of mesenchymal
stem cells [27]. Specifically, chronic stress inhibited their
differentiation into myofibroblasts, hampering repair effi-
ciency in a model of liver injury [27].

Considering that we are now beginning to understand the
wide range of actions of stress hormones on stem and
progenitor cells, the enormous clinical and therapeutic
implications become obvious. Reassessing our way of
thinking and our current strategy of glucocorticoid repla-
cement regimens in those with chronic adrenal failure, we
can avoid damaging effects on early cellular development,
repair and regeneration by regulating cell death pathways
even beyond signaling of apoptosis [28]. On the other hand
we may have the opportunity to exploit the great potential
of stress hormones in a precise and individualized manner
for improving cell renewal and regenerative therapies.

However, before we discuss a new view on translational
and clinical concepts it will be worthwhile to address how
mechanistically stress induces stem cells in the endocrine
organs producing the stress hormones. If stress in early life
is able to direct stem cell fate and lineage commitment this
can have major implications in responding to and coping
with disease during adulthood. It will also add an entirely
new level of complexity to the link of mental and physical
stressors related to our capacity of self-renewal, cell death,
resilience, cell repair, and regeneration. This in turn may
have direct implications for multiple new lines of evidence
regarding disease etiopathogenesis, particularly mechan-
isms by which early abnormalities in stress hormone reg-
ulation may lead to common diseases in later life.

Stem cells induced by stress

An intricate network of morphogens and growth factors and
a defined combinatorial code of transcription factors direct

the hypothalamic, pituitary, and adrenal progenitor cells to
form the mature HPA axis [29, 30]. External and internal
stressors from the first day of life influence the process of
cell differentiation of stem and progenitor cells in the HPA
axis to form the fully functional endocrine stress system.
Chronic stress in a variable stress model, which includes
unpredictable stressors such as crowding, isolation, cage tilt
and light-dark changes, stimulates presynaptic and post-
synaptic modifications in the paraventricular nucleus of the
hypothalamus that are in accordance with increased HPA
axis drive [31]. Unpredictable stress activates inter-
connected cortical, hypothalamic and brainstem nuclei
suggesting a recruited circuitry mediating chronic drive of
brain stress effector systems [31].
Previously, we isolated, characterized, and differentiated
chromaffin stem/progenitor cells from the human, bovine,
and murine adrenal medulla [32–34]. Primary cells cultured
as spheres from human medulla express progenitor markers
including Nestin, NOTCH1 and SOX2 and are able to
differentiate both into distinct neuron-like cell types and
into endocrine chromaffin cells [32, 33]. In mice, we have
identified a defined pool of glial-like Nestin-expressing
progenitor cells that are multipotent and able to differentiate
into both chromaffin cells and neurons both in vitro and
in vivo [35]. Interestingly, immobilization stress promotes
the differentiation of these Nestin-positive progenitor cells
into chromaffin cells, and has also been shown to alter the
expression of catecholamine-producing enzymes and the
release of catecholamines [35]. Hence, stress induces both a
molecular and cellular adaptation by recruiting new
catecholamine-producing cells from the stem cell pool to
cope with increased demand [36, 37].

More importantly, Nestin-expressing progenitors are not
only located in the adrenal medulla but also in the adrenal
cortex. Likewise metabolic and physical stressors seem to
induce mature steroid-producing cells from this pool [38].

Tissue-specific stem/progenitor cells in the adult pituitary
gland have been identified using genetic tracing experi-
ments [39]. Cells expressing the transcription factor SOX2,
a sub-population of which also express Nestin, are
capable of self-renewal and the direct generation of new
hormone-producing cells during postnatal life as well as
in vitro [39–41]. In fact, this population can become
mobilized and differentiate into the appropriate endocrine
cell type in response to physiological stress [32]. In addition
to their contribution to the physiological maintenance of the
adult pituitary, we have demonstrated that these SOX2-
expressing stem/progenitor cells can be involved in the
induction of pituitary tumors [40, 41].

Major developmental signaling pathways are active in
stem cells of the pituitary [30], and similar mechanism hold
true for the peripheral effector organ of the HPA axis, the
adrenal gland, in both the steroid-producing adrenal cortex
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and the catecholamine-producing adrenal medulla. This
may suggest a uniform and coordinated signature and pro-
gramming within the entire endocrine stress axis, thereby,
hinting at common or shared pathways in generating stress-
inducible stem cells (SISCs) shaping the entire adaptive
stress response in the HPA axis and beyond. These obser-
vations also emphasize the possibility of common regula-
tion of cellular responses within the HPA axis and
sympathoadrenal system related to stress adaption. (Fig. 1)

How is the concept of stress-inducible stem cells
(SISCs) changing our view of metabolic and mental
disease?

Chronic stress conditions and the inability to cope with
stress lead both to increased vulnerability and aggravation
of metabolic and mental disease [42]. For example, leptin
and other adipocyte-derived peptides including adipocyte-
derived CRH are closely linked to the endocrine stress
system [43–47] and high levels of glucocorticoids produced
by the adrenal cortex of subjects exposed to stress lead to
reduced neurogenesis. In turn, impaired neurogenesis in the
CNS is closely linked to psychiatric disease, such as
depression and posttraumatic stress disorders and metabolic
disorders [15, 48, 49] as angiotensin-sensitive neurons
expressing CRH coordinate neuroendocrine, cardiovascular,
and behavioral responses to stress [48].

Furthermore, adipocyte-derived mesenchymal stem cells
from patients with metabolic syndrome are defective in
differentiation, angiogenesis, motility, multipotency, as well
as metabolism and immunomodulation [50]. This may
suggest that a pro-inflammatory environment, with the
endocrine stress axis promoting obesity through priming
and dysregulation of SISCs at multiple levels (including the
brain, endocrine, and adipose issues).

As already mentioned, hematopoietic stem and pro-
genitor cells are affected by CRH and glucocorticoids [17,
18]. Therefore, the early stress activation of SISCs in
hematopoiesis will induce inflammatory leukocytes con-
tributing to the pathogenesis of metabolic-vascular disease
[19].

Also in the pancreas a functional CRH receptor system is
present. A brain-pancreatic islet axis is mediated by CRH
and other hypothalamic peptides on beta cells [51]. Stress
has also been shown to affect stem/progenitor cells in islets.
This may suggest that the entire stress-regulation of stem
cells in the endocrine pancreas will shape and modify
lifelong islet cell mass and therefore capacity for insulin
secretion [52].

Finally, glucocorticoids induce a reduction in prolifera-
tion of hypothalamic neural stem cells that can have major
consequences in adulthood on the development of both
mental and metabolic diseases. Hyperactivation of the HPA
axis has been clearly linked to the early development of

Fig. 1 Stem cells from a range of
tissues are influenced by
different kinds of stress in both a
positive (eustress) and negative
(distress) manner giving rise to
positive/negative metabolic
memory
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metabolic disease and to the severity of its cardiovascular
complications. Glucocorticoids promote fat cell maturation,
obesity, and insulin resistance while fat cell mass correlates
with both glucocorticoid and aldosterone levels [53]. Also,
mesenchymal stem cells isolated from metabolic syndrome
and type 2 diabetes patients exhibit cellular dysfunction
based on increased oxidative stress and autophagy [54].
Malnutrition, high fat diets, maternal immune activation,
immobility and neglect, environmental toxins, and many
other adverse events are well-known risk factors for mental
and metabolic disease but also autoimmune and malignant
disease will induce an early dysregulation of these intricate
networks of SISCs.

This means that many longstanding observations, such as
the link between early life abuse-associated trauma and
subsequent metabolic risk factors/diseases [55] may now
become clearer following our better understanding of the
concepts of SISCs.

Twenty years after the first description of stem cells, we
are able to comprehend the fact that their stress-induction
represents a general concept of adaptation to the challenges
of daily life and coping with disease.

Similar to the discovery and characterization of a specific
stem cell pool in cancer, nature might have created a distinct
subset of stem and progenitor cells that are inducible and
regulated by stress. As an ancient and positive mechanism
to drive evolution and development, early priming of a pool
of SISCs, be it beneficial or detrimental, will later define
healthy living or morbidity with premature death due to
chronic and acute disease.

Stress-induction drives migration of stem cells and may
explain complete or incomplete organ formation or min-
gling of cellular components. It may explain aberrant
expression of peptide receptors with autonomous tumor
formation in endocrine tissues contributing to metabolic and
mental disease. In patients with both these diseases together,
adrenal hyperplastic and/or adenomatous adrenals with
manifest or subclinical hypercortisolism have been
observed [56]. This may explain impairment of the normal
circadian or ultradian rhythms of hormone release, leading
to a vicious cycle of maladaptation and stress hormone
exposure with all its metabolic and central consequences
[15]. Such mechanisms may form a basis for the concept of
a “negative metabolic memory“ contributing to irreversible
long-term damage e.g., of cardiovascular disease in patients
at the beginning of the metabolic disease process [57].

The observation that endocrine disruptors induce per-
turbations in the endoplasmic reticulum and mitochondria
of human pluripotent stem cell derivatives reveals the long
lasting and severe consequences of these obesogenic
endocrine disrupting chemicals on the developing gut
endocrine and neuroendocrine system [58]. Therefore,
unavoidable environmental stressors can induce alterations

in the microbiome, innate immune functions and metabolic
and neural functions based on early modifications of SISCs.

How should the concept of stress-inducible stem
cells affect our clinical strategies for the diagnosis
and treatment of metabolic and mental disease?

First of all it will require the development of more appro-
priate cellular models to study and characterize further the
properties of the various subsets of SISCs. An interesting
approach to analyze obesity and gene-environment inter-
actions has been the generation of human-induced plur-
ipotent stem cells from individuals with normal body mass
index and from patients with morbid obesity (BMI >50)
[59]. In this study stem cells from obese individuals were
differentiated into neurons capable of secreting hypotha-
lamic neuropeptides. This revealed functional defects in
cells from morbidly obese patients including altered hor-
mone signaling of ghrelin and leptin and dysregulated
endoplasmic reticulum stress pathways [59].
Recently, we generated human-induced steroidogenic cells
from fibroblasts, blood, and urine-derived cells employing
forced expression of steroidogenic factor-1 and activation of
the protein kinase A (PKA) and luteinizing hormone-
releasing hormone (LHRH) pathways [60].

These models will allow researchers to better define the
mechanisms of stress hormones and other stressors in
reprogramming of progenitor cells. Furthermore, chimeric
models, genome engineering and gene editing, cell encap-
sulation, microfluidics and organs-on-a-chip will permit the
elucidation of mechanisms of stress induction of stem cells,
their common pathways and relevance to chronic disease
[61–69]. Regarding current treatment of metabolic and
mental disease, a serious reflection on the concept of a
distinct subset of SISCs in the human body will necessitate
immediate changes in the management of these disorders:

(1) We will have to reemphasize the enormous signifi-
cance of adverse effects and stressors in early life for
chronic diseases in adulthood, as childhood and
adolescence represent the most dynamic periods of
our development. Social chaos and family traumas
can no longer be viewed as mere economic or socio-
ethical problems for society; they are agents of disease
causation with potentially serious and irreversible
long-term health problems.

(2) We will have to redesign prevention programs
considering the interplay of stress, metabolic regen-
eration, and cell renewal.

(3) The current treatment regimens of glucocorticoids
have to be adapted and tailored to avoid improper
triggering and dysregulation of the stress-inducible
stem cell pool.

Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease?



(4) Current and novel medications for the treatment of
metabolic and mental diseases should be tested for
their effect on stress-induction of stem cells in a
precise and individualized manner. Such over-arching
effects on SISCs may be important for determining
the relative lifetime benefits of various treatment
options.

(5) Regenerative therapies should be developed to exploit
the benefit of eustress induction of stem cells for
efficient self-renewal, repair, and recovery from
chronic ailments.

Conclusion

As the field of stem cell research is entering adulthood and
as its potential for clinical applications and even for cures
becomes more evident, it is the right time to embrace the
new concept of stress-inducible stem cells. We propose that
the effects of stress on young stem/progenitor cells during
the early stages of postnatal development may predispose to
adult disease. Preventing such negative effects may reduce
the incidence or delay the onset of common conditions, with
significant impact on welfare. Preserving the functionality
of sparse stem/progenitor cell populations could have
further-reaching consequences on human health than
anticipated. As with other aspects of human health, the
maxima of ‘prevention is better than cure’ may also apply to
the stem cell field. We anticipate that more profound
knowledge of the mechanism underlying the interactions
between stressors and stem/progenitor cells will yield novel
preventative approaches.

Acknowledgements This study was supported by the TransCampus
initiative between TU Dresden and King's College London and by the
Deutsche Forschungsgemeinschaft (DFG) within the CRC/Transregio
205/1 “The Adrenal: Central Relay in Health and Disease“ and the
IRTG2251

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

1. Selye H. In Stress without distress. J.B. Lippincott Co: Philadel-
phia, PA. 1974.

2. Selye H. In Stress in health and disease. Butterworth Inc; Boston,
MA. 1976:928–1148.

3. Selye H. A syndrome produced by diverse nocuous agents. 1936.
J Neuropsychiatry Clin Neurosci. 1998;10:230–1.

4. Chrousos GP, Gold PW. The concepts of stress and stress system
disorders. Overview of physical and behavioral homeostasis.
JAMA. 1992;267:1244–52.

5. Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP,
Charmandari E. Stress, the stress system and the role of gluco-
corticoids. Neuroimmunomodulation. 2015;22:6–19.

6. Rea K, Dinan TG, Cryan JF. The microbiome: a key regulator of
stress and neuroinflammation. Neurobiol Stress. 2016;4:23–33.

7. Bornstein SR, Chrousos GP. Clinical review 104: Adrenocorti-
cotropin (ACTH)- and non-ACTH-mediated regulation of the
adrenal cortex: neural and immune inputs. J Clin Endocrinol
Metab. 1999;84:1729–36.

8. Bornstein SR, Ehrhart-Bornstein M, Scherbaum WA, Pfeiffer EF,
Holst JJ. Effects of splanchnic nerve stimulation on the adrenal
cortex may be mediated by chromaffin cells in a paracrine manner.
Endocrinology. 1990;127:900–6.

9. Ehrhart-Bornstein M, Hinson JP, Bornstein SR, Scherbaum WA,
Vinson GP. Intraadrenal interactions in the regulation of adreno-
cortical steroidogenesis. Endocr Rev. 1998;19:101–43.

10. Bornstein SR, Allolio B, Arlt W, Barthel A, Don-Wauchope A,
Hammer GD, et al. Diagnosis and treatment of primary adrenal
insufficiency: an endocrine society clinical practice guideline. J
Clin Endocrinol Metab. 2016;101:364–89.

11. Merke DP, Bornstein SR. Congenital adrenal hyperplasia. Lancet.
2005;365:2125–36.

12. Merke DP, Chrousos GP, Eisenhofer G, Weise M, Keil MF,
Rogol AD, et al. Adrenomedullary dysplasia and hypofunction in
patients with classic 21-hydroxylase deficiency. N Engl J Med.
2000;343:1362–8.

13. Boonen E, Bornstein SR, Van den Berghe G. New insights into
the controversy of adrenal function during critical illness. Lancet
Diabetes Endocrinol. 2015;3:805–15.

14. Bornstein SR. Predisposing factors for adrenal insufficiency. N
Engl J Med. 2009;360:2328–39.

15. Fitzsimons CP, Herbert J, Schouten M, Meijer OC, Lucassen PJ,
Lightman S. Circadian and ultradian glucocorticoid rhythmicity:
implications for the effects of glucocorticoids on neural stem cells
and adult hippocampal neurogenesis. Front Neuroendocrinol.
2016;41:44–58.

16. Mutsaers HA, Tofighi R. Dexamethasone enhances oxidative
stress-induced cell death in murine neural stem cells. Neurotox
Res. 2012;22:127–37.

17. Steidl U, Bork S, Schaub S, Selbach O, Seres J, Aivado M, et al.
Primary human CD34+ hematopoietic stem and progenitor cells
express functionally active receptors of neuromediators. Blood.
2004;104:81–88.

18. Kwan W, Cortes M, Frost I, Esain V, Theodore LN, Liu SY, et al.
The central nervous system regulates embryonic HSPC production
via stress-responsive glucocorticoid receptor signaling. Cell Stem
Cell. 2016;19:370–82.

19. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A,
et al. Chronic variable stress activates hematopoietic stem cells.
Nat Med. 2014;20:754–8.

20. Koutmani Y, Karalis KP. Neural stem cells respond to stress
hormones: distinguishing beneficial from detrimental stress. Front
Physiol. 2015;6:77.

21. Androutsellis-Theotokis A, Chrousos GP, McKay RD, DeCher-
ney AH, Kino T. Expression profiles of the nuclear receptors and
their transcriptional coregulators during differentiation of neural
stem cells. Horm Metab Res. 2013;45:159–68.

22. Peffer ME, Chandran UR, Luthra S, Volonte D, Galbiati F, Gar-
abedian MJ, et al. Caveolin-1 regulates genomic action of the
glucocorticoid receptor in neural stem cells. Mol Cell Biol.
2014;34:2611–23.

S. R. Bornstein et al.



23. Tofighi R, Moors M, Bose R, Ibrahim WN, Ceccatelli S. Neural
stem cells for developmental neurotoxicity studies. Methods Mol
Biol. 2011;758:67–80.

24. Koutmani Y, Politis PK, Elkouris M, Agrogiannis G, Kemerli M,
Patsouris E, et al. Corticotropin-releasing hormone exerts direct
effects on neuronal progenitor cells: implications for neuropro-
tection. Mol Psychiatry. 2013;18:300–7.

25. Gilhooley MJ, Pinnock SB, Herbert J. Rhythmic expression of
per1 in the dentate gyrus is suppressed by corticosterone: impli-
cations for neurogenesis. Neurosci Lett. 2011;489:177–81.

26. Kimiwada T, Sakurai M, Ohashi H, Aoki S, Tominaga T, Wada
K. Clock genes regulate neurogenic transcription factors, includ-
ing NeuroD1, and the neuronal differentiation of adult neural
stem/progenitor cells. Neurochem Int. 2009;54:277–85.

27. Yang X, Han ZP, Zhang SS, Zhu PX, Hao C, Fan TT, et al.
Chronic restraint stress decreases the repair potential from
mesenchymal stem cells on liver injury by inhibiting TGF-beta1
generation. Cell Death Dis. 2014;5:e1308.

28. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H,
Vandenabeele P. Regulated necrosis: the expanding network of
non-apoptotic cell death pathways. Nat Rev Mol Cell Biol.
2014;15:135–47.

29. Andoniadou CL. Pituitary stem cells during normal physiology
and disease. In Stem Cells in Neuroendocrinology. Springer
International Publishing AG: Cham (CH). 2016; 103–11 (eds.
Pfaff D, Christen Y).

30. Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem
cell regulation: who is pulling the strings? J Endocrinol. 2017;234:
R135–R158.

31. Flak JN, Solomon MB, Jankord R, Krause EG, Herman JP.
Identification of chronic stress-activated regions reveals a potential
recruited circuit in rat brain. Eur J Neurosci. 2012;36:2547–55.

32. Rizzoti K, Akiyama H, Lovell-Badge R. Mobilized adult pituitary
stem cells contribute to endocrine regeneration in response to
physiological demand. Cell Stem Cell. 2013;13:419–32.

33. Santana MM, Chung KF, Vukicevic V, Rosmaninho-Salgado J,
Kanczkowski W, Cortez V, et al. Isolation, characterization, and
differentiation of progenitor cells from human adult adrenal
medulla. Stem Cells Transl Med. 2012;1:783–91.

34. Vukicevic V, Rubin de Celis MF, Pellegata NS, Bornstein SR,
Androutsellis-Theotokis A, Ehrhart-Bornstein M. Adrenomedul-
lary progenitor cells: Isolation and characterization of a multi-
potent progenitor cell population. Mol Cell Endocrinol.
2015;408:178–84.

35. Rubin de Celis MF, Garcia-Martin R, Wittig D, Valencia GD,
Enikolopov G, Funk RH, et al. Multipotent glia-like stem cells
mediate stress adaptation. Stem Cells. 2015;33:2037–51.

36. Kanczkowski W, Sue M, Bornstein SR. Adrenal gland micro-
environment and its involvement in the regulation of stress-
induced hormone secretion during sepsis. Front Endocrinol.
2016;7:156.

37. Rubin de Celis MF, Bornstein SR, Androutsellis-Theotokis A,
Andoniadou CL, Licinio J, Wong ML, et al. The effects of stress
on brain and adrenal stem cells. Mol Psychiatry. 2016;21:590–3.

38. Steenblock C, Rubin de Celis MF, Androutsellis-Theotokis A,
Sue M, Delgadillo Silva LF, Eisenhofer G, et al. Adrenal cortical
and chromaffin stem cells: Is there a common progeny related to
stress adaptation? Mol Cell Endocrinol. 2017;441:156–63.

39. Martinez-Barbera JP, Andoniadou CL. Concise review: paracrine
role of stem cells in pituitary tumors: a focus on adamantinoma-
tous craniopharyngioma. Stem Cells. 2016;34:268–76.

40. Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Sign-
ore M, Mackintosh AI, Schaeffer M, et al. Sox2(+) stem/pro-
genitor cells in the adult mouse pituitary support organ
homeostasis and have tumor-inducing potential. Cell Stem Cell.
2013;13:433–45.

41. Jayakody SA, Andoniadou CL, Gaston-Massuet C, Signore M,
Cariboni A, Bouloux PM, et al. SOX2 regulates the
hypothalamic-pituitary axis at multiple levels. J Clin Invest.
2012;122:3635–46.

42. Bornstein SR, Schuppenies A, Wong ML, Licinio J. Approaching
the shared biology of obesity and depression: the stress axis as the
locus of gene-environment interactions. Mol Psychiatry.
2006;11:892–902.

43. Bornstein SR. Is leptin a stress related peptide? Nat Med.
1997;3:937.

44. Bornstein SR, Uhlmann K, Haidan A, Ehrhart-Bornstein M,
Scherbaum WA. Evidence for a novel peripheral action of leptin
as a metabolic signal to the adrenal gland: leptin inhibits cortisol
release directly. Diabetes. 1997;46:1235–8.

45. Chatzigeorgiou A, Karalis KP, Bornstein SR, Chavakis T. Lym-
phocytes in obesity-related adipose tissue inflammation. Diabe-
tologia. 2012;55:2583–92.

46. Glasow A, Haidan A, Hilbers U, Breidert M, Gillespie J, Scher-
baum WA, et al. Expression of Ob receptor in normal human
adrenals: differential regulation of adrenocortical and adrenome-
dullary function by leptin. J Clin Endocrinol Metab.
1998;83:4459–66.

47. Schott M, Scherbaum WA, Bornstein SR. Acquired and inherited
lipodystrophies. N Engl J Med. 2004;351:103–4. author reply103-
104

48. de Kloet AD, Wang L, Pitra S, Hiller H, Smith JA, Tan Y, et al. A
unique “angiotensin-sensitive” neuronal population coordinates
neuroendocrine, cardiovascular, and behavioral responses to
stress. J Neurosci. 2017;37:3478–90.

49. Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant
VM, De Kloet ER, et al. Stress, depression and hippocampal
apoptosis. CNS Neurol Disord Drug Targets. 2006;5:531–46.

50. Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the devel-
opment of obesity: functional alterations of adipose-derived
mesenchymal stem cells. Obes Rev. 2018;19:888–904.

51. Schmid J, Ludwig B, Schally AV, Steffen A, Ziegler CG, Block
NL, et al. Modulation of pancreatic islets-stress axis by hypo-
thalamic releasing hormones and 11beta-hydroxysteroid dehy-
drogenase. Proc Natl Acad Sci USA. 2011;108:13722–7.

52. Cigliola V, Thorel F, Chera S, Herrera PL. Stress-induced adap-
tive islet cell identity changes. Diabetes Obes Metab. 2016;18
(Suppl 1):87–96.

53. Ehrhart-Bornstein M, Arakelyan K, Krug AW, Scherbaum WA,
Bornstein SR. Fat cells may be the obesity-hypertension link:
human adipogenic factors stimulate aldosterone secretion from
adrenocortical cells. Endocr Res. 2004;30:865–70.

54. Kornicka K, Houston J, Marycz K. Dysfunction of mesenchymal
stem cells isolated from metabolic syndrome and type 2 diabetic
patients as result of oxidative stress and autophagy may limit their
potential therapeutic use. Stem Cell Rev. 2018;14:337–45.

55. Felitti VJ, Anda RF, Nordenberg D, Williamson DF, Spitz AM,
Edwards V, et al. Relationship of childhood abuse and household
dysfunction to many of the leading causes of death in adults. The
adverse childhood experiences (ACE) Study. Am J Prev Med.
1998;14:245–58.

56. Mansmann G, Lau J, Balk E, Rothberg M, Miyachi Y, Bornstein
SR. The clinically inapparent adrenal mass: update in diagnosis
and management. Endocr Rev. 2004;25:309–40.

57. Cooper ME, El-Osta A, Allen TJ, Watson AMD, Thomas MC,
Jandeleit-Dahm KAM. Metabolic karma-the atherogenic legacy of
diabetes: the 2017 Edwin Bierman Award Lecture. Diabetes.
2018;67:785–90.

58. Rajamani U, Gross AR, Ocampo C, Andres AM, Gottlieb RA,
Sareen D. Endocrine disruptors induce perturbations in endo-
plasmic reticulum and mitochondria of human pluripotent stem
cell derivatives. Nat Commun. 2017;8:219.

Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease?



59. Rajamani U, Gross AR, Hjelm BE, Sequeira A, Vawter MP, Tang
J, et al. Super-obese patient-derived ipsc hypothalamic neurons
exhibit obesogenic signatures and hormone responses. Cell Stem
Cell. 2018;22:698–712 e699.

60. Ruiz-Babot G, Balyura M, Hadjidemetriou I, Ajodha SJ,
Taylor DR, Ghataore L, et al. Modeling congenital adrenal
hyperplasia and testing interventions for adrenal insufficiency
using donor-specific reprogrammed cells. Cell Rep.
2018;22:1236–49.

61. Balyura M, Gelfgat E, Ehrhart-Bornstein M, Ludwig B, Gendler
Z, Barkai U, et al. Transplantation of bovine adrenocortical cells
encapsulated in alginate. Proc Natl Acad Sci USA.
2015;112:2527–32.

62. Balyura M, Gelfgat E, Steenblock C, Androutsellis-Theotokis A,
Ruiz-Babot G, Guasti L, et al. Expression of progenitor markers is
associated with the functionality of a bioartificial adrenal cortex.
PLoS ONE. 2018;13:e0194643.

63. Balyura M, Gelfgat E, Ullmann E, Ludwig B, Barnea ER,
Bornstein SR. PreImplantation factor (PIF*) regulates stress-
induced adrenal steroidogenesis and anti-inflammatory cytokines:

potential application for bioartificial adrenal transplant. Horm
Metab Res. 2018;50:168–74.

64. Garreta E, Montserrat N, Belmonte JCI. Kidney organoids for
disease modeling. Oncotarget. 2018;9:12552–3.

65. Ludwig B, Ludwig S, Steffen A, Knauf Y, Zimerman B, Heinke S,
et al. Favorable outcome of experimental islet xenotransplantation
without immunosuppression in a nonhuman primate model of
diabetes. Proc Natl Acad Sci USA. 2017;114:11745–50.

66. Ludwig B, Reichel A, Steffen A, Zimerman B, Schally AV, Block
NL, et al. Transplantation of human islets without immunosup-
pression. Proc Natl Acad Sci USA. 2013;110:19054–8.

67. Wu J, Vilarino M, Suzuki K, Okamura D, Bogliotti YS, Park I,
et al. CRISPR-Cas9 mediated one-step disabling of pancreato-
genesis in pigs. Sci Rep. 2017;7:10487.

68. Yamasaki AE, Panopoulos AD, Belmonte JCI. Understanding the
genetics behind complex human disease with large-scale iPSC
collections. Genome Biol. 2017;18:135.

69. Yang Y, Liu B, Xu J, Wang J, Wu J, Shi C, et al. Derivation of
pluripotent stem cells with in vivo embryonic and extraembryonic
potency. Cell. 2017;169:243–57 e225.

Affiliations

S R Bornstein1,2,3,4,5
● C Steenblock1 ● G P Chrousos6 ● A V Schally7,8 ● F Beuschlein 9,10

● G Kline11 ● N P Krone12,13 ●

J Licinio14,15
● M L Wong 14,15

● E Ullmann 1,16
● G Ruiz-Babot1,17 ● B O Boehm5

● A Behrens18 ● A Brennand1,2
●

A Santambrogio1,19
● I Berger1 ● M Werdermann1

● R Sancho20
● A Linkermann 1

● J W Lenders1,21 ● G Eisenhofer1 ●

C L Andoniadou 1,19

1 University Hospital Carl Gustav Carus, Department of Medicine
III, Technische Universität Dresden, Dresden, Germany

2 Diabetes and Nutritional Sciences, King’s College London,
London, UK

3 Center for Regenerative Therapies, Technische Universität
Dresden, Dresden, Germany

4 Paul Langerhans Institute Dresden of Helmholtz Centre Munich at
University Clinic Carl Gustav Carus of TU Dresden Faculty of
Medicine, Dresden, Germany

5 Lee Kong Chian School of Medicine, Nanyang Technological
University, Singapore, Singapore

6 Center for Adolescent Medicine, UNESCO Chair on Adolescent
Health Care, First Department of Pediatrics, Kapodistrian
University of Athens, Aghia Sophia Children’s Hospital,
Athens, Greece

7 Divisions of Endocrinology and Hematology–Oncology,
Departments of Medicine and Department of Pathology,
University of Miami, Miller School of Medicine, Miami, FL, USA

8 Veterans Affairs Medical Center, Miami, FL, USA

9 Medizinische Klinik und Poliklinik IV, Klinikum der Universität
München, Munich, Germany

10 Klinik für EndokrinologieDiabetologie und Klinische Ernährung,
UniversitätsSpital Zürich, Zürich, Switzerland

11 Division of Endocrinology and Metabolism, Department of

Medicine, University of Calgary, Calgary, Alta, Canada

12 Department of Oncology and Metabolism, University of Sheffield,
Sheffield, UK

13 Department of Endocrinology, Sheffield Children’s NHS
Foundation Trust, Sheffield, UK

14 Department of Psychiatry, College of Medicine, State University
of New York, Upstate Medical University, Syracuse, NY, USA

15 Departments of Pharmacology and Medicine, College of
Medicine, State University of New York, Upstate Medical
University, Syracuse, NY, USA

16 Department for Child and Adolescent Psychiatry, Psychotherapy,
and Psychosomatics, University of Leipzig, Leipzig, Germany

17 Centre for Endocrinology, William Harvey Research Institute,
Barts and the London School of Medicine and Dentistry, Queen
Mary University of London, London, UK

18 Adult Stem Cell Laboratory, The Francis Crick Institute,
London, UK

19 Centre for Craniofacial and Regenerative Biology, King’s College
London, London, UK

20 Centre for Stem Cells and Regenerative Medicine, King’s College
London, London, UK

21 Department of Internal Medicine, Radboud University Medical
Centre, Nijmegen, The Netherlands

S. R. Bornstein et al.

http://orcid.org/0000-0001-7826-3984
http://orcid.org/0000-0001-7826-3984
http://orcid.org/0000-0001-7826-3984
http://orcid.org/0000-0001-7826-3984
http://orcid.org/0000-0001-7826-3984
http://orcid.org/0000-0003-1512-3073
http://orcid.org/0000-0003-1512-3073
http://orcid.org/0000-0003-1512-3073
http://orcid.org/0000-0003-1512-3073
http://orcid.org/0000-0003-1512-3073
http://orcid.org/0000-0002-5690-7029
http://orcid.org/0000-0002-5690-7029
http://orcid.org/0000-0002-5690-7029
http://orcid.org/0000-0002-5690-7029
http://orcid.org/0000-0002-5690-7029
http://orcid.org/0000-0001-6287-9725
http://orcid.org/0000-0001-6287-9725
http://orcid.org/0000-0001-6287-9725
http://orcid.org/0000-0001-6287-9725
http://orcid.org/0000-0001-6287-9725
http://orcid.org/0000-0003-4311-5855
http://orcid.org/0000-0003-4311-5855
http://orcid.org/0000-0003-4311-5855
http://orcid.org/0000-0003-4311-5855
http://orcid.org/0000-0003-4311-5855

	Stress-inducible-stem cells: a new view on endocrine, metabolic and mental disease?
	Introduction
	Role of stress steroids on progenitor/stem cell populations
	Stem cells induced by stress
	How is the concept of stress-inducible stem cells (SISCs) changing our view of metabolic and mental disease?
	How should the concept of stress-inducible stem cells affect our clinical strategies for the diagnosis and treatment of metabolic and mental disease?

	Conclusion
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A4




