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Optoacoustic imaging was for a long time concerned
with the reconstruction of energy density or optical
properties. In this work, we present the full inverse
problem with respect to optical absorption and
diffusion as well as speed of sound and mass
density. The inverse problem is solved by an iterative
gradient-based optimization procedure. Since the
ill-conditioning increases with the number of sought
parameters, we propose two approaches to improve
the conditioning. The first approach is based on the
reduction of the size of the basis for the parameter
spaces, that evolves according to the particular
characteristics of the solution, while maintaining
the flexibility of element-wise parameter selection.
The second approach is a material identification
technique that incorporates prior knowledge of
expected material types and uses the acoustical
gradients to identify materials uniquely. We present
numerical studies to illustrate the properties and
functional principle of the proposed methods.
Significant convergence speed-ups are gained by
the two approaches countering ill-conditioning.
Additionally, we show results for the reconstruction
of a mouse brain from in vivo measurements.

1. Introduction
Optoacoustic imaging (also called photoacoustic imaging)
as a comparably young medical imaging technique
allows for new insights in several research fields,
for example, cancer detection [1], arthritis [2] or
atherosclerosis imaging [3]. This imaging technique
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gives rise to a complex inverse problem to reconstruct images from measurement data. In
optoacoustics, an object of interest is illuminated with a short pulse laser light that distributes
within the object according to its optical material properties. The light is absorbed, the energy
transforms to heat causing a thermal expansion and hence a respective pressure variation.
The pressure propagates through the object and is eventually measured. The purpose of the
optoacoustic image reconstruction is to interpret the measurement data such that one can
conclude on physical properties of the body. Basically, four different types of image reconstruction
are used: backprojection [4], model-based inversion [5,6], time-reversal [7–9] or iterative gradient-
based schemes [10,11]. The first three of these four reconstruction types commonly reconstruct
the pressure rise or the optical energy while gradient-based and analytical methods also allow
to reconstruct absorption as well as diffusion coefficients simultaneously in a quantitative
manner [12–17]. As a matter of fact, the measurements additionally include information on the
speed of sound and mass density distribution. Sound speed heterogeneities were studied and
sometimes even reconstructed in [10,18–22] but those studies are limited by several assumptions
on the tomographic set-up or the object. In [23], sound speed variations are modelled as random
fluctuations to a constant in the context of coherent interferometry algorithms.

The progress in numerical modelling and implementation as well as the increase in computing
power render it possible to model the physical processes unfolding in an optoacoustic scanner
during acquisition more accurately. Our approach includes an optoacoustic image reconstruction
algorithm that does not only recover the optical properties of an object, namely absorption and
diffusion coefficients, but also the mass density and speed of sound without restrictions on the
underlying geometry, the tomographic set-up or assumptions on parameter distributions. The
algorithm includes an iterative gradient-based optimization scheme and is based on a physical
description of the underlying problems taking the primary physical effects into account by means
of the optical diffusion approximation and the acoustical wave equation. The physical approach
raises the computational effort but this is countered with high-performance optimized finite-
element implementations [24] for the acoustical solver. The joint reconstruction of source and
speed of sound from boundary measurements, that arises in optoacoustic image reconstruction,
has been shown to be unstable for the linearized problem in [21]. The recovery of either the
source or the speed of sound, however, is addressed extensively in the literature (e.g. [25,26] and
references therein). Herein, the different parameter fields are reconstructed successively avoiding
problems due to different scaling and avoiding instabilities due to joint reconstructions, see [25]
on stability criteria for recovery of either a source or a speed.

The increase in the number of optimization variables worsens the conditioning of the inverse
problem and we propose two approaches to oppose the ill-conditioning. In the first approach,
we aim to optimize the basis functions used for the parameter discretizations. Typically, voxel-
or pixel-based basis functions are chosen. However, there are several other possibilities, e.g.
local radially symmetric basis functions as proposed in [27,28]. The authors of [28] claim an
improvement of convergence compared to local polynomial basis functions due to implicit
regularization of a low-dimensional solution space if the shape parameters of the bases are chosen
appropriately. In [29,30], computationally expensive level-set functions are used to reconstruct
inclusion shapes and values. Their application is limited to problems with only a few inclusions
of regular shape. In [31,32], group sparse reconstruction algorithms of iterative shrinkage type
are used to optimize for the sparsity of a coefficient vector with a morphological component
algorithms and Haar wavelets representing piece-wise smooth parameter distributions. Another
approach to regularize the problem is presented in [33] where the restriction to small absorbers
regularizes the solution. We present a basis approach that starts from a classical voxel-based
basis and consolidates voxels to patches, thereby introducing implicit regularization and making
use of the biologically reasonable partitioning into several clustered materials. Additionally,
material distribution patterns are communicated from the most sensitive parameter to the less
sensitive parameters, thereby improving the conditioning of the inverse problem. This approach
is more flexible and robust compared to level-set reconstructions and does not require the
identification of appropriate shape parameters for the bases. In this way, we are able to reconstruct
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distinct inclusions and introduce an implicit regularization while maintaining full flexibility. The
approach can be thought of as a segmentation during reconstruction without strong parameter
dependence, e.g. as in [34].

The second method we propose to oppose the ill-conditioning is an extension of the previous
work [35] on material identification. Material identification is reasonable when the composition
of an object and typical values for the material properties are known in advance. This is often the
case in medical applications where there is only a limited number of tissue types, e.g. soft tissue,
skin, bone, brain, muscle, organs, etc. and typical values are given in the literature [36,37]. In [35],
absorption and diffusion coefficients are reconstructed and are used to identify materials from
a user-specified material catalogue to update the acoustical properties accordingly. A drawback,
however, is that the diffusion coefficient has low sensitivity and its reconstruction is error prone.
In this work, we propose to reconstruct only the absorption coefficient and then use the acoustical
gradients to find a unique assignment to materials from the catalogue. One benefit is reduced
computational time because only one parameter is reconstructed and the acoustical parameters
are updated on the fly. The other benefit is that available prior knowledge is brought into the
reconstruction scheme without restricting the generality of the approach.

This work is structured as follows. In §2, the physical model of the optoacoustic imaging
procedure is presented. The imaging problem with its objective function and objective function
gradients is introduced in §3. Preliminary insights for this complex optimization procedure are
given in §4. The variable bases approach and the material identification are proposed in §5a,b,
respectively. In both of these sections, numerical examples are given to demonstrate the working
principle of the approaches. The algorithm is applied to reconstruct images of a mouse brain in
§6. Finally, conclusions and an outlook are given in §7.

2. The physical problem
The physical description of the optoacoustic imaging procedure is composed of three main parts:
laser light propagates in a strongly scattering medium; optical energy is transformed into a
pressure field via the optoacoustic effect; the pressure propagates as a set of sound waves through
the potentially heterogeneous medium and is eventually detected. In the following, Ω̂ denotes
the domain of the object of interest and Ω the object’s domain combined with the domain of the
coupling medium, which is used to fill the gap between the object and the detectors.

Light propagation is described by the diffusion approximation

μaφ − ∇ · (D∇φ) = 0 in Ω̂ ,

φ = φ̂ on ∂Ω̂D,

φ + 2D∇φ · n = 0 on ∂Ω̂R,

with the absorption coefficient μa, the diffusion coefficient D and the light flux φ [38]. The object’s
boundary ∂Ω̂ consists of a part ∂Ω̂D where the light flux φ̂ is prescribed by a Dirichlet condition
and of a part ∂Ω̂R where a Robin type boundary condition is prescribed with the outward pointing
normal vector n. The diffusion approximation yields sufficiently accurate results in regions far
from boundaries and sources where the scattering is stronger than the absorption. In the context
of optoacoustic imaging has been used, e.g. in [15,16,39,40].

The physical description of the photoacoustic (optoacoustic) effect in thermal and stress
confinement [38] is given by

p0 = −Γ μaφ in Ω̂ ,

p0 = 0 in Ω\Ω̂
and v0 = 0 in Ω ,

with the Grüneisen coefficient Γ , the pressure p and the velocity v. The sign of the initial pressure
is negative by definition.
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The pressure propagation is described by the acoustic wave equation written as a first-order
system

ρ
∂v

∂t
+ ∇p = 0 in Ω × (0, T],

1
c2ρ

∂p
∂t

+ ∇ · v = 0 in Ω × (0, T],

v · n − 1
cρ

p = 0 on ∂ΩA × (0, T],

v · n = 0 on ∂ΩN × (0, T],

with the speed of sound c, the mass density ρ, the final time T and the two parts of the
domain’s boundary ∂ΩA and ∂ΩN, where a first-order absorbing boundary condition and a
Neumann condition are enforced, respectively. In many cases, the second-order formulation of the
acoustic wave equation neglecting spatial density variations is used, see e.g. [19,41–43]. In [10], a
formulation additionally considering acoustical absorption is used.

For the numerical scheme, the optical problem is discretized with the standard finite-element
method, while the acoustical problem is discretized with the hybridizable discontinuous Galerkin
method (HDG) with polynomial degree of the shape functions between one and nine [24]. For a
detailed explanation of the physical problems and their discretizations, see [35].

3. The imaging problem
With the equations introduced in the preceding section, pressure values at the detector boundary
∂ΩM are simulated and stored in nt vectors Ps

i , with nt being the maximum number of time steps.
Each vector Ps

i contains the pressure values at time ti for all detectors. Analogously, physical
measurements provide measured pressure values Pm

i . The objective is to minimize the difference
between these two quantities by adaption of the absorption coefficient μa, the diffusion coefficient
D, the speed of sound c and the mass density ρ:

min
μa,D,c,ρ

J with J = 1
2

nt∑
i=1

‖Ps
i − Pm

i ‖2, (3.1)

with ‖ • ‖ indicating the Euclidean vector norm. The vectors μa, D, c and ρ hold discrete
values, such that the parameter distributions are, for the example of the absorption coefficient,
approximated by

μ(x)a = b(x) · μa, (3.2)

with the spatial coordinate x and a vector of basis functions b. A convenient choice of basis
functions is crucial for the conditioning of the inverse problem, its solvability and its convergence
behaviour. Some reconstruction algorithms might require a certain level of smoothness of the
parameter representation. Generally speaking, the conditioning of an inverse problem degrades
with an increasing number of parameters motivating a reduction of degrees of freedom and hence
a reduction of the number of basis functions. These considerations led, e.g. to the approach of
radially symmetric basis functions or level set approaches, see [28,29], respectively. A common
choice is element-wise basis functions taking the value 1 in one element and 0 in all others.
However, this is not the best choice as will be shown in §5a.

(a) The gradients
The gradients of the objective function could be calculated with a finite difference scheme, which
is yet prohibitively expensive and cumbersome considering the large number of optimization
parameters nparam. Thus, the gradients are calculated via the adjoint approach. A detailed
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description of the derivation of the optical gradients dJ/dμ and dJ/dD can be found in [35]. Here,
only the resulting equations shall be stated

dJ
dμa

= Φ̃
T ∂Ko

∂μa
Φ − P̃

T
0
∂Km

∂μa
Φ (3.3)

and
dJ
dD

= Φ̃
T ∂Ko

∂D
Φ. (3.4)

Herein, Φ and Φ̃ are the solution vectors of the forward and adjoint light problem, P̃ is the
pressure solution vector of the adjoint acoustical problem, and Ko and Km are the ‘stiffness
matrices’ of the optical problem and the optoacoustic mapping, see [35] for details.

The acoustical gradients are derived from the Lagrangian defined in [35] by partial
differentiation:

dJ
dc

=
nt∑

i=1

P̃
T
i
∂Ma

∂c
(Pi − Pi−1) (3.5)

and
dJ
dρ

=
nt∑

i=1

Ṽ
T
i
∂Aa

∂ρ
(V i − V i−1) +

nt∑
i=1

P̃
T
i

∂Ma

∂ρ
(Pi − Pi−1). (3.6)

The acoustical ‘mass matrices’ for pressure and velocity are denoted Ma and Aa, respectively, and
result from the discretization of the acoustic wave equation with HDG, for details see [24]. The
acoustical gradients are calculated from the combination of forward (Pi, V i) and adjoint (P̃i, Ṽ i)
solution vectors at each time step. The difficulty is that the adjoint problem has to be solved
backwards in time after the solution of the forward problem. A naive implementation would
have to store all solution vectors Pi, V i from the forward problem in order to be able to evaluate
the above stated equations, which is impossible with the available computational resources for
realistic image reconstructions. For this reason, a checkpointing approach as proposed in [44] is
implemented: during the forward run each ncheck time steps, a restart is written; in the subsequent
adjoint run (which is executed backwards in time), the accordant forward restart is read, ncheck

forward time steps are performed, the ncheck solution vectors are stored, the adjoint and forward
solutions are combined to get the gradient contribution, and the adjoint run is continued. Doing
so, the gradient calculation requires three times the computational effort of a normal solve and
this is (nparam + 1)/3 times less expensive than finite differences.

(b) The algorithm
The minimization problem given by (3.1) is solved iteratively using a line search along the
steepest descent direction or a low storage BFGS descent direction. The directions are calculated
from the gradients of the objective function. The parameters are not optimized simultaneously
but one after another because they differ in sensitivity as well as in scaling. Therefore, each
parameter needs an individually determined step length to evolve to its optimal distribution.
The algorithm starts with a first evaluation of the objective function by solving the entire forward
problem. Subsequently, the adjoint problem is solved and the gradients are evaluated. Then, the
optimization loop is entered which, in turn, consists of a loop over the four sought parameter
fields invoking the line search procedure. The line search is constructed to fulfil the strong
Wolfe conditions according to § 3.5 of [45]. Within the line search, the forward and adjoint
problem are evaluated several times and the entire parameter field, i.e. its spatial distribution
described by a finite but potentially large number of scalar values is optimized. The algorithm
terminates as soon as the maximal number of iterations is reached or the objective function value
is below the user-defined tolerance. The results depend on the initial guess of the parameters.
In common reconstruction algorithms, acoustical homogeneity is assumed. We propose to choose
the properties of water (or general soft tissue) for the acoustical parameters. Acoustical parameter
updates will improve the objective function over acoustical homogeneous material. For the
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absorption coefficient, a small value is proposed as initial guess. This renders the first update
very similar to a time reversal and subsequent reconstruction of μa from the initial pressure p0.
For successful reconstruction of the diffusion coefficient, it must be given on the boundary of the
domain, see e.g. [39,46], otherwise the solution is not necessarily unique.

4. Preliminary insights
In this section, some preliminary insights concerning basic properties and solution behaviour of
the complex optoacoustic inverse problem are presented.

A simple numerical model as shown in figure 1a is used to generate measurement pressure
curves Pm

i . It consists of a circle with diameter 16 mm representing the tomograph’s interior
at whose boundary the sound signals are measured. A circular object of diameter 10 mm
with a rectangular inclusion of size 7 mm × 1.5 mm is located at the tomograph’s centre.
Here and in all following examples, two-dimensional geometries are used. To each region, a
different material M= (μa, D, c, ρ) is assigned: Mi in the rectangular region, Mo in the inner
circle and Mw in the outer ring. Material Mw is fixed for the rest of the paper to Mw =
(0.01 mm−1, 0.0 mm, 1.48 mm µs−1, 1.0 mg mm−3) representing water as the coupling medium
between the object of interest and the acoustical detectors.

The two other material sets are defined as

Mi = (0.11 mm−1, 0.5 mm, 2.0 mm µs−1, 2.0 mg mm−3) (4.1)

and
Mo = (0.011 mm−1, 0.5 mm, 1.5 mm µs−1, 1.1 mg mm−3). (4.2)

The values are in the typical range of biological tissues.
Sound signals Pm

i are generated with different combinations of the defined materials on a
mesh consisting of 5063 elements and a time step size of 0.01 µs, which gives a maximal Courant
number of about 0.1. For reconstruction, an initial geometry as shown in figure 1b is created. The
outer ring again represents the coupling medium and material parameters Mw are set. The initial
material values for the inner circle are set to the values of material Mo. The geometry is meshed
with 4024 elements and the time step size is set to 0.0125 µs to get the same Courant number.
Additionally, a set-up with a finer discretization is created: the signal generation is performed
with a mesh consisting of 20 567 elements and a time step size �t = 0.002 µs; the reconstruction
is carried out on a mesh consisting of 14 363 elements and a time step size �t = 0.0025 µs. By
use of coarser spatial and temporal discretizations for the reconstruction, the inverse crime is
avoided [47].

In a first step, we evaluated the gradients according to the formulae derived in §3a. Figure 2
shows from left to right the absorption, diffusion, speed of sound and mass density gradient.
In the rows, three different set-ups are printed. In the first row, the gradients are calculated for
measurement signals generated with the material for the inclusion as combination of Mo and
Mi. The absorption coefficient gradient is shown for measurement signals generated with only
the absorption coefficient from Mi, the diffusion coefficient is shown for measurement signals
generated with only the diffusion coefficient from Mi and so on. The second row shows the
four gradients but for measurement signals generated with only the absorption coefficient from
Mi. The last row shows the gradients for measurement signals where all parameters for the
inclusion are set according to Mi. Obviously, the gradient of the absorption coefficient reproduces
the shape of the inclusion best. The sensitivity of the other material parameters is (as expected)
lower: the gradients do not reproduce the shape of the inclusion, which can be seen from the last
three gradients in the first row. From the second row, one can see how the gradients of the other
parameters react to changes in the absorption coefficient. The diffusion gradient reproduces the
shape of the inclusion and the acoustical parameters form a region around the inclusion with
positive values. The results in the last row of figure 2 give an impression of the dependence of
the absorption coefficient on changes in the other parameters, positive values appear next to the
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Figure 1. Geometries. (a) Signal generation and (b) reconstruction (Online version in colour.)
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Figure 2. The absorption coefficient, diffusion coefficient, speed of sound and mass density gradients (from left to right) for
three different set-ups (from top to bottom): the first row shows the self-sensitivity, i.e. the absorption coefficient only is varied
to show the absorption coefficient gradient, the diffusion coefficient only is varied to show the diffusion coefficient gradient
and so on. The second row shows the four gradients for variations in the absorption coefficient, i.e. how the gradients react to
variations in the absorption coefficient, while the other parameters do not vary. The last row shows the gradients for variations
in all parameter fields. (Online version in colour.)

inclusion. The other gradients reproduce similar patterns as in the second row but with slight
modifications in the interior.

In a second step, image reconstruction is performed with element-wise discretization of
the parameter fields for measurement signals obtained with material parameters Mi in the
rectangular inclusion. The results are given in figure 3 in terms of the relative objective function
J/J0 and in terms of the relative error in the parameter fields for the coarse and fine discretizations
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Figure 3. Convergence behaviour of the full optoacoustic problem. (a) Relative objective function and (b) relative error of the
parameters (Online version in colour.)
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Figure 4. Reconstructions of absorption coefficient and speed of sound. (a) Reconstruction of the absorption coefficient with
8% noise added to the signals, (b) reconstruction of the speed of sound with 8% noise added to the signals and (c) plot over
line indicated in (a) ofμa and c, the sample solution is represented by a green solid line, the reconstruction without noise by a
red dashed line and the reconstruction with 8% noise by a blue dashed line. (Online version in colour.)

as mentioned earlier. The error in the parameter fields is calculated as the square of the difference
between the actual and the expected parameter values. The elements intersected by the inclusion
interface are skipped for the error evaluation. From figure 3a, it can be seen that the objective
function value decreases monotonically. Every fourth update, the decrease in the objective
function is comparably high, which corresponds to updates of the most sensitive parameter—
the absorption coefficient. Figure 3b shows that the relative error in the absorption coefficient
distribution converges best, followed by the speed of sound and the mass density. After 30
iterations, the reconstruction is not yet fully converged. The diffusion coefficient starts with a
disadvantageous update and slowly recovers but the algorithm fails to improve the diffusion
coefficient distribution significantly. For the given set-up and comparable applications, the
diffusion coefficient’s sensitivity is much lower than for the other parameters as can be seen
from figures 2 and 3, and results presented in [35]. Therefore, the reconstruction of the diffusion
coefficient is not considered in the remainder of this work. The convergence behaviour for the
coarse and fine discretizations is similar. Figure 4 shows the reconstructions of the absorption
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coefficient and the speed of sound for a reconstruction with noise of 8% amplitude compared
to the noiseless data added to the measurements. Figure 4c plots the reconstruction over the
indicated line and compares results obtained without and with superimposed noise. It appears
that the speed of sound is more sensitive to noise because its reconstructions vary more strongly
compared to the absorption coefficient reconstructions. As already indicated in figure 3b, the
reconstruction of the speed of sound is not yet completely converged.

5. Overcoming the ill-conditioning
Reconstructing not only the absorption coefficient but two additional material parameters with
lower sensitivity deteriorates the conditioning of the optoacoustic inverse problem further. The
deterioration is countered by two approaches presented in the following. One approach addresses
the parameter discretization and is presented in §5a. The other approach relies on the idea of
material identification in objects of known composition. It is an extension of [35] and is presented
in §5b.

(a) Variable bases for parameter spaces
Up to this point, basis functions b(x) for the parameters with value 1 in one element and 0 in
all others were used. This is an intuitive approach when using finite elements since parameters
are commonly stored element-wise. However, this is not necessarily the best approach. Usually,
the solver for the physical problem and the solver for the inverse problem have different
demands on the spatial discretization. If the gradient of the objective function is calculated
using finite differences, one favours to keep the number of model parameters to a minimum,
i.e. use large elements, since every additional parameter requires an additional evaluation of
the forward problem thereby increasing computational expenses. On the other hand, element-
wise parameter discretizations in combination with a physical solver are restricted to certain
accuracy criteria implying the usage of small discretization elements and hence a high number
of model parameters. Also, inverse problems commonly suffer from ill-conditioning. This can
be counteracted by basis functions that are tailored to the respective inverse problem, e.g. by
incorporating prior knowledge concerning the parameter distribution properties.

In this section, a new type of parameter basis consisting of Patched Basis Functions
(PBF) is introduced. Biological bodies as well as engineering components consist of different
tissue/material types with distinct differences in their properties. Within one tissue type, slight
variations of the material properties are present, while discontinuities may appear from one type
to the other. Also, one tissue type is spatially connected, i.e. clustered and generally not scattered.
The proposed basis imitates these features by clustering several neighbouring elements to a patch.
Patches are built from an element-wise quantity by collecting connected elements of similar
value. The patch summarizes all element-wise basis functions to one patched basis function. After
setting up all patches, one does no longer have nele but npatch basis functions that are 1 inside the
respective patch and 0 outside the patch. Thereby, implicit regularization is introduced, while
full flexibility is maintained, because the patches can be rebuilt in every iteration. Additionally,
the approach allows to transport information of a body’s composition from the most sensitive
parameter to less sensitive parameters by creating PBFs on the most sensitive parameter and
reusing the basis for the others. Thus the ill-conditioning is strongly improved.

In the following, the symbol � is used as a placeholder for parameter element values, e.g.
exemplary for the absorption coefficient � = μa, such that the parameter field is described by the
product of basis functions and parameter values � (x) = be(x)� as in equation (3.2). An element-
wise parameter gradient is denoted by ge with ge = dJ/d� , e.g. exemplary for the absorption
coefficient ge = dJ/dμa.

The starting point to build patches is an element-wise quantity qe, either an element-wise
gradient qe = ge or element-wise parameter values qe = � . In the first iteration, the initial
parameters are commonly assumed spatially constant, which is why they cannot be used to set



10

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20180369

...................................................

0.2
0 –4 × 10–5

–3 × 10–5

–9 × 10–5

–6 × 10–5

–8 × 10–5

–0.4

(1
 m

m
–1

)

(m
m

)

–0.8

(a) (b)

Figure 5. Two exemplary element-wise gradients and their patched counterparts. (a) Gradient 1 (absorption coefficient) and
(b) gradient 2 (diffusion coefficient). (Online version in colour.)

up patches. The gradient, however, already contains information of the measurements in the first
iteration. For all following iterations, it depends on the parameter properties and the inverse
problem itself, which quantity is more beneficial (in §5a(i), several possibilities to choose qe and
results are presented). The procedure is as follows:

— The range of the quantity is calculated as r = | max qe − min qe| and a subrange is defined
according to rsub = αr. The parameter α must be in the interval (0, 1) and is reasonably
chosen between [0.1, 0.9] depending on the problem set-up.

— The element with the maximum value of the quantity qe is identified and the element ID
echeck as well as the gradient value gcheck are stored. To this element, the patch ID PID = 1
is assigned.

— It is checked if the neighbours en of element echeck should belong to the same patch. The
criterion is that their value qen of the quantity qe is in the range of [qecheck − rsub, qecheck ]. The
patch ID PID = 1 is set and their corresponding neighbours are checked next, and so on.

— After that, the largest unassigned entry in the vector qe defines the element with patch ID
PID = 2 and the recursive check of neighbours and neighbours of neighbours is repeated.

— The overall routine is executed until every element is assigned to a patch.
— The next step is to calculate the average of the gradient values in each patch and to replace

the original value ge by the patch averaged value to eventually get the gradient gp.
— The line search procedure can be entered as in the original algorithm. The calculation of

the transformation ge → gp is performed in every evaluation of the gradient, i.e. in each
iteration a different number of patches and different shapes of patches can be present.

To clarify the purpose of the PBF, figure 5 compares element-wise gradients to patched gradients
for two different examples: in (a) the gradient is transformed to two patches; in (b) the gradient
is transformed to three large patches and seven smaller ones. The algorithm does not require the
number of expected patches as input. The single parameter α controls the allowed differences
within one patch and consequently the size of the patches. In the limit α → 0, the element-wise
parameter discretization is recovered. For α → 1, all elements are clustered into one patch.

The described approach is favourable for parameter gradients that directly reproduce
inclusion shapes like the absorption gradient in figure 2. For the other parameters, we additionally
propose an advanced approach, which is not only suited for optoacoustics but also for other image
reconstruction schemes or inverse problems involving more than one parameter with different
sensitivities. The approach makes use of the fact that the absorption coefficient has the highest
sensitivity in optoacoustic imaging. In a set-up phase, the absorption coefficient is optimized in
nsetup,iter iterations with patches built according to its own gradient. After the set-up phase, the
other parameters are optimized as well but they do not build patches according to their own
gradients but according to the absorption coefficient distribution. Doing so, the PBF method
allows to transport information via the basis from the most sensitive parameter field to the others.
Several other types of PBF in the different parameters fields are possible and the most relevant
ones are examined in the following section.
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(i) Numerical study of patched basis functions

On the example from §4, we assess the convergence and solution quality for different parameter
basis functions. In order to put the results of this examination into perspective, we also compare
with the standard approach of element-wise parameters and also with two approaches using
global basis functions:

— element-wise: element-wise basis functions
— PBF self: all parameters build patches according to their own gradient (qμa,c,ρ

e = dJ/d� )
— PBF abs grad: the absorption coefficient builds patches according to its own gradient, the

other parameters use these patches (qμa,c,ρ
e = dJ/dμa)

— PBF abs vals: the absorption coefficient builds patches according to its own gradient
(qμa

e = dJ/dμa), the other parameters build patches according to the absorption coefficient
(qc,ρ

e = μa)
— PBF mixed: the absorption coefficient does not build patches, speed of sound and mass

density build patches according to the absorption coefficient (qc,ρ
e = μa)

— harmonic: global harmonic functions
— Lagrange: global Lagrange polynomials

For the Lagrange basis, the ith Lagrange polynomial of degree k is denoted lki and is mapped to
the global size L of the underlying geometry. For the given two-dimensional set-up the Lagrange
basis is of size (k + 1)2 with equidistant points

bl(x) = [lk1(x1)lk1(x2) . . . lkk+1(x1)lkk+1(x2)].

For the harmonic basis, the following basis functions are used

sin
(nπx1

L

)
· sin

(mπx2

L

)

cos
(nπx1

L

)
· sin

(mπx2

L

)

cos
(nπx1

L

)
· cos

(mπx2

L

)

with n, m = 0, 1, 2, . . . , k − 1, such that the basis is of size 3k2 for a given k.
Measurement signals are generated with the numerical model described in §4. Reconstruction

is performed with respect to three parameters, absorption coefficient, speed of sound and
mass density, using the described procedure. The parameter α is set to α = 2/3 and a
maximum of 20 iterations are performed. In the scenarios ‘PBF abs vals’ and ‘PBF mixed’, the
absorption coefficient is optimized 10 times before the standard optimization iterations, to have
a good parameter set-up for the formation of the basis according to the absorption coefficient
distribution. For the ‘harmonic’ and ‘Lagrange’ basis, k is set to niter + 2. Different sizes for these
bases have been tested, but the chosen results present the best solution. Since the results for
the fine discretization do not differ significantly, only the results for the coarse discretization are
presented here.

Figure 6 shows the development of the parameter error and the objective function over the
iteration count, respectively. In every outer iteration of the optimizer, three optimization steps
with respect to the three parameter fields are performed and for each step, the iteration counter is
incremented.

The red lines ‘element-wise’ are similar to those shown in figure 3. Figure 7 shows the final
speed of sound distribution for the element-wise and ‘PBF mixed’ reconstruction.

(ii) Discussion of numerical results

All performed reconstructions (except for the one with the Lagrange basis) were successful in
the sense of convergence of the objective function (figure 6). The set-ups reduced the objective
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Figure 7. Speed of sound reconstruction on coarse discretization for different patch types after 20 iterations. (a) Element-wise
parameter discretization and (b) ‘PBF mixed’ parameter discretization. (Online version in colour.)

function by 16–120 times. The element-wise parameter optimization gave the most significant
decrease of the objective function and in practice, this is the only available measure.

When comparing the three PBF set-ups ‘PBF self’, ‘PBF abs grad’ and ‘PBF abs vals’ that all
build patches according to the absorption coefficient gradient, a distinct difference in convergence
is observed. This is due to the difference in the interaction of the parameters. Even the influence
of the less sensitive parameters towards the most sensitive parameter is not negligible.

The two acoustical material parameters show slightly different behaviour: sensitivity is higher
for the speed of sound than for the mass density which changes the signal speed in addition to
the reflections also present for mass density. That is why the error in the mass density converges
not as well as the error in the speed of sound in the standard set-up. For both, the PBF approach
improves the final result: the final errors in the speed of sound and mass density distribution
decrease to 43 and 24%, respectively. ‘PBF abs vals’ and ‘PBF mixed’ seem most suitable for the
acoustical parameters. As can be seen from figure 7 displaying the speed of sound reconstruction
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for element-wise and ‘PBF mixed’ parameter discretization, the patch approach improves the
reconstruction quality significantly. The inclusion is more pronounced and fewer artefacts appear
in the remaining domain.

The Lagrange basis performed poorly in all metrics, while the harmonic basis performed good
in terms of the objective function value. The objective function decreased most for the ‘element-
wise’ optimization but note that the axis of ordinates in figure 6 is logarithmic and the final
differences in the objective function are small.

Figure 6 clearly shows how the objective function stagnates after some iterations in the initial
set-up phase of ‘PBF abs vals’ and ‘PBF mixed’. After the set-up phase, the additional optimization
with respect to the acoustical parameters enables a fast decrease in the objective function value.
‘PBF mixed’ outperforms ‘PBF abs vals’ in all four measures.

(b) Material identification
In [35], a material identification procedure for optoacoustic image reconstruction was presented.
It relies on the definition of expected materials in a material catalogue. Generally, a reconstruction
is run on objects of known composition and the utilization of the user’s prior knowledge is added
to the reconstruction algorithm in terms of a material catalogue. This is beneficial to counter the
ill-conditioning of the imaging problem. A drawback of [35] however was that it required the
reconstruction of the absorption as well as the diffusion coefficient to find a unique mapping
between optical values and listed materials in case similar absorption coefficients are catalogued.
The diffusion coefficient however has a very low sensitivity and its reconstruction is error prone.
Here, we propose a new material identification procedure that does not require the diffusion
coefficient but instead uses the acoustical gradients to identify materials correctly. The absorption
coefficient is reconstructed with the iterative reconstruction procedure on a pixel-based or
PBF discretization and the available acoustical gradients are then used for the identification
process.

The detailed procedure for material identification is displayed in algorithm 1. For input, the
user has to specify a list of expected materials containing values of absorption coefficient, speed
of sound and mass density. Only the absorption coefficient is optimized in a line search procedure
and the material identification is carried out in every line search iteration. First, step lengths αc, αρ

for c, ρ are calculated as the smallest step for which c − αc∇c covers the range [min c, max c] from
the materials in the catalogue and analogously for the mass density. Then, materials are identified
that match the current element absorption coefficient. If no material is applicable, the default
values for soft tissue are set. If exactly one material is applicable, the corresponding acoustical
values are set. If several materials are applicable, the material is chosen for which the acoustic
gradients indicate the correct trend, i.e. decrease or increase. If the acoustic gradients cannot
identify any material or cannot identify one material uniquely, the one with the smallest distance
to the values of the range covering distribution cran = c − αc∇c and ρran = ρ − αρ∇ρ is set.

(i) Numerical study of material identification

We again re-use the example from §4 to analyse the gains stemming from the material
identification approach. Two different reconstructions are carried out on the measurement
data with different material catalogues. In the most simple set-up, the catalogue matches the
expected materials Mo and Mi as in the definitions (4.1) and (4.2). In the second set-up, a third
material appears in the catalogue that is not present in the numerical phantom used for the
measurement data:

Martificial = (0.11 mm−1, 0.5 mm, 1.0 mm µs−1, 1.0 mg mm−3).

Figure 8 compares the absorption coefficient and speed of sound reconstructions after 10 iterations
for the standard approach without patches and without material identification to the results
when material identification is applied with the matching material catalogue and the catalogue
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Algorithm 1 Material identification.

determine step length for c, ρ
for all elements e do

find all materials Mj that contain μa

if no material found then
set default acoustical materials

else if one material is found then
set acoustical materials to the found material

else
check if the gradient directions indicate materials
if no material direction applies then

determine material with smallest distance and set c, ρ
else if one material supplies indicated direction then

set c, ρ
else

determine material with smallest distance and set c, ρ
end if

end if
end for
update speed of sound and density distribution

with one artificial material. The standard reconstruction yields a good absorption coefficient
reconstruction but the speed of sound distribution gives too low values in the inclusion. The
material identification results in improved images. For the matching material catalogue, the speed
of sound is recovered perfectly which in turn causes an improved absorption coefficient. For the
material catalogue with an artificial material, the inclusion appears smaller in the speed of sound
image and four pixels are identified with the wrong material. In terms of the image quality,
the reconstruction is still significantly better than the standard reconstruction. In terms of the
relative objective function, the standard approach yields a reduction to 1.5% after 10 iterations
while the material identification yields 1.9 and 8.4% for material catalogue of two and three
materials, respectively. The results using the material identification are obtained in a third of the
computational time, because only one field is optimized with a line search procedure.

6. Mouse brain
To demonstrate the applicability of the proposed method, an in vivo image of a mouse brain
was reconstructed by imaging a female Hsd:Athymic Nude-Foxn1nu/nu mouse. The animal was
anesthetized with a mixture of 1.8% isoflurane in 100% O2 at 0.8 ml min−1 flow rate and placed
in supine position. The measurement data are generated with the multispectral optoacoustic
tomograph MSOT inVision256-TF (iThera Medical GmbH, München, Germany) with a transducer
ring of 80 mm diameter covering 270◦ with 256 array elements. The centre frequency of the
transducers is 5 MHz and the signal is band-pass filtered between 100 kHz and 6 MHz. The
acoustical signal is recorded with a sampling frequency of 40 MHz corresponding to a time
step size of �t = 0.025 µs. To decrease the influence of noise, the final signal is an average of
20 measurements. The light source is provided by a laser system with adjustable wavelength. Ten
fibres provide the light from different directions to obtain a uniform illumination. A wavelength
of 700 nm is chosen.

For the reconstruction, a computational model is built by a circular computational domain of
80 mm diameter meshed with 2 × 106 quadrilateral elements with quadratic shape functions. The
number of elements in the reconstruction area (a circle of diameter 16 mm) is 67 960, which is the
number of pixels in the image. Hence, the pixel size is about 0.06 mm. The maximal number of
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Figure 8. Comparison of reconstructed images with material identification (b),(c),(e) and (f ) compared to the standard
approach in terms of the absorption coefficient (a–c) and the speed of sound (d–f ). (a) Standard reconstruction,μa, (b) two
materials in catalogue,μa, (c) three materials in catalogue,μa, (d) standard reconstruction, c, (e) two materials in catalogue,
c and (f ) three materials in catalogue, c. (Online version in colour.)

iterations is set to 3. The numerical time step size is �t = 5 × 10−4 µs. In contrast to the numerical
results presented in the previous sections, the impulse response of the detectors was incorporated
into the reconstruction algorithm in order to represent the imaging procedure as realistically as
possible. No regularization like Tikhonov or total variation was applied. For the simulations with
material identification, a material catalogue consisting of water, general soft tissue, skin and bone
was supplied.

Figure 9 shows a cryoslice through the mouse brain for reference, identifying the basic
anatomic features, and the reconstruction of the absorbed energy map is shown using model-
based inversion as described in [6]. Figure 10 shows the reconstructions of the absorption
coefficient, the speed of sound and the mass density for reconstructions with element-wise
parameter discretization, ‘PBF mixed’ with α = 0.1, and material identification. Since this is the
first time a general reconstruction of acoustical parameters in an optoacoustic tomograph from an
in vivo experiment are presented, not only the PBF but also the element-wise reconstructions are
presented. In figure 9, a plot along the indicated lines compares the result from the model-based
inversion and the element-wise reconstruction with the new approach and detected acoustical
heterogeneities. Note that all results are marked with physical units but the measurement data
is in arbitrary units and the measurement data is calibrated in the process of reconstruction. The
mass density contributes only over relative differences and not over its absolute value, which
renders the scaling dependent on initial values.

The new method successfully highlights all the features as in the model-based image like
the cortex or the temporal artery. More oscillations and artefacts at the exterior of the mouse
brain occur due to the wave propagation over long distances with numerical errors and because
no regularization is applied. For ‘PBF mixed’, the acoustical images are segmented during
optimization. The number of spatial variations is decreased while the contrast is increased.
The element-wise mass density and speed of sound reconstructions show several fluctuations
of high amplitude. The fluctuations are highest in the regions of the skull. In the centre of
the interior, low values are found. The ‘PBF mixed’ approach alters the mass density image
significantly compared to the element-wise reconstruction: the basic features of the absorption
coefficient distribution are retrieved, making it more representative for the tissue types. The
material identification identifies 0.3% of the image pixels as bone which are located at the actual
position of the skull. However, not the entire skull is identified correctly. Note that the scales in
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Figure 10. Mouse brain imaging results: absorption coefficient, speed of sound and mass density from top to bottom and
element-wise, ‘PBF mixed’ and material identification results from left to right.

figure 10 do not show the maximal value: for the material identification approach, a maximal
value of c = 4.1 mm µs−1 for the sound speed is reached, while the other reconstructions only
show lower maximal values (c = 3.0 mm µs−1 and c = 1.8 mm µs−1 for element-wise and ‘PBF
mixed’, respectively). The comparison between the model-based inversion and the element-wise
reconstruction in figure 9 shows that the new approach displays distinct layers along the skull,
as expected. The peaks are located where the speed of sound and mass density reconstructions
reveal acoustical heterogeneities. The model-based inversion fails to reconstruct these features.
The objective function after three iterations was lowest for the ‘element-wise’ set-up, just as for
the numerical example in the preceding sections.
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7. Conclusion
We have presented a new reconstruction method for the optoacoustic imaging inverse
problem. It relies on the diffusion approximation for the optical transport and the acoustic
wave equation for sound propagation. Discretization is carried out by continuous finite
elements and a hybridizable discontinuous Galerkin method, respectively. Optimization is
performed with an iterative gradient-based scheme with the gradient resulting from the adjoint
equations.

The presented method allows not only for the reconstruction of optical parameters, namely
absorption coefficient and diffusion coefficient but also for the acoustical parameters speed of
sound and mass density. The gradient calculation for the acoustical parameters is slightly more
elaborate than for the optical parameters since the combination of forward and adjoint quantities
in each time step is required for their evaluation. This is realized by a checkpointing approach
and a sequential repetition of forward evaluations during the adjoint run. Numerical results
demonstrate the convergence of the proposed method.

Optoacoustic imaging is inherently ill-conditioned, especially in relevant applications of
e.g. small animal imaging. In order to limit the ill-conditioning introduced by the additional
reconstruction parameters, we have proposed to adapt the bases of the parameter spaces during
the iterative procedure using patches. Doing so, the parameter space is reduced in each iteration
(which improves conditioning) but the overall scheme retains the full flexibility because the
bases potentially change in each iteration. We have presented several approaches to build the
PBFs and compared their performance to the traditional pixel-based or element-wise approach
using a numerical example. Also, global Lagrange polynomials as well as harmonic functions
have been evaluated as basis functions for the parameter space but their performance turned
out unsatisfactory. The PBFs are beneficial considering the error in the parameter fields. In
the objective function value, the convergence is slightly slower which is due to the fact that
the adaption of the basis decelerates the optimization from the point of view of pixels, which
are located at the boundary of patches. Especially, beneficial for optoacoustic imaging are the
approaches ‘PBF abs vals’ and ‘PBF mixed’ because they transport the information of inclusions
from the most sensitive parameter field (absorption coefficient) to the less sensitive fields. The
approach of PBF can also be applied to other inverse problems, including inverse problems with
only one parameter field (as described for ‘PBF self’) or inverse problems with several parameter
fields. Owing to its simplicity, it is easily introduced into existing reconstruction codes and its
improvement of the conditioning allows to incorporate more unknowns. Also, PBF inherently
provides regularization, reducing or even avoiding the need for suited regularization schemes
and weights.

As a second possibility to render the optoacoustic imaging problem less ill-conditioned, we
have proposed a material identification where only the absorption coefficient is reconstructed
and the acoustical parameters are updated based on the acoustic gradients and a user-
specified catalogue of expected materials. Thereby, the computational effort is lower and the
ill-conditioning amounts to that of the pure absorption coefficient reconstruction. We have
reported significant gains in numerical experiments in terms of computational time as well as
image quality. The material identification can easily be applied to other inverse problems where
the tissues of an object are known and one is interested in several parameter fields.

We have successfully applied the presented reconstruction algorithm to measurement data
from an in vivo mouse brain experiment. Several anatomical features were clearly identified.
Oscillations occur in the absorption coefficient reconstruction but additional features along
the skull were revealed. The material identification approach helps to identify bone structures
surrounding the brain. The robustness of the material identification in the presence of slight
material variations within one tissue type, as apparent in an experimental set-up, are subject to
future research.

Future work addresses a performance comparison between PBF and level-set based
optimizations. Applicability and quantitative image quality improvements due to the
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reconstruction of acoustical heterogeneities will be studied extensively based on phantoms and
for typical optoacoustic imaging scenarios.
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