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A test metric for assessing single-cell RNA-seq

batch correction
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Single-cell transcriptomics is a versatile tool for exploring heterogeneous cell populations, but as with all genomics experi-
ments, batch effects can hamper data integration and interpretation. The success of batch-effect correction is often evalu-
ated by visual inspection of low-dimensional embeddings, which are inherently imprecise. Here we present a user-friendly,
robust and sensitive k-nearest-neighbor batch-effect test (kBET; https://github.com/theislab/kBET) for quantification of
batch effects. We used kBET to assess commonly used batch-regression and normalization approaches, and to quantify the
extent to which they remove batch effects while preserving biological variability. We also demonstrate the application of kBET
to data from peripheral blood mononuclear cells (PBMCs) from healthy donors to distinguish cell-type-specific inter-individual
variability from changes in relative proportions of cell populations. This has important implications for future data-integration

efforts, central to projects such as the Human Cell Atlas.

cal variation that emerges when samples are handled in dis-

tinct batches. This situation usually occurs if one repeats an
experiment with biologically equivalent cells, such as from different
patients with the same disease, or technically equivalent cells, such
as identically cultured cells sequenced on subsequent days (Fig. 1a).
Biological and technical variation both contribute substantially to
total variability in single-cell RNA-sequencing (scRNA-seq) data.
In an experiment with a balanced design, biological and technical
variation can be readily distinguished (Fig. 1b). In contrast, a con-
founded design groups cells of the same condition into the same
sequencing runs, and thus separates biologically distinct cells into
separate handling and sequencing experiments. This confounds
biological and technical variability. If a balanced experimental
design is not possible, for example, because of the chip design, an
alternative strategy is to generate several technical replicates per
biological condition'’ :

Accounting for technical factors in an scRNA-seq dataset is a
key step in the preprocessing workflow after cell and gene filtering’
and affects the selection of potentially interesting genes. The choice
of ‘interesting’ genes removes noise from the data but also defines
the potential outcome of the data analysis. Furthermore, differ-
ences between replicates in scRNA-seq data can arise from different
sequencing depths: fewer genes are detected at shallow sequencing
depths®™.

Various methods have been proposed to remove or reduce cell-
specific bias and batch effects in single-cell data while preserving
biological variability, ranging from linear regression models such
as ComBat® to nonlinear models such as Seurat’s canonical corre-
lation analysis (CCA)” and projection of mutual nearest neighbors
(MNNs)®. In addition, differential test frameworks like MAST?,
DESeq2’ and limma'® include the batch effect as a covariate in the
model design (Supplementary Table 1 provides an overview of

| he term “batch effect” is commonly used to describe techni-

single-cell normalization and batch-correction methods). We stress
that differential testing with batch correction and the creation of a
batch-corrected data matrix for downstream analyses such as clus-
tering are distinct tasks in scRNA-seq data analysis; here we focus
on the latter.

Given the wide variety of available strategies, we sought to
determine which methods remove batch effects and preserve bio-
logical variation best. Current approaches to detect batch effects
involve exploratory data analysis, that is, visual inspection of low-
dimensional embeddings, such as principal component analysis
(PCA). Data visualization is highly reccommended as a first step and
provides important insight on the distribution of data. However,
the results are subjective and lack a quantitative measure for robust
comparisons, especially if used to evaluate biases across many sam-
ples or methods. Thus, we recommend an additional quantitative
step after exploratory data analysis.

Here we propose kBET as a method to quantify batch effects in
scRNA-seq data. Intuitively, a replicated experiment is well mixed
if a subset of neighboring samples (e.g., single-cell transcriptomic
data points) has the same distribution of batch labels as the full
dataset (Fig. 1c). In contrast, a repetition of the experiment with
some bias is expected to yield a skewed distribution of batch labels
across the dataset (Fig. 1d). kBET uses a y*-based test for random
neighborhoods of fixed size to determine whether they are well
mixed, followed by averaging of the binary test results to return an
overall rejection rate. This result is easy to interpret: low rejection
rates imply well-mixed replicates.

In this study, we applied kBET to the analysis of four mouse
single-cell datasets from studies using microwell-plate-based and
droplet-based methods (100-3,000 cells per batch) and assessed
the performance and accuracy of 11 normalization and 7 batch-
effect regression approaches (Fig. le). Batch correction based on
log(counts + 1), log(counts per million (CPM) + 1) or scran pooling,
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Fig. 1| Batch types and the concept of kBET. Estimating the batch effect in single-cell RNA-seq data. a, Biological and technical replicates have different
origins. Technical replicates are derived from the same biological samples (cell cultures in this case), whereas biological replicates are independent
samples. b, Experimental designs. A balanced design allows one to separate technical and biological sources of variation, whereas a confounded design
mixes the two. ¢,d, The kBET concept. ¢, In a dataset with replicates and no batch effects, the proportions of the batch labels in any neighborhood do not
differ from the global distribution. d, In a replicated dataset with batch effects, data points from respective batches tend to cluster with their ‘peers’, and
batch label proportions differ considerably between arbitrarily chosen neighborhoods. e, Overview of normalization and batch-regression methods, as well

as assessment approaches.

Table 1| Best overall normalization and batch-correction methods

Dataset Klein et al.” Kolodziejczyk et al."* Mouse early

2i a2i LIF kg
Sequencing technique inDrop Smart-seq2 Smart-seq
Normalization log(counts + 1)/scran pooling  log(CPM + 1) scran pooling TMM/log(CPM + 1) log(counts + 1)
Batch correction ComBat ComBat ComBat limma/ComBat ComBat

The ranking of batch-correction strategies is based on kBET, retained HVGs and FPRs for data from Klein
ranking is based on both kBET and silhouette. TMM, trimmed mean of M values.

together with ComBat or limma regression, reduced the batch effect
while preserving biological structure across all datasets (Table 1).
Finally, we explored the potential of kBET to assess the integration
of separate studies, and determined that kBET also allows one to
study inter-individual variability in complex human tissue data.

Results
kBET outperforms other batch-effect detection methods.
We evaluated the performance of kBET on simulated data (500

et al.” and Kolodziejczyk et al.". For mouse early embryonic development data integration, the

samples (‘cells’) with 1,000 ‘genes’ each) for which 1%, 10%
or 20% of mean gene expression was varied in a second batch
(Methods). With appropriate scaling, the expected mean expres-
sion remained unchanged. A second batch with 1% biased genes
overlapped well with the first batch, yielding a low rejection
rate (Fig. 2a). In contrast, a second batch with 20% biased genes
separated from the first batch, so that samples were surrounded
by samples from the same batch, thus yielding a high rejection
rate (Fig. 2b).
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Fig. 2 | kBET is more responsive than other batch tests on simulated data. Simulation results for 1,000 genes and 500 cells. Batch effect is modeled

as a fraction of shifted gene means in the second batch. a,b, PCA plots of log-scaled data for two equally sized batches with 1% (a) and 20% (b) varied
mean gene expression levels (Methods). ¢,d, kBET mean rejection rates depend on neighborhood size for the data in a and b, respectively. The dashed
vertical lines indicate the optimal neighborhood size for batch-effect detection, that is, where the rejection rate is maximal. Shaded areas represent the
95th percentile of n=100 repeated kBET runs. In each run, the number of tested neighborhoods was 10% of the sample size (i.e., 50 cells). The inset

in ¢ shows a box plot of likelihood ratio test (LRT) results and exact test results for =100 runs. Center lines indicate means, lower and upper hinges
correspond to the 25th and 75th percentiles, respectively, whiskers extend to 1.5 times the interquartile range, and individual data points represent outliers.
e, Comparison of kBET to other batch-effect tests on a normalized scale: scaled variance explained by batch (“scaled PC regression”; FDR < 0.05) and
absolute silhouette. We simulated several batch sizes to assess the effect of unequal batch sizes. kBET detected the degree of bias most effectively.

KBET uses a Pearson’s y>-based test for random neighborhoods of
fixed size k and averages the binary test result. Use of the likelihood
ratio test or the exact multinomial test as the underlying hypothesis
test (Methods, Supplementary Note 1 and ref. ') yielded very simi-
lar results (Fig. 2¢ (inset) and Supplementary Fig. 1). The neighbor-
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hood size k is an important factor for the hypothesis test in KBET. For
smaller values of k, the rejection rate is lower in general''. As soon as
the neighborhood size k for each test became larger than the size of a
single batch, we observed a decrease in the rejection rate. This was due
to the decreasing number of possible choices of batch labels; the local’
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batch-label distribution became more similar to the global batch-label
distribution (Fig. 2¢,d). For neighborhood sizes somewhere between
exceedingly small and large, the average rejection rate became maxi-
mal. The maximum value indicated the presence of a batch effect
(Supplementary Note 1), which we used for quantification.

We investigated kKBET’s ability to detect batch effects with alter-
native measures: the absolute average silhouette width (‘silhouette’)
and the scaled variance of the top 50 principal components (PCs)
that correlate significantly with the batch effect (false discovery
rate (FDR) <0.05, ‘scaled PC regression’; Methods, Supplementary
Note 2). All three measures operate on a normalized scale (0, no
effect; 1, strong effect). As test cases, we varied an increasing frac-
tion of gene expression means (Fig. 2e) and simulated different
gene dropouts or added noise to the means (Supplementary Note 3
and Supplementary Figs. 2 and 3). Further, we simulated different
batch sizes ranging from equal size (1:1) to substantial size imbal-
ance (1:19). kBET’s rejection rate increased most in response to the
degree of bias compared with the silhouette: silhouettes showed
little difference between 10% and 20% varied genes, where kKBET
clearly discriminated the effect. Scaled PC regression increased with
the degree of batch effect, but also returned a significant result when
only 1% of genes were varied. kBET performed well when only a few
data points were biased by batch, as it still revealed a substantial bias
in size-imbalanced batches. Overall, kBET was the most sensitive
and robust measure of batch effects in this comparison.

KkBET accurately captures batch effects. Batch effects originate
from different sources, as is evident in comparisons of technical
replicates. We investigated the mouse embryonic stem cell (mESC)
LIF cultures of Klein et al."?, which were generated via the inDrop
protocol. The authors provided two technical replicates in sam-
ples of the day 0 culture (Fig. 3a), which offered an ideal case for
batch-correction assessment. Prior to batch correction, we visu-
alized the data, and observed a clear inter-batch difference as the
shift of the technical replicates in the top two PCs (Fig. 3b). We
compared all combinations of normalization and batch-correction
strategies, and here we illustrate major performance differences
in f-scLVM-corrected log(CPM + 1) values (Fig. 3c) and ComBat-
corrected log(counts+ 1) values (Fig. 3d) in terms of the top two
PCs. However, in addition to the top 2 PCs, we found that the next
13 PCs also had a significant correlation with the batch covariate
in the f-scLVM case (FDR <0.05). Thus, the batch effect was not
corrected but became unnoticeable with visualization. For ComBat-
corrected log(counts + 1) values, none of the PCs correlated signifi-
cantly with the batch covariate. KBET revealed that ComBat applied
to log(counts+1) or scran normalization removed batch effects
best (y-axis in Fig. 3e; “acceptance rate” is the reverted ‘rejection
rate’), in contrast to the incomplete batch-correction performance
of f-scLVM. The PCA plot shows only the batch effect of the first
two PCs, whereas kBET effectively quantified subtler batch effects.

Distinguishing batch effects from biological variability.
Preservation of biological heterogeneity is the second challenge
of batch correction; without it the optimal batch correction would
remove all variance, setting each sample to the same constant. We
assessed biologically relevant heterogeneity by evaluating highly
variable genes (HVGs)" before and after correction. Before correc-
tion, we considered only HVGs present in all replicates separately;
this is the conservative, batch-free set of HVGs that we compared to
the set of HVGs after batch correction (HVG,,,,). In total, we evalu-
ated the fraction of retained HVGs after correction (Methods and
Fig. 3e-g).

To complement the concept of retained HVGs, batch correction
should not introduce additional variability in the data. Thus, the
difference between sets of HVGs before and after correction is a
proxy for false discoveries, which we used to compute a false posi-

tive rate (FPR; Methods). Here the two technical replicates shared
1,863 batch-free HVGs (HVG,, ) and more than 700 HVGs
resided in either of the replicates (Fig. 3f,g).

After correction by f-scLVM, we retained half of HVG,, . gee
and discovered more than 5,000 HVGs in the whole dataset (Fig. 3f
and Supplementary Fig. 4a,b), which explains f-scLVM’s minimal
KkBET acceptance rate (Fig. 3e). When we computed the FPR on the
basis of log(CPM + 1) normalized data, we found an FPR of 27%
(Supplementary Fig. 4c). We obtained the best result for the com-
bination of log(counts+1) and ComBat (Fig. 3d): all HVGy,, ree
were kept after batch correction, and only 295 HVGs were caused
by batch correction (8% FPR; Fig. 3g).

In conclusion, batch correction may confound observations
massively and mask the biological signal completely. The cur-
rent ‘best’ batch-correction strategies still leave part of the batch
effect in the data (Fig. 3e-g). This explains the increase in the total
amount of HVGs after correction (Supplementary Fig. 4b) and in
the FPR (Supplementary Fig. 4c). Both silhouette and PC regression
showed little discrimination between most correction strategies
(Supplementary Fig. 4d,e), whereas kBET resolved them in detail
(Fig. 3e and Supplementary Fig. 4d,e).

KBET guides best practices for plate-based scRNA-seq. Next, we
examined mESCs cultured in three different media (2i, a2i and LIF)"
and sequenced with the Smart-seq2/C1 protocol (Supplementary
Fig. 5a). These datasets are rather similar in terms of heterogene-
ity, but the biological origin of the heterogeneity is different in each
culture condition (compare with ref. '*). We obtained well-mixed
data for all datasets with log(CPM+ 1) normalization and batch
correction with ComBat (Supplementary Fig. 5b,c). Nevertheless,
we observed performance differences across culture conditions that
were independent of the number of batches (Supplementary Note 4).

Beyond replicates: dataset integration across studies. With the
explosion of scRNA-seq data in recent years", there is a need for a
comprehensive strategy of data integration. It is more challenging to
correct batch effects between studies than it is to do so within the
same study, especially if cell types vary between studies. Here we
benchmarked batch-correction performance on eight Smart-seq-
based datasets'®* that profile mouse development from oocyte to
blastocyst (Fig. 4a and Methods).

We remapped the reads to the same reference transcriptome
with Salmon™ to reduce quantification biases*. Notably, even dif-
ferent versions of Salmon resulted in different degrees of batch
effect (Supplementary Note 5). Batch effects before correction
were quite obvious even in PCA (Fig. 4b,c): data from Biase et al.'®
and Deng et al.”! deviated substantially from the other data in our
analysis (average acceptance rate of 16%). Consequently, cells are
more likely to cluster by study than by embryonic stage. Also, clus-
tering by study is partly explained by library size (Supplementary
Fig. 6). Nevertheless, we achieved acceptable batch-effect correc-
tion. We obtained the best results with ComBat on log(counts + 1)
values (Fig. 4d,e), with an average acceptance rate of 62%
(Supplementary Table 2).

A meaningful integration maintains the correct trajectory of
developmental stages, while the same cell types from different stud-
ies mingle. Thus, we assessed the batch effect of each developmental
stage on the basis of averaged kBET results (a high acceptance rate
implied good mixing) and monitored the developmental progres-
sion by silhouette (higher silhouette values reflected good separa-
tion of stages) (Fig. 4f). Before correction, the developmental stages
separated weakly (silhouette of 0.08 for log(counts+ 1)), and cor-
rection with linear methods such as limma and ComBat yielded
distinct clustering by stage. Only ComBat achieved good mixing of
study batches. Notably, PC1 corresponded to the real developmen-
tal time of the cells.
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Fig. 3 | ComBat provides the best correction on mESC inDrop technical replicates. a, The inDrop protocol provides a large unique-molecular-identifier-
count dataset with two technical replicates. b-d, PCA plots showing log-normalized counts (b), a biology-removing batch removal (f-scLVM on log-
transformed CPM; ¢) and a biology-preserving batch removal (ComBat on log-transformed counts; d). Density plots on the axes show the frequency of
replicates along the PCs. On the basis of visual inspection, the approaches in ¢ and d appear to work equally well. e, Percentage of retained HVGs versus
the mean acceptance rate (1 - rejection rate, from n=100 kBET runs) for all combinations of normalizations and batch-regression approaches. Seurat's
CCA alignment batch-corrects data only in a latent space generated by manifold learning, and thus we could not compute HVGs for it. f,g, HVGs per
replicate before correction and for the whole dataset after batch correction. HVGs in each replicate are computed on log(counts + 1) values. f-scLVM (f)
retained 932 HVGs but had a high false positive rate, whereas ComBat (g) captured all HVGs with a low false positive rate.

Although Seurat’s CCA alignment was among the top-per-
forming methods and yielded the second best kBET result for
log(CPM + 1) data, a silhouette of approximately 0 indicated over-
correction. MNN vyielded a low acceptance rate and improved
clustering by cell types only for counts, possibly because of low
sample numbers.

This example illustrates how batch-effect correction tools play a
key role in data integration and provide effective separation of the
biological signal from complex technical variations. For future data-
integration efforts with more complex data structures and less prior
knowledge about cell types, the community needs more sophisti-
cated batch-correction methods that model nested batch structures
and several batch variables.

KBET detects inter-individual variability in PBMC data. To esti-
mate pure biological variability with kBET, we studied a pooled
dataset of human PBMCs from eight unrelated individuals for which
donor identity was reconstructed for each cell with demuxlet®.
Pooling removes technical variation between individuals. Clustering
and t-distributed stochastic neighbor embedding visualization
revealed several cell types (Supplementary Fig. 7a) and significant
variation in cell-type frequency between individuals (Supplementary
Fig. 7b). Note that all samples were distributed across three inde-
pendent experiments (batch A, individuals 1-4; batch B, individuals
5-8; and batch C, all individuals), and cell type frequencies were very
similar between batches, thus excluding sampling bias.

We applied kBET to estimate inter-individual variability in all
these experimental batches. KBET detected considerable variation
within a cell type even after accounting for frequency shifts (Fig. 4g
and Supplementary Fig. 7c). We found acceptance rates of ~0.75-

NATURE METHODS | www.nature.com/naturemethods

0.9 for each cell type, versus 0.62-0.72 for complete data. Thus vari-
ation in aggregates such as bulk RNA-seq data is driven not only by
single-cell expression differences, but also by variation in cell popu-
lation sizes. kBET offers a sensitive and unbiased way to estimate
inter-individual variability among cells of the same type.

Discussion

Batch effects in scRNA-seq data can have severe effects on down-
stream analysis if not properly accounted for. Moreover, they have a
substantial random noise component that stems mostly from tech-
nical experimental factors. kBET introduces a nonlinear measure
for scRNA-seq batch effects, which we used to evaluate batch-cor-
rection methods. In the simplest possible case—technical replicates
that were otherwise homogeneous—ComBat corrected the data
and preserved the underlying biological properties (Supplementary
Table 2). On biological replicates with greater batch-to-batch vari-
ability, such as two independent cultures of the same cell type,
ComBat again performed well, because of its regularization for low
sample numbers. A study in which ComBat was used on complex
tissue data reported similar results”’.

Many methods such as ComBat and RUV* were designed to
correct bulk expression data but can be applied to scRNA-seq data.
Although scRNA-seq data reflect cell-to-cell variability, they are much
sparser because of stochastic gene expression and dropouts, which
is not accounted for by batch-effect correction approaches for bulk
data. A mere mean shift and variance stabilization would not take into
account a batch-to-batch difference that solely addressed dropout rates
(Supplementary Note 6). Also, dropout and cellular detection rates*’
are closely correlated to library size (Supplementary Fig. 8 and ref. »).
The single-cell-specific approaches model stochastic expression and
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batch by downsampling abundant cell types and the complete dataset. kBET yielded lower acceptance rates when we used the complete dataset (and
neglected variation in cell-type frequencies), whereas acceptance rates were higher for the respective cell types. Center lines indicate means, lower and
upper hinges correspond to the 25th and 75th percentiles, respectively, whiskers extend to 1.5 times the interquartile range, and individual data points

B represent outliers. TPM, transcripts per million.

dropout explicitly’® or implicitly’’. As zeros in gene expression com-
prise both biological and technical variation, several approaches aim
to impute dropout to retain biological information*-*°.

For complex tissue data, CCA” and MNN?® provide generalized,
nonlinear modeling approaches to align similar populations. In
contrast to ComBat, both methods are independent of variations
in population density”®. Although CCA and MNN did not outper-
form linear methods in the small-scale examples we tested, they
have potential in future large-scale data integration. Moreover, with
thousands of measured cells per dataset, optimal memory usage and
efficient implementation (Supplementary Note 7 and ref. *°) will be
as important as accurate correction for confounders.

kBET is a powerful tool for comparing batch-effect correction
schemes, as it allows the study of high-dimensional data without
prior assumptions regarding statistical properties. Analysis tasks
such as clustering into cell types and ordering of cells by pseudo-
time” rely on batch-effect-corrected data. kBET’s assumption of
equivalent and interchangeable batches is simple, but the transla-
tion into balanced experimental design is challenging. For complex
experimental setups such as time series, collecting and sequenc-
ing all cells at all time points together is the only way to prevent

confounding with both technical and biological variation between
samples. The demuxlet* approach allows inter-individual variabil-
ity to be assessed quantitatively without technical confounding, and
KkBET’s heterogeneity statistics are a useful measure for biological
variability across individuals.

In the worst case, batch-effect correction may fail completely if
data lack a minimum level of quality. By quantifying batch effects
with kBET before and after correction, we were able to detect poor-
quality correction and poor-quality data. On the basis of the KBET
result showing that overall variation is driven by differences in clus-
ter proportions, we would prefer to sequence more cells from fewer
donors for complex samples (in contrast to prior statements®). We
expect this discussion to have serious repercussions for decisions
regarding experimental design in emerging single-cell expression
atlases such as the Human Cell Atlas® and the Mouse Cell Atlas™.

Online content

Any methods, additional references, Nature Research reporting
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
§41592-018-0254-1.
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Methods

KBET: k-nearest-neighbor batch estimation. Let the full gene expression dataset
D={x,,...,x,}, where x, € R® and X € R"¥is the corresponding gene expression
data matrix with n samples and g genes. In an scRNA-seq dataset X, each sample
bas meta-information such as cell type, FACS gate, and the batch i that it was
measured in.

The batch variable i has [ categories such that n, denotes the number of samples
in batch i, fl =n,/n is the global fraction of samples in batfh handv=(n,...,n)

is the batch configuration of all samples. Also, we define f, as the local fraction of
samples in batch i in some subset NC D. In particular, we consider subsets of k
nearest neighbors.

Then we formulate the null hypothesis of data being ‘well mixed, that is, the
absence of a batch effect, as

]‘}:fivie{l,...,l}v for subsets NCD

In order to statistically test the null hypothesis, we define a neighborhood
subset N;=x,U {xs among k—1 nearest neighbors of j}. Nearest neighbors
are computed with the cover-tree algorithm (FNN R package). To optimize
computation efficiency, we precompute the first 50 eigenvectors of the largest
eigenvalues with the svd function and use the reduced dataset to find nearest
neighbors.

Let n¥ denote the number of cells in batch i that are in subset j of size k. Testing
the null Pllypothesis involves two steps:

1. We test the null hypothesis in each subset N; of a given sequence of subsets.
In each subset N, this amounts to testing whether the distribution of njki with
respect to i matches the distribution under the null hypothesis.

2. We summarize the result of the sequence of tests by computing the average
rejection rate S over all tests—a test statistic for the whole dataset. Hence,
testing whether S exceeds a significance threshold allows for rejection of the
null hypothesis for the whole dataset.

Note that by carrying out these two steps, we go beyond a standard test for
homogeneity of subsets of a given dataset.

x*-based test. In the limit of high values of k, n{“i is Gaussian-distributed with
respect to i. A test for small values of k is proviéed as an exact test (Supplementary
Note 1). Then, we can use Pearson’s x* test, the test statistic of which is

k 2
Kj‘: i:l W ~y?* where )(il denotes the y? distribution with / - 1
degrees of freedom. *he

1—
P value for each x is computed as

pPr= 1-F_, (K;‘) where F,_,(x) denotes the cumulative distribution function of
the X% distribution with / - 1 degrees of freedom.

Principal component regression. PCA is an orthogonal transformation of the
data matrix into a set of linearly uncorrelated variables. The PCs correspond to the
eigenvectors of the covariance matrix of the data and are ordered by the explained
variance of the data. If a batch effect is present in the data, it contributes to the
variance, and a corresponding batch covariate correlates significantly with some

of the PCs. As the set of PCs is uncorrelated, regression of the batch covariate B
(with [ categories defined in the kBET model) and the ith PC returns the coefficient
of determination as an approximation of the variance explained by B in each

PC (PC regression, similar to ref. *'). Overall, the total contribution of the batch
effect to the variance in the data may be approximated by

G
Var(C|B) = Z Var(C|PC,)*R*(PC,|B)

i=1

where Var(C|PC,) is the variance of C explained by the ith PC. However, using a
linear regression model enables us to evaluate the significance of RZ(PCi|B). For
the case of two batches, the significance test equals a univariate, two-tailed t-test
on the loadings of each PC split by batch covariate. For more than two batches, the
univariate ¢-test can be generalized to a one-way analysis of variance, for which
the test measure is F-distributed. We use this approach to compute the fraction of
significantly correlated PCs (default, top 50 PCs; in the case of CCA, the top 10
PCs). P values were adjusted to FDR < 0.05.

However, as the number of features (genes) increases, the largest and
smallest eigenvalues of the sample covariance matrix converge®. Consequently,
Var(C|B) decreases with the number of features as well, and because of the high
dimensionality of scRNA-seq data, batch effects defined by explained variance are
difficult to interpret.

Therefore, we use the sum of explained variance of all PCs with significant
R*(PC,|B) scaled by the variance explained by the top 50 PCs as a proxy for the
batch effect:

ziew Var(C|PC)

Var(C|B),4eq ®
Ty var(clpc)

where W is the index set of all N top PCs that are significantly correlated with the
batch covariate (Supplementary Note 2).

Silhouette. The calculation of a silhouette aims to determine whether a particular
clustering has minimized within-cluster dissimilarity and maximized inter-cluster
dissimilarity*. Let us assume that there is a given clustering into more than one
cluster. For each sample i, the silhouette width is defined as follows.

Let a(i) be the average dissimilarity between i and all other data points of
its cluster A. If i is the only observation in this cluster, set s(i) : = 0. For all other
clusters C # A, let d(i, C) be the average dissimilarity of i to all samples of C. There
is some cluster B whose dissimilarity d(i, B) is minimal: b(i) : = min -d(i, C), which
is the ‘neighboring’ cluster to sample i. Then, the silhouette width s(i) is defined
as the scaled difference of average dissimilarity within a cluster and the average
dissimilarity to its neighboring cluster:

iy bD=ald)
max(a(i), b(i))
Finally, the mean of all silhouette widths s(i) gives the silhouette s from which we
display its absolute value (Fig. 2). We adapted the calculation from the scone R
package?.

The silhouette width s(i) ranges from -1 to 1, with s(i) — 1if two clusters
are separate and s(i) - —1if two clusters overlap but have dissimilar variance. If
s(i) = 0, both clusters have roughly the same structure. Thus, we use the absolute
value [s| as an indicator for the presence or absence of batch effects.

Computation of highly variable genes. To determine whether a batch-correction
method is overcorrecting, we check the number of HVGs before and after batch
correction (which was not possible for Seurat’s batch correction, as it does not return
a batch-corrected data matrix). In the Anders (Brennecke)'* model implemented
in the M3Drop* package (‘BrenneckeGetVariableGenes’ function), the relation of
the squared coefficient of variation (CV?) and mean for each gene follows a Gamma
model, CV*~ (a,/p) + a,. CV? decreases with increasing mean gene expression. The
slope parameter &, and offseta,, are estimated by nonlinear least-squares fit. A gene
is considered as highly variable if its CV? is higher than expected from its mean, that
is, if it is above the model fit curve in a plot of mean CV=

To define a batch-free gene set before batch correction, we fit the Anders
(Brennecke) model to each batch separately and intersect the corresponding sets
of HVGs. Let I be the number of batches and g; be the set of HVGs for batch i. We
define

I
HVGyyen_ree = N &
i=1

as the set of HVGs present in each of the batches in a dataset.

More specifically, we consider the fact that HVGs depend on the type of
normalization®. Then, the reference set of HVGs consists of all genes that are
highly variable in all batches with log(counts + 1) normalization. After batch
correction, we compute HVGs for the whole corrected dataset (HVG,,,,). Ideally,
we would retain all HVG,,, .. after batch correction. We define the fraction of
retained batch-free HVGs as

— |HVGbalch—free NHVG
retained |HVG batch—freel

corrl

to determine whether the biological signal in the data is preserved after batch
correction.

False positive rate for highly variable genes. We quantify the number of HVGs
caused by the batch effect as an FPR. In contrast to the fraction of retained HVGs,
we define the FPR by the fraction of HVGs that are found in the whole dataset but
not in any of the batches. More formally, let

« adenote the set of HVGs in the complete dataset, and
e a;denote the set of HVGs in batch i.

Then, the FPR is

_ |U€:1(aﬂll,-) |
lal

FPR=1

Data normalization. Data normalization methods account for the sequencing
depth as a size factor and normalize the expression data to the same comparable
level. The normalization methods used are summarized in Supplementary Table 1.
Briefly, we used the following: (1) CPM based on the library size; (2) relative log
expression; (3) trimmed mean of M values; (4) scran size factor’; (5) gsmooth
from the YARN package”’; (6) transcripts per million, derived from the mapping by
Salmon?* (version 0.8.2); and (7) mean ratio normalization, which uses size factors
from the DESeq2 package’.
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Batch regression. Methodologically, the recent batch-regression approaches either
require the assignment of batches as input or assess bias in the data independently
of batch information. In this paper, we compare five established batch-regression
methods (details in Supplementary Table 1): (1) limma, which uses a linear
regression model to remove batch effects (we used the ‘removeBatcheffect’
function from the limma package'*); (2) the ComBat model® function from the sva
package, which is a linear regression model based on empirical Bayes methods;
(3) the f-scLVM model, a factor-analysis-based latent variable model whereby, after
model training, the batch-effect-related factors are removed with the ‘regressOut’
function implemented in the fscLVM package’’; (4) PEER, based on factor
analysis*’; and (5) RUVs, RUVr and RUVg from the RUVseq package*, which
remove unwanted variance according to replicate samples, residuals and control
genes, respectively. We derived control genes using the edgeR package™ and used
the top 400 constant genes as control genes. The model parameter k in RUVseq
and PEER indicates the number of hidden factors correlated with the variance. We
tested several values from 1 to 7 and 25% of the sample size. We also investigated
(6) Seurat’s batch effect correction, based on CCA and dynamic time warping’, and
(7) MNN?, which uses cosine similarity as internal normalization. Methods 1-3, 6
and 7 require batch information for correction; methods 4 and 5 assess general bias
in the data.

Simulated data. We used two different models for simulating scRNA-seq data
and batch effects. The first model is based on a zero-inflated negative binomial
distribution for count data similar to that in ref. *°. The second approach uses the
Splat model of the R framework Splatter’' (Supplementary Note 3).

A zero-inflated negative binomial model. We modeled the number of transcripts
per gene and per cell as count data that followed the negative binomial distribution
with zero inflation to account for dispersion and sparsity caused by dropouts.
Mean expression levels for each gene were sampled from the beta-distribution
(with appropriate scaling):

u~Beta(a,b) - ¢

with parameters a=2, b=>5 and ¢=100. The dropout probability for each simulated
gene j€ {1,...,G}in batchi € {1, 2} was modeled by the logistic (sigmoid) function
p, =sigm(=(8,+p, i”ij))’ where we chose 3 =—1.5and ﬂu: 1/median(y,). Every
sample was drawn from s;;~ NB(u,, 0|Ber(p,)), where 6=1and Ber is the Bernoulli
distribution. ! !

Batch-effect strength is modeled as an increasing fraction of affected genes. With the
parameters for the first batch set up, the mean expression levels of the second batch
i, are subject to different degrees of variation. We multiply 1%, 10% and 20% of
the mean expression levels i by a gamma-distributed random variable y ~ I'(a, )
anda=p=1

|y whenje{l,...,h-G}

% ,; otherwise

where h € {1%, 10%, 20%} and G is the number of genes in the dataset. The gamma
distribution with the chosen parameters has a mean and variance equal to 1 such
that the expected value of the sampled mean expression levels stays unchanged.
In addition, we varied the sample size of the two batches: in each simulation, we
sampled 500 instances with 1,000 genes each, with the size ratio of the batches
being

re {1, Ly i} This means equally sized batches contained 250 samples each,

and batches with 7= 1/9 had 450 and 50 samples, respectively.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
We applied the batch estimates to several scRNA-seq datasets. In the inDrop
publication, the droplet-based sequencing was demonstrated on mESCs growing

NATURE METHODS | www.nature.com/naturemethods

on LIF* medium and two additional technical replicates'”. In our analysis, we used
two replicates that consisted of 5,952 cells from two batches and 11,308 genes with
at least 2 cells having more than 4 unique molecular identifier (UMI) reads per
cell. Data were downloaded as UMI-filtered read count matrices from accession
GSE65525.

Kolodziejczyk et al."* explored heterogeneity in mESCs cultured with three
different media (2i, a2i and LIF*) on full-length sequenced transcripts (Smart-
seq). The three conditions included 219, 123 and 207 cells in 4, 2 and 3 batches,
respectively. The mESC data sequenced with full-length Smart-seq'* were
downloaded from ENA (project ID PRJEB6455) as FASTQ files and mapped to
an Ensembl™ mouse transcriptome (GRCm38.p5.87, equivalent to UCSC mm10)
with Salmon®*. Cells were quality-controlled according to data derived from the
Espresso database (http://www.ebi.ac.uk/teichmann-srv/espresso/).

Further, scRNA-seq has been widely applied in explorations of mouse
embryonic development. To test the performance of batch correction for data
integration, we collected single-cell RNA-seq data of mouse early embryonic
development from eight different studies'**, consisting of 56, 49, 124, 65, 15, 294,
17 and 15 cells, respectively. The early embryonic development data used have
the following accession IDs: E-GEOD-57249, E-GEOD-70605, E-MTAB-3321,
GSE53386, E-MTAB-2958, E-GEOD-45719, E-GEOD-44183 and E-GEOD-66582.
All studies applied Smart-seq-based protocols for scRNA-seq. All FASTQ files
were mapped to an Ensembl*> mouse transcriptome (version GRCm38.p5.87) with
Salmon® (version 0.8.2; k-mer =21 to tolerate different read lengths). Here we
considered the studies as batches while omitting the flowcell batches. We continued
our analysis without further gene filtering or quality control.

Kang et al.”* studied genetic variation among PBMCs from eight individuals
as a replacement for cell barcoding in droplet-based sequencing (10X Genomics).
From that study, we used three experimental runs: 3,514 and 4,106 cells from four
healthy donors each, and 5,832 cells from these eight healthy donors. Human
PBMC data” can be provided by the authors upon request. Count matrices are
available under accession number GSE96583.
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The mESC data sequenced with full length SMART-seq23 were downloaded from ENA (project id: PRIEB6455) as fastq files and mapped to Ensembl56 mouse
transcriptome (GRCm38.p5.87, equivalent to UCSC mm10) with Salmon33. Cells were quality controlled according to data derived from the Espresso database
(http://www.ebi.ac.uk/teichmann-srv/espresso/).

Early embryonic development data were derived from several studies25-32 with accession ids: E-GEOD-57249, E-GEOD-70605, E-MTAB-3321, GSE53386, EMTAB-
2958, E-GEOD-45719, E-GEOD-44183 and E-GEOD-66582. All studies applied SMARTseqg-based protocols for single-cell RNA-seq. All fastq files were mapped

to Ensembl56 mouse transcriptome (version GRCm38.p5.87) with Salmon33 (version 0.8.2, kmer = 21 to tolerate different read length). Here, we only consider the
studies as batches while omitting the flowcell batches. We continued our analysis without further gene filtering or quality control.

Human PBMC data35 are provided upon request by the authors. Also, count matrices are available with accession number GSE96583.
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