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The term “batch effect” is commonly used to describe techni-
cal variation that emerges when samples are handled in dis-
tinct batches. This situation usually occurs if one repeats an 

experiment with biologically equivalent cells, such as from different 
patients with the same disease, or technically equivalent cells, such 
as identically cultured cells sequenced on subsequent days (Fig. 1a). 
Biological and technical variation both contribute substantially to 
total variability in single-cell RNA-sequencing (scRNA-seq) data. 
In an experiment with a balanced design, biological and technical 
variation can be readily distinguished (Fig. 1b). In contrast, a con-
founded design groups cells of the same condition into the same 
sequencing runs, and thus separates biologically distinct cells into 
separate handling and sequencing experiments. This confounds 
biological and technical variability. If a balanced experimental 
design is not possible, for example, because of the chip design, an 
alternative strategy is to generate several technical replicates per 
biological condition1.
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
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Accounting for technical factors in an scRNA-seq dataset is a 
key step in the preprocessing workflow after cell and gene filtering2 
and affects the selection of potentially interesting genes. The choice 
of ‘interesting’ genes removes noise from the data but also defines 
the potential outcome of the data analysis. Furthermore, differ-
ences between replicates in scRNA-seq data can arise from different 
sequencing depths: fewer genes are detected at shallow sequencing 
depths3–5.

Various methods have been proposed to remove or reduce cell-
specific bias and batch effects in single-cell data while preserving 
biological variability, ranging from linear regression models such 
as ComBat6 to nonlinear models such as Seurat’s canonical corre-
lation analysis (CCA)7 and projection of mutual nearest neighbors 
(MNNs)8. In addition, differential test frameworks like MAST4, 
DESeq29 and limma10 include the batch effect as a covariate in the 
model design (Supplementary Table  1 provides an overview of  

Q1 Q2 Q3 Q4

single-cell normalization and batch-correction methods). We stress 
that differential testing with batch correction and the creation of a 
batch-corrected data matrix for downstream analyses such as clus-
tering are distinct tasks in scRNA-seq data analysis; here we focus 
on the latter.

Given the wide variety of available strategies, we sought to 
determine which methods remove batch effects and preserve bio-
logical variation best. Current approaches to detect batch effects 
involve exploratory data analysis, that is, visual inspection of low- 
dimensional embeddings, such as principal component analysis 
(PCA). Data visualization is highly recommended as a first step and 
provides important insight on the distribution of data. However, 
the results are subjective and lack a quantitative measure for robust 
comparisons, especially if used to evaluate biases across many sam-
ples or methods. Thus, we recommend an additional quantitative 
step after exploratory data analysis.

Here we propose kBET as a method to quantify batch effects in 
scRNA-seq data. Intuitively, a replicated experiment is well mixed 
if a subset of neighboring samples (e.g., single-cell transcriptomic 
data points) has the same distribution of batch labels as the full 
dataset (Fig.  1c). In contrast, a repetition of the experiment with 
some bias is expected to yield a skewed distribution of batch labels 
across the dataset (Fig. 1d). kBET uses a χ​2-based test for random 
neighborhoods of fixed size to determine whether they are well 
mixed, followed by averaging of the binary test results to return an 
overall rejection rate. This result is easy to interpret: low rejection 
rates imply well-mixed replicates.

In this study, we applied kBET to the analysis of four mouse 
single-cell datasets from studies using microwell-plate-based and 
droplet-based methods (100–3,000 cells per batch) and assessed 
the performance and accuracy of 11 normalization and 7 batch-
effect regression approaches (Fig.  1e). Batch correction based on 
log(counts +​ 1), log(counts per million (CPM) +​ 1) or scran pooling, 
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together with ComBat or limma regression, reduced the batch effect 
while preserving biological structure across all datasets (Table  1). 
Finally, we explored the potential of kBET to assess the integration 
of separate studies, and determined that kBET also allows one to 
study inter-individual variability in complex human tissue data.

Results
kBET outperforms other batch-effect detection methods. 
We evaluated the performance of kBET on simulated data (500 

samples (‘cells’) with 1,000 ‘genes’ each) for which 1%, 10% 
or 20% of mean gene expression was varied in a second batch 
(Methods). With appropriate scaling, the expected mean expres-
sion remained unchanged. A second batch with 1% biased genes 
overlapped well with the first batch, yielding a low rejection 
rate (Fig. 2a). In contrast, a second batch with 20% biased genes 
separated from the first batch, so that samples were surrounded 
by samples from the same batch, thus yielding a high rejection 
rate (Fig. 2b).

Batch

Condition

Balanced ConfoundedBiological replicates

a

c

e

d

b

Technical replicates

1

3

2

Well-normalized data

1

3

2

Badly normalized data

0
2
4
6
8

Global 1 2 3

Distribution

Global 1 2 3

Distribution

Raw data
Counts/
log(counts + 1)

Normalization
CPM/log(CPM + 1)
TPM/log(TPM + 1)
scran pooling
TMM
RLE
MRN
yarn qsmooth

Batch regression
limma
ComBat
RUVs/r/g
PEER
f-scLVM
Seurat (CCA) 
MNN

Assessment
kBET
Silhouette coefficient
Scaled PC regression

Visual (PCA, t-SNE)
Highly variable genes
(Anders model)

C
el

ls
0
2
4
6
8

C
el

ls

Design

Fig. 1 | Batch types and the concept of kBET. Estimating the batch effect in single-cell RNA-seq data. a, Biological and technical replicates have different 
origins. Technical replicates are derived from the same biological samples (cell cultures in this case), whereas biological replicates are independent 
samples. b, Experimental designs. A balanced design allows one to separate technical and biological sources of variation, whereas a confounded design 
mixes the two. c,d, The kBET concept. c, In a dataset with replicates and no batch effects, the proportions of the batch labels in any neighborhood do not 
differ from the global distribution. d, In a replicated dataset with batch effects, data points from respective batches tend to cluster with their ‘peers’, and 
batch label proportions differ considerably between arbitrarily chosen neighborhoods. e, Overview of normalization and batch-regression methods, as well 
as assessment approaches.

Table 1 | Best overall normalization and batch-correction methods

Dataset Klein et al.12 Kolodziejczyk et al.14 Mouse early 
embryo2i a2i LIF

Sequencing technique inDrop Smart-seq2 Smart-seq

Normalization log(counts +​ 1)/scran pooling log(CPM +​ 1) scran pooling TMM/log(CPM +​ 1) log(counts +​ 1)

Batch correction ComBat ComBat ComBat limma/ComBat ComBat

The ranking of batch-correction strategies is based on kBET, retained HVGs and FPRs for data from Klein et al.12 and Kolodziejczyk et al.14. For mouse early embryonic development data integration, the 
ranking is based on both kBET and silhouette. TMM, trimmed mean of M values.
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kBET uses a Pearson’s χ​2-based test for random neighborhoods of 
fixed size k and averages the binary test result. Use of the likelihood 
ratio test or the exact multinomial test as the underlying hypothesis 
test (Methods, Supplementary Note 1 and ref. 11) yielded very simi-
lar results (Fig. 2c (inset) and Supplementary Fig. 1). The neighbor-

hood size k is an important factor for the hypothesis test in kBET. For 
smaller values of k, the rejection rate is lower in general11. As soon as 
the neighborhood size k for each test became larger than the size of a 
single batch, we observed a decrease in the rejection rate. This was due 
to the decreasing number of possible choices of batch labels; the ‘local’ 
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Fig. 2 | kBET is more responsive than other batch tests on simulated data. Simulation results for 1,000 genes and 500 cells. Batch effect is modeled 
as a fraction of shifted gene means in the second batch. a,b, PCA plots of log-scaled data for two equally sized batches with 1% (a) and 20% (b) varied 
mean gene expression levels (Methods). c,d, kBET mean rejection rates depend on neighborhood size for the data in a and b, respectively. The dashed 
vertical lines indicate the optimal neighborhood size for batch-effect detection, that is, where the rejection rate is maximal. Shaded areas represent the 
95th percentile of n =​ 100 repeated kBET runs. In each run, the number of tested neighborhoods was 10% of the sample size (i.e., 50 cells). The inset 
in c shows a box plot of likelihood ratio test (LRT) results and exact test results for n =​ 100 runs. Center lines indicate means, lower and upper hinges 
correspond to the 25th and 75th percentiles, respectively, whiskers extend to 1.5 times the interquartile range, and individual data points represent 




outliers. 

e, Comparison of kBET to other batch-effect tests on a normalized scale: scaled variance explained by batch (“scaled PC regression”; FDR <​ 0.05) and 
absolute silhouette. We simulated several batch sizes to assess the effect of unequal batch sizes. kBET detected the degree of bias most effectively.

Q5
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batch-label distribution became more similar to the global batch-label 
distribution (Fig. 2c,d). For neighborhood sizes somewhere between 
exceedingly small and large, the average rejection rate became maxi-
mal. The maximum value indicated the presence of a batch effect 
(Supplementary Note 1), which we used for quantification.

We investigated kBET’s ability to detect batch effects with alter-
native measures: the absolute average silhouette width (‘silhouette’) 
and the scaled variance of the top 50 principal components (PCs) 
that correlate significantly with the batch effect (false discovery 
rate (FDR) <​ 0.05, ‘scaled PC regression’; Methods, Supplementary 
Note 2). All three measures operate on a normalized scale (0, no 
effect; 1, strong effect). As test cases, we varied an increasing frac-
tion of gene expression means (Fig.  2e) and simulated different 
gene dropouts or added noise to the means (Supplementary Note 3 
and Supplementary Figs. 2 and 3). Further, we simulated different 
batch sizes ranging from equal size (1:1) to substantial size imbal-
ance (1:19). kBET’s rejection rate increased most in response to the 
degree of bias compared with the silhouette: silhouettes showed 
little difference between 10% and 20% varied genes, where kBET 
clearly discriminated the effect. Scaled PC regression increased with 
the degree of batch effect, but also returned a significant result when 
only 1% of genes were varied. kBET performed well when only a few 
data points were biased by batch, as it still revealed a substantial bias 
in size-imbalanced batches. Overall, kBET was the most sensitive 
and robust measure of batch effects in this comparison.

kBET accurately captures batch effects. Batch effects originate 
from different sources, as is evident in comparisons of technical 
replicates. We investigated the mouse embryonic stem cell (mESC) 
LIF cultures of Klein et al.12, which were generated via the inDrop 
protocol. The authors provided two technical replicates in sam-
ples of the day 0 culture (Fig. 3a), which offered an ideal case for 
batch-correction assessment. Prior to batch correction, we visu-
alized the data, and observed a clear inter-batch difference as the 
shift of the technical replicates in the top two PCs (Fig.  3b). We 
compared all combinations of normalization and batch-correction 
strategies, and here we illustrate major performance differences 
in f-scLVM-corrected log(CPM +​ 1) values (Fig. 3c) and ComBat-
corrected log(counts +​ 1) values (Fig. 3d) in terms of the top two 
PCs. However, in addition to the top 2 PCs, we found that the next 
13 PCs also had a significant correlation with the batch covariate 
in the f-scLVM case (FDR <​ 0.05). Thus, the batch effect was not 
corrected but became unnoticeable with visualization. For ComBat-
corrected log(counts +​ 1) values, none of the PCs correlated signifi-
cantly with the batch covariate. kBET revealed that ComBat applied 
to log(counts +​ 1) or scran normalization removed batch effects 
best (y-axis in Fig.  3e; “acceptance rate” is the reverted ‘rejection 
rate’), in contrast to the incomplete batch-correction performance 
of f-scLVM. The PCA plot shows only the batch effect of the first 
two PCs, whereas kBET effectively quantified subtler batch effects.

Distinguishing batch effects from biological variability. 
Preservation of biological heterogeneity is the second challenge 
of batch correction; without it the optimal batch correction would 
remove all variance, setting each sample to the same constant. We 
assessed biologically relevant heterogeneity by evaluating highly 
variable genes (HVGs)13 before and after correction. Before correc-
tion, we considered only HVGs present in all replicates separately; 
this is the conservative, batch-free set of HVGs that we compared to 
the set of HVGs after batch correction (HVGcorr). In total, we evalu-
ated the fraction of retained HVGs after correction (Methods and 
Fig. 3e–g).

To complement the concept of retained HVGs, batch correction 
should not introduce additional variability in the data. Thus, the 
difference between sets of HVGs before and after correction is a 
proxy for false discoveries, which we used to compute a false posi-

tive rate (FPR; Methods). Here the two technical replicates shared 
1,863 batch-free HVGs (HVGbatch-free), and more than 700 HVGs 
resided in either of the replicates (Fig. 3f,g).

After correction by f-scLVM, we retained half of HVGbatch-free 
and discovered more than 5,000 HVGs in the whole dataset (Fig. 3f 
and Supplementary Fig.  4a,b), which explains f-scLVM’s minimal 
kBET acceptance rate (Fig. 3e). When we computed the FPR on the 
basis of log(CPM +​ 1) normalized data, we found an FPR of 27% 
(Supplementary Fig. 4c). We obtained the best result for the com-
bination of log(counts +​ 1) and ComBat (Fig.  3d): all HVGbatch-free 
were kept after batch correction, and only 295 HVGs were caused 
by batch correction (8% FPR; Fig. 3g).

In conclusion, batch correction may confound observations 
massively and mask the biological signal completely. The cur-
rent ‘best’ batch-correction strategies still leave part of the batch 
effect in the data (Fig. 3e–g). This explains the increase in the total 
amount of HVGs after correction (Supplementary Fig. 4b) and in 
the FPR (Supplementary Fig. 4c). Both silhouette and PC regression 
showed little discrimination between most correction strategies 
(Supplementary Fig.  4d,e), whereas kBET resolved them in detail 
(Fig. 3e and Supplementary Fig. 4d,e).

kBET guides best practices for plate-based scRNA-seq. Next, we 
examined mESCs cultured in three different media (2i, a2i and LIF)14 
and sequenced with the Smart-seq2/C1 protocol (Supplementary 
Fig. 5a). These datasets are rather similar in terms of heterogene-
ity, but the biological origin of the heterogeneity is different in each 
culture condition (compare with ref. 14). We obtained well-mixed 
data for all datasets with log(CPM +​ 1) normalization and batch 
correction with ComBat (Supplementary Fig.  5b,c). Nevertheless, 
we observed performance differences across culture conditions that 
were independent of the number of batches (Supplementary Note 4).

Beyond replicates: dataset integration across studies. With the 
explosion of scRNA-seq data in recent years15, there is a need for a 
comprehensive strategy of data integration. It is more challenging to 
correct batch effects between studies than it is to do so within the 
same study, especially if cell types vary between studies. Here we 
benchmarked batch-correction performance on eight Smart-seq-
based datasets16–23 that profile mouse development from oocyte to 
blastocyst (Fig. 4a and Methods).

We remapped the reads to the same reference transcriptome 
with Salmon24 to reduce quantification biases25. Notably, even dif-
ferent versions of Salmon resulted in different degrees of batch 
effect (Supplementary Note  5). Batch effects before correction 
were quite obvious even in PCA (Fig. 4b,c): data from Biase et al.16 
and Deng et al.21 deviated substantially from the other data in our 
analysis (average acceptance rate of 16%). Consequently, cells are 
more likely to cluster by study than by embryonic stage. Also, clus-
tering by study is partly explained by library size (Supplementary 
Fig. 6). Nevertheless, we achieved acceptable batch-effect correc-
tion. We obtained the best results with ComBat on log(counts +​ 1) 
values (Fig.  4d,e), with an average acceptance rate of 62% 
(Supplementary Table 2).

A meaningful integration maintains the correct trajectory of 
developmental stages, while the same cell types from different stud-
ies mingle. Thus, we assessed the batch effect of each developmental 
stage on the basis of averaged kBET results (a high acceptance rate 
implied good mixing) and monitored the developmental progres-
sion by silhouette (higher silhouette values reflected good separa-
tion of stages) (Fig. 4f). Before correction, the developmental stages 
separated weakly (silhouette of 0.08 for log(counts +​ 1)), and cor-
rection with linear methods such as limma and ComBat yielded 
distinct clustering by stage. Only ComBat achieved good mixing of 
study batches. Notably, PC1 corresponded to the real developmen-
tal time of the cells.
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Although Seurat’s CCA alignment was among the top-per-
forming methods and yielded the second best kBET result for 
log(CPM +​ 1) data, a silhouette of approximately 0 indicated over-
correction. MNN yielded a low acceptance rate and improved 
clustering by cell types only for counts, possibly because of low 
sample numbers.

This example illustrates how batch-effect correction tools play a 
key role in data integration and provide effective separation of the 
biological signal from complex technical variations. For future data-
integration efforts with more complex data structures and less prior 
knowledge about cell types, the community needs more sophisti-
cated batch-correction methods that model nested batch structures 
and several batch variables.

kBET detects inter-individual variability in PBMC data. To esti-
mate pure biological variability with kBET, we studied a pooled 
dataset of human PBMCs from eight unrelated individuals for which 
donor identity was reconstructed for each cell with demuxlet26. 
Pooling removes technical variation between individuals. Clustering 
and t-distributed stochastic neighbor embedding visualization 
revealed several cell types (Supplementary Fig. 7a) and significant 
variation in cell-type frequency between individuals (Supplementary 
Fig.  7b). Note that all samples were distributed across three inde-
pendent experiments (batch A, individuals 1–4; batch B, individuals 
5–8; and batch C, all individuals), and cell type frequencies were very 
similar between batches, thus excluding sampling bias.

We applied kBET to estimate inter-individual variability in all 
these experimental batches. kBET detected considerable variation 
within a cell type even after accounting for frequency shifts (Fig. 4g 
and Supplementary Fig. 7c). We found acceptance rates of ~0.75–

0.9 for each cell type, versus 0.62–0.72 for complete data. Thus vari-
ation in aggregates such as bulk RNA-seq data is driven not only by 
single-cell expression differences, but also by variation in cell popu-
lation sizes. kBET offers a sensitive and unbiased way to estimate 
inter-individual variability among cells of the same type.

Discussion
Batch effects in scRNA-seq data can have severe effects on down-
stream analysis if not properly accounted for. Moreover, they have a 
substantial random noise component that stems mostly from tech-
nical experimental factors. kBET introduces a nonlinear measure 
for scRNA-seq batch effects, which we used to evaluate batch-cor-
rection methods. In the simplest possible case—technical replicates 
that were otherwise homogeneous—ComBat corrected the data 
and preserved the underlying biological properties (Supplementary 
Table 2). On biological replicates with greater batch-to-batch vari-
ability, such as two independent cultures of the same cell type, 
ComBat again performed well, because of its regularization for low 
sample numbers. A study in which ComBat was used on complex 
tissue data reported similar results27.

Many methods such as ComBat and RUV28 were designed to 
correct bulk expression data but can be applied to scRNA-seq data. 
Although scRNA-seq data reflect cell-to-cell variability, they are much 
sparser because of stochastic gene expression and dropouts, which 
is not accounted for by batch-effect correction approaches for bulk 
data. A mere mean shift and variance stabilization would not take into 
account a batch-to-batch difference that solely addressed dropout rates 
(Supplementary Note 6). Also, dropout and cellular detection rates4,5 
are closely correlated to library size (Supplementary Fig. 8 and ref. 29). 
The single-cell-specific approaches model stochastic expression and 
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transformed CPM; c) and a biology-preserving batch removal (ComBat on log-transformed counts; d). Density plots on the axes show the frequency of 
replicates along the PCs. On the basis of visual inspection, the approaches in c and d appear to work equally well. e, Percentage of retained HVGs versus 
the mean acceptance rate (1 – rejection rate, from n =​ 100 kBET runs) for all combinations of normalizations and batch-regression approaches. Seurat’s 
CCA alignment batch-corrects data only in a latent space generated by manifold learning, and thus we could not compute HVGs for it. f,g, HVGs per 
replicate before correction and for the whole dataset after batch correction. HVGs in each replicate are computed on log(counts +​ 1) values. f-scLVM (f) 
retained 932 HVGs but had a high false positive rate, whereas ComBat (g) captured all HVGs with a low false positive rate.
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dropout explicitly30 or implicitly31. As zeros in gene expression com-
prise both biological and technical variation, several approaches aim 
to impute dropout to retain biological information32–35.

For complex tissue data, CCA7 and MNN8 provide generalized, 
nonlinear modeling approaches to align similar populations. In 
contrast to ComBat, both methods are independent of variations 
in population density7,8. Although CCA and MNN did not outper-
form linear methods in the small-scale examples we tested, they 
have potential in future large-scale data integration. Moreover, with 
thousands of measured cells per dataset, optimal memory usage and 
efficient implementation (Supplementary Note 7 and ref. 36) will be 
as important as accurate correction for confounders.

kBET is a powerful tool for comparing batch-effect correction 
schemes, as it allows the study of high-dimensional data without 
prior assumptions regarding statistical properties. Analysis tasks 
such as clustering into cell types and ordering of cells by pseudo-
time37 rely on batch-effect-corrected data. kBET’s assumption of 
equivalent and interchangeable batches is simple, but the transla-
tion into balanced experimental design is challenging. For complex 
experimental setups such as time series, collecting and sequenc-
ing all cells at all time points together is the only way to prevent 

confounding with both technical and biological variation between 
samples. The demuxlet26 approach allows inter-individual variabil-
ity to be assessed quantitatively without technical confounding, and 
kBET’s heterogeneity statistics are a useful measure for biological 
variability across individuals.

In the worst case, batch-effect correction may fail completely if 
data lack a minimum level of quality. By quantifying batch effects 
with kBET before and after correction, we were able to detect poor-
quality correction and poor-quality data. On the basis of the kBET 
result showing that overall variation is driven by differences in clus-
ter proportions, we would prefer to sequence more cells from fewer 
donors for complex samples (in contrast to prior statements38). We 
expect this discussion to have serious repercussions for decisions 
regarding experimental design in emerging single-cell expression 
atlases such as the Human Cell Atlas39 and the Mouse Cell Atlas40.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41592-018-0254-1.
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Fig. 4 | kBET assesses data-integration quality and inter-individual variability. a, Overview of eight early-mouse-development 



datasets. b,c, PCA plots 

of log(counts +​ 1) normalized expression data, color-coded by dataset (b) and by developmental stage (c). Cells of the same developmental stage largely 
failed to cluster together across studies. d,e, PCA plots of log(counts +​ 1) normalized expression data after batch correction by limma, color-coded by 
dataset (d) and by developmental stage (e). Cells of the same developmental stage were better aligned after correction. f, Silhouette of embryonic 
development versus average kBET acceptance rate (weighted per developmental stage; n =​ 100 kBET runs per cell type) reveals that ComBat applied 
to log(counts +​ 1) data provides good mixing of cells at the same developmental stage from different studies. A high kBET acceptance rate and high 
silhouette indicate the best separation of developmental stages. g, PBMC data from eight unrelated individuals processed in three experiments (batches) 
on a Chromium 10X Genomics device, with donor cell identity assigned with demuxlet26. kBET mean acceptance rates (1 – rejection rate, from n =​ 100 kBET 
runs) are shown for each experiment, with individual donor identity used as a batch variable. For fair comparison, we equalized the number of cells in each 
batch by downsampling abundant cell types and the complete dataset. kBET yielded lower acceptance rates when we used the complete dataset (and 
neglected variation in cell-type frequencies), whereas acceptance rates were higher for the respective cell types. Center lines indicate means, lower and 
upper hinges correspond to the 25th and 75th percentiles, respectively, whiskers extend to 1.5 times the interquartile range, and individual data points 
represent outliers. 




TPM, transcripts per million.
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Methods
kBET: k-nearest-neighbor batch estimation. Let the full gene expression dataset 

= . . .D x x{ , , }n1 , where ∈x Rg
1  and ∈ ×X Rn g is the corresponding gene expression 

data matrix with n samples and g genes. In an scRNA-seq dataset X, each sample 
has meta-information such as cell type, FACS gate, and the batch i that it was 



measured in.

The batch variable i has l categories such that ni denotes the number of samples 
in batch i, = ∕f n ni i  is the global fraction of samples in batch i, and ν = …n n( , , )l1  

is the batch configuration of all samples. Also, we define 
�
fi as the local fraction of 

samples in batch i in some subset ⊂N D. In particular, we consider subsets of k 
nearest neighbors.

Then we formulate the null hypothesis of data being ‘well mixed’, that is, the 
absence of a batch effect, as

�
= ∀ ∈ . . . ∀ ⊂f f i l N D{1, , } for subsetsi i

In order to statistically test the null hypothesis, we define a neighborhood 
subset ∪= ∣ −N x x s k j{ among 1 nearest neighbors of }j j s . Nearest neighbors 
are computed with the cover-tree algorithm (FNN R package). To optimize 
computation efficiency, we precompute the first 50 eigenvectors of the largest 
eigenvalues with the svd function and use the reduced dataset to find nearest 
neighbors.

Let nji
k denote the number of cells in batch i that are in subset j of size k. Testing 

the null hypothesis involves two steps:

	1.	 We test the null hypothesis in each subset Nj of a given sequence of subsets. 
In each subset Nj, this amounts to testing whether the distribution of nji

k with 
respect to i matches the distribution under the null hypothesis.

	2.	 We summarize the result of the sequence of tests by computing the average 
rejection rate S over all tests—a test statistic for the whole dataset. Hence, 
testing whether S exceeds a significance threshold allows for rejection of the 
null hypothesis for the whole dataset.

Note that by carrying out these two steps, we go beyond a standard test for 
homogeneity of subsets of a given dataset.

χ2-based test. In the limit of high values of k, nji
k is Gaussian-distributed with 

respect to i. A test for small values of k is provided as an exact test (Supplementary 
Note 1). Then, we can use Pearson’s χ​2 test, the test statistic of which is

κ χ= ∑ ~=
− ×

× −j
k

i
l n f k

f k l1
( )

1
2ji

k
i

i

2
where χ −l 1

2  denotes the χ​2 distribution with l – 1 
degrees of freedom. The P value for each κ j

k is computed as
κ= − −P F1 ( )j

k
l j

k
1 where −F x( )l 1  denotes the cumulative distribution function of 

the χ​2 distribution with l – 1 degrees of freedom.

Principal component regression. PCA is an orthogonal transformation of the 
data matrix into a set of linearly uncorrelated variables. The PCs correspond to the 
eigenvectors of the covariance matrix of the data and are ordered by the explained 
variance of the data. If a batch effect is present in the data, it contributes to the 
variance, and a corresponding batch covariate correlates significantly with some  
of the PCs. As the set of PCs is uncorrelated, regression of the batch covariate B 
(with l categories defined in the kBET model) and the ith PC returns the coefficient 
of determination as an approximation of the variance explained by B in each  
PC (PC regression, similar to ref. 41). Overall, the total contribution of the batch 
effect to the variance in the data may be approximated by

∑∣ = ∣ ∣
=

C B C R BVar( ) Var( PC )* (PC )
i

G

i i
1

2

where ∣CVar( PC )i  is the variance of C explained by the ith PC. However, using a 
linear regression model enables us to evaluate the significance of ∣R B(PC )i

2 . For 
the case of two batches, the significance test equals a univariate, two-tailed t-test 
on the loadings of each PC split by batch covariate. For more than two batches, the 
univariate t-test can be generalized to a one-way analysis of variance, for which 
the test measure is F-distributed. We use this approach to compute the fraction of 
significantly correlated PCs (default, top 50 PCs; in the case of CCA, the top 10 
PCs). P values were adjusted to FDR <​ 0.05.

However, as the number of features (genes) increases, the largest and 
smallest eigenvalues of the sample covariance matrix converge42. Consequently, 

∣C BVar( ) decreases with the number of features as well, and because of the high 
dimensionality of scRNA-seq data, batch effects defined by explained variance are 
difficult to interpret.

Therefore, we use the sum of explained variance of all PCs with significant 
∣R B(PC )i

2  scaled by the variance explained by the top 50 PCs as a proxy for the 
batch effect:

∣ ≈
∑ ∣

∑ ∣
∈

=

C B
C

C
Var( )

Var( PC )

Var( PC )
i W i

i
N

i
scaled

1
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where W is the index set of all N top PCs that are significantly correlated with the 
batch covariate (Supplementary Note 2).

Silhouette. The calculation of a silhouette aims to determine whether a particular 
clustering has minimized within-cluster dissimilarity and maximized inter-cluster 
dissimilarity43. Let us assume that there is a given clustering into more than one 
cluster. For each sample i, the silhouette width is defined as follows.

Let a(i) be the average dissimilarity between i and all other data points of 
its cluster A. If i is the only observation in this cluster, set =s i( ) : 0. For all other 
clusters ≠C A, let d(i, C) be the average dissimilarity of i to all samples of C. There 
is some cluster B whose dissimilarity d(i, B) is minimal: =b i d i C( ) : min ( , )C , which 
is the ‘neighboring’ cluster to sample i. Then, the silhouette width s(i) is defined 
as the scaled difference of average dissimilarity within a cluster and the average 
dissimilarity to its neighboring cluster:

= −s i b i a i
a i b i

( ) ( ) ( )
max( ( ), ( ))

Finally, the mean of all silhouette widths s(i) gives the silhouette s from which we 
display its absolute value (Fig. 2). We adapted the calculation from the scone R 
package28.

The silhouette width s(i) ranges from –1 to 1, with →s i( ) 1 if two clusters 
are separate and → −s i( ) 1 if two clusters overlap but have dissimilar variance. If 

→s i( ) 0, both clusters have roughly the same structure. Thus, we use the absolute 
value ∣ ∣s  as an indicator for the presence or absence of batch effects.

Computation of highly variable genes. To determine whether a batch-correction 
method is overcorrecting, we check the number of HVGs before and after batch 
correction (which was not possible for Seurat’s batch correction, as it does not return 
a batch-corrected data matrix). In the Anders (Brennecke)13 model implemented 
in the M3Drop44 package (‘BrenneckeGetVariableGenes’ function), the relation of 
the squared coefficient of variation (CV2) and mean for each gene follows a Gamma 
model, α μ α~ ∕ +CV ( )2

1 0. CV2 decreases with increasing mean gene expression. The 
slope parameter α1 and offsetα0 are estimated by nonlinear least-squares fit. A gene 
is considered as highly variable if its CV2 is higher than expected from its mean, that 
is, if it is above the model fit curve in a plot of mean CV2.

To define a batch-free gene set before batch correction, we fit the Anders 
(Brennecke) model to each batch separately and intersect the corresponding sets 
of HVGs. Let l be the number of batches and ai be the set of HVGs for batch i. We 
define

∩=−
=

aHVG
i

l

ibatch free
1

as the set of HVGs present in each of the batches in a dataset.
More specifically, we consider the fact that HVGs depend on the type of 

normalization45. Then, the reference set of HVGs consists of all genes that are 
highly variable in all batches with log(counts +​ 1) normalization. After batch 
correction, we compute HVGs for the whole corrected dataset (HVGcorr). Ideally, 
we would retain all HVGbatch-free after batch correction. We define the fraction of 
retained batch-free HVGs as

∩=
∣ ∣

∣ ∣
−

−
p

HVG HVG
HVGretained
batch free corr

batch free

to determine whether the biological signal in the data is preserved after batch 
correction.

False positive rate for highly variable genes. We quantify the number of HVGs 
caused by the batch effect as an FPR. In contrast to the fraction of retained HVGs, 
we define the FPR by the fraction of HVGs that are found in the whole dataset but 
not in any of the batches. More formally, let
•	 a denote the set of HVGs in the complete dataset, and
•	 ai denote the set of HVGs in batch i.

Then, the FPR is

∪ ∩= −
∣ ∣

= a a
a

FPR 1
( )i

l
i1

Data normalization. Data normalization methods account for the sequencing 
depth as a size factor and normalize the expression data to the same comparable 
level. The normalization methods used are summarized in Supplementary Table 1. 
Briefly, we used the following: (1) CPM based on the library size; (2) relative log 
expression; (3) trimmed mean of M values; (4) scran size factor46; (5) qsmooth 
from the YARN package47; (6) transcripts per million, derived from the mapping by 
Salmon24 (version 0.8.2); and (7) mean ratio normalization, which uses size factors 
from the DESeq2 package9.
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Batch regression. Methodologically, the recent batch-regression approaches either 
require the assignment of batches as input or assess bias in the data independently 
of batch information. In this paper, we compare five established batch-regression 
methods (details in Supplementary Table 1): (1) limma, which uses a linear 
regression model to remove batch effects (we used the ‘removeBatcheffect’ 
function from the limma package10); (2) the ComBat model6 function from the sva 
package48, which is a linear regression model based on empirical Bayes methods; 
(3) the f-scLVM model, a factor-analysis-based latent variable model whereby, after 
model training, the batch-effect-related factors are removed with the ‘regressOut’ 
function implemented in the fscLVM package31; (4) PEER, based on factor 
analysis49; and (5) RUVs, RUVr and RUVg from the RUVseq package28, which 
remove unwanted variance according to replicate samples, residuals and control 
genes, respectively. We derived control genes using the edgeR package50 and used 
the top 400 constant genes as control genes. The model parameter k in RUVseq 
and PEER indicates the number of hidden factors correlated with the variance. We 
tested several values from 1 to 7 and 25% of the sample size. We also investigated 
(6) Seurat’s batch effect correction, based on CCA and dynamic time warping7, and 
(7) MNN8, which uses cosine similarity as internal normalization. Methods 1–3, 6 
and 7 require batch information for correction; methods 4 and 5 assess general bias 
in the data.

Simulated data. We used two different models for simulating scRNA-seq data 
and batch effects. The first model is based on a zero-inflated negative binomial 
distribution for count data similar to that in ref. 46. The second approach uses the 
Splat model of the R framework Splatter51 (Supplementary Note 3).

A zero-inflated negative binomial model. We modeled the number of transcripts 
per gene and per cell as count data that followed the negative binomial distribution 
with zero inflation to account for dispersion and sparsity caused by dropouts. 
Mean expression levels for each gene were sampled from the beta-distribution 
(with appropriate scaling):

μ ~ ⋅a b cBeta( , )

with parameters a =​ 2, b =​ 5 and c =​ 100. The dropout probability for each simulated 
gene ∈ . . .j G{1, , } in batch ∈i {1, 2} was modeled by the logistic (sigmoid) function 

β β μ= − +p sigm( ( ))ij i ij0 1, , where we chose β = − .1 50  and β μ= ∕1 median( )i i1, . Every 
sample was drawn from μ θ~ ∣s NB p( , Ber( ))ij ij ij

, where θ = 1 and Ber is the Bernoulli 
distribution.

Batch-effect strength is modeled as an increasing fraction of affected genes. With the 
parameters for the first batch set up, the mean expression levels of the second batch 
μ2 are subject to different degrees of variation. We multiply 1%, 10% and 20% of 
the mean expression levels μ by a gamma-distributed random variable γ Γ α β~ ( , ) 
and α β= = 1:















μ
μ γ

μ
=

⋅ ∈ … ⋅j h Gwhen {1, , }

otherwisej
j

j
2,

1,

1,

where h ∈​ {1%, 10%, 20%} and G is the number of genes in the dataset. The gamma 
distribution with the chosen parameters has a mean and variance equal to 1 such 
that the expected value of the sampled mean expression levels stays unchanged. 
In addition, we varied the sample size of the two batches: in each simulation, we 
sampled 500 instances with 1,000 genes each, with the size ratio of the batches 
being

∈ { }r 1, , , ,1
3

1
4

1
9

1
19

This means equally sized batches contained 250 samples each, 
and batches with r =​ 1/9 had 450 and 50 samples, respectively.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
We applied the batch estimates to several scRNA-seq datasets. In the inDrop 
publication, the droplet-based sequencing was demonstrated on mESCs growing 

on LIF+ medium and two additional technical replicates12. In our analysis, we used 
two replicates that consisted of 5,952 cells from two batches and 11,308 genes with 
at least 2 cells having more than 4 unique molecular identifier (UMI) reads per 
cell. Data were downloaded as UMI-filtered read count matrices from accession 
GSE65525.

Kolodziejczyk et al.14 explored heterogeneity in mESCs cultured with three 
different media (2i, a2i and LIF+) on full-length sequenced transcripts (Smart-
seq). The three conditions included 219, 123 and 207 cells in 4, 2 and 3 batches, 
respectively. The mESC data sequenced with full-length Smart-seq14 were 
downloaded from ENA (project ID PRJEB6455) as FASTQ files and mapped to 
an Ensembl52 mouse transcriptome (GRCm38.p5.87, equivalent to UCSC mm10) 
with Salmon24. Cells were quality-controlled according to data derived from the 
Espresso database (http://www.ebi.ac.uk/teichmann-srv/espresso/).

Further, scRNA-seq has been widely applied in explorations of mouse 
embryonic development. To test the performance of batch correction for data 
integration, we collected single-cell RNA-seq data of mouse early embryonic 
development from eight different studies16–23, consisting of 56, 49, 124, 65, 15, 294, 
17 and 15 cells, respectively. The early embryonic development data used have 
the following accession IDs: E-GEOD-57249, E-GEOD-70605, E-MTAB-3321, 
GSE53386, E-MTAB-2958, E-GEOD-45719, E-GEOD-44183 and E-GEOD-66582. 
All studies applied Smart-seq-based protocols for scRNA-seq. All FASTQ files 
were mapped to an Ensembl52 mouse transcriptome (version GRCm38.p5.87) with 
Salmon24 (version 0.8.2; k-mer =​ 21 to tolerate different read lengths). Here we 
considered the studies as batches while omitting the flowcell batches. We continued 
our analysis without further gene filtering or quality control.

Kang et al.26 studied genetic variation among PBMCs from eight individuals 
as a replacement for cell barcoding in droplet-based sequencing (10X Genomics). 
From that study, we used three experimental runs: 3,514 and 4,106 cells from four 
healthy donors each, and 5,832 cells from these eight healthy donors. Human 
PBMC data26 can be provided by the authors upon request. Count matrices are 
available under accession number GSE96583.
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The mESC data sequenced with full length SMART-seq23 were downloaded from ENA (project id: PRJEB6455) as fastq files and mapped to Ensembl56 mouse 
transcriptome (GRCm38.p5.87, equivalent to UCSC mm10) with Salmon33. Cells were quality controlled according to data derived from the Espresso database 
(http://www.ebi.ac.uk/teichmann-srv/espresso/). 
Early embryonic development data were derived from several studies25–32 with accession ids: E-GEOD-57249, E-GEOD-70605, E-MTAB-3321, GSE53386, EMTAB- 
2958, E-GEOD-45719, E-GEOD-44183 and E-GEOD-66582. All studies applied SMARTseq-based protocols for single-cell RNA-seq. All fastq files were mapped 
to Ensembl56 mouse transcriptome (version GRCm38.p5.87) with Salmon33 (version 0.8.2, kmer = 21 to tolerate different read length). Here, we only consider the 
studies as batches while omitting the flowcell batches. We continued our analysis without further gene filtering or quality control. 
Human PBMC data35 are provided upon request by the authors. Also, count matrices are available with accession number GSE96583.
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