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Genome-wide mega-analysis identifies 16 loci
and highlights diverse biological mechanisms
in the common epilepsies
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The epilepsies affect around 65 million people worldwide and have a substantial missing

heritability component. We report a genome-wide mega-analysis involving 15,212 individuals

with epilepsy and 29,677 controls, which reveals 16 genome-wide significant loci, of which 11

are novel. Using various prioritization criteria, we pinpoint the 21 most likely epilepsy genes at

these loci, with the majority in genetic generalized epilepsies. These genes have diverse

biological functions, including coding for ion-channel subunits, transcription factors and a

vitamin-B6 metabolism enzyme. Converging evidence shows that the common variants

associated with epilepsy play a role in epigenetic regulation of gene expression in the brain.

The results show an enrichment for monogenic epilepsy genes as well as known targets of

antiepileptic drugs. Using SNP-based heritability analyses we disentangle both the unique and

overlapping genetic basis to seven different epilepsy subtypes. Together, these findings

provide leads for epilepsy therapies based on underlying pathophysiology.
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The epilepsies are a group of brain disorders characterized
by recurrent unprovoked seizures affecting up to 65 mil-
lion people worldwide1. There are many different types of

epilepsy, and its classification has recently evolved, driven by
advances in clinical phenotyping, imaging, and genetics2. Since
the identification of CHRNA4 as a cause of autosomal dominant
nocturnal frontal lobe epilepsy3, genes underlying many different
rare monogenic forms of epilepsy have been characterized, and
discovery in this area has accelerated with the application of next
generation sequencing4. This is particularly true of the relatively
rare but devastating infantile group of epileptic encephalopathies,
which are now emerging as a genetically heterogeneous group of
largely de novo dominant disorders5. In contrast, single gene
causes of the more common forms of epilepsy appear to be
relatively rare. The common forms broadly comprise generalized
and focal epilepsies, with the former having the highest herit-
ability, yet the lesser yield in single gene discovery6. These
common forms are likely multifactorial, with a significant and
complex genetic architecture7–9.

Consistent with the experience from many other disease fields,
early attempts to disentangle the genetic architecture of the more
common, sporadic forms of epilepsy were limited by study power
and scope10–14. In 2011, the International League Against Epi-
lepsy (ILAE) launched the Consortium on Complex Epilepsies, to
facilitate meta-analysis in epilepsy genomics. In 2014, the first
such meta-analysis was reported comprising 8696 cases and
26,157 controls. This led to the identification of 2q24.3, 4p15.1,
and 2p16.1 as epilepsy loci15.

Here we present an expanded analysis involving 15,212 cases
and 29,677 controls, which leads to identification of 16 genome-
wide significant loci. Importantly, 11 of these loci are associated
with the genetic generalized epilepsies; the group of epilepsies
where despite having the highest heritability we have made the
least genetic progress to date. We show that the genes associated
with each locus are biologically plausible candidates, despite
having diverse functions, particularly as there is a significant
enrichment for known monogenic epilepsy genes and anti-
epileptic drug targets.

Results
Study overview. We performed a genome-wide mega-analysis on
the ILAE Consortium cohort now comprising 15,212 epilepsy
cases, stratified into 3 broad and 7 subtypes of epilepsy, and
29,677 control subjects (Supplementary Table 1). The current
study includes a further 6516 cases and 3460 controls in addition
to the 8696 cases and 26,157 controls from our previously pub-
lished analysis15. Thus, this mega-analysis is not a formal repli-
cation of our previously published meta-analysis. We do not
attempt any formal replication of novel association signals
detected in this analysis. Furthermore, 531 cases of Asian descent,
and 147 cases of African descent were included through a meta-
analysis. However, we refer to our GWAS as a mega-analysis as
the vast majority of our samples (96%) were analyzed under that
framework.

At the broadest level, cases were classified as (a) focal epilepsy
where seizures arise in a restricted part of the brain, a form
traditionally not regarded as genetic although a number of genes
for monogenic forms have been identified; (b) genetic generalized
epilepsy where seizures arise in bilateral networks and evidence
for a genetic component is very strong, yet genes have been hard
to identify, and (c) unclassified epilepsy2,16.

Subjects were assigned to three broad ancestry groups
(Caucasian, Asian and African-American) according to results
of genotype-based principal component analysis (Supplementary
Fig. 1). Linear-mixed model analyses were performed stratified by

ethnicity and epilepsy subtype or syndrome, after which trans-
ethnic meta-analyses were undertaken.

Genome-wide associations. Our analysis of all epilepsy cases
combined revealed one novel genome-wide significant locus at
16q12.1 and reinforced two previous associations at 2p16.1 and
2q24.3 (Fig. 1 and Supplementary Fig. 2)15. When conditioning
on the top SNP within the 2q24.3 locus, we demonstrate the
existence of a second, independent signal within that locus
(Supplementary Fig. 3). This locus was also significantly asso-
ciated with focal epilepsy. Our analysis of genetic generalized
epilepsy uncovered 11 genome-wide significant loci, of which
seven are novel (Fig. 2).

Considering that focal and generalized epilepsy are clinically
broad and heterogeneous classifications, we next assessed whether
loci are specifically associated with any of the seven most
common focal epilepsy phenotypes and genetic generalized
epilepsy syndromes (Supplementary Fig. 4 and 5). We found a
novel genome-wide significant association with juvenile myoclo-
nic epilepsy (JME) and two novel loci associated with focal
epilepsy with hippocampal sclerosis. Moreover, we found two
genome-wide significant associations with childhood absence
epilepsy (CAE) in loci that were previously associated with
absence epilepsy and generalized epilepsy12. We did not find any
significant loci associated with generalized epilepsy with tonic-
clonic seizures (GTCS) alone, juvenile absence epilepsy (JAE),
lesion-negative or lesional focal epilepsy (other than hippocampal
sclerosis). Further analysis of the association signals for each locus
in the different syndromes suggested that some signals display
specificity for a single subtype, while others show evidence for
pleiotropy (Supplementary Fig. 6). However, the relatively small
sample sizes of these phenotype subsets warrant caution for over-
interpretation.

In total, we found 11 novel genome-wide significant loci
associated with the epilepsies and we replicated the association of
five previous known loci12,15 (Supplementary Fig. 7). Two
previous reports of association did not reach our threshold for
significance. This included a locus (rs2292096; 1q32.1) for focal
epilepsy detected in an Asian population14 (p= 0.057 in our
trans-ethnic fixed-effects meta-analysis), and rs12059546 (1q43)
detected previously for JME12 (p= 7.4 × 10−5 in our Caucasian-
only BOLT-LMM analysis).

Gene mapping and biological prioritization. The genome-wide
significant loci from all analyses were mapped to a total of 146
genes (Supplementary Data 1) using a combination of positional
mapping (±250 kb from locus) and significant distal 3D chromatin
interactions of the locus with a gene promoter (FDR < 10−6).
Considering that most loci encompass several genes, we devised
criteria to systematically prioritize the most likely candidate genes
per locus based on established bioinformatics methods and
resources. This biological prioritization was based on six criteria
(Fig. 2), similar to previous studies17,18. Each gene was given a
score based on the number of criteria that were met (range 0–6).
The gene(s) with the highest score in each locus, with a minimum
of 2, were defined as biological epilepsy risk genes. We validated
this approach using established epilepsy genes within our data
(Supplementary Table 2). Using this approach, we were able to
refine these loci to the 21 most likely biological epilepsy genes
(Fig. 2).

These prioritized genes include seven ion-channel genes (SCN1A,
SCN2A, SCN3A, GABRA2, KCNN2, KCNAB1, and GRIK1), three
transcription factors (ZEB2, STAT4 and BCL11A), the histone
modification gene BRD7, the synaptic transmission gene STX1B
and the pyridoxine metabolism gene PNPO. Notably, a conditional
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transcriptome-wide association study (TWAS) analysis suggests
that the signal for genetic generalized epilepsy at 17q21.32, which
was also observed in an earlier study12, seems driven by regulation
of expression of PNPO (Supplementary Fig. 8). This suggests that

the biology behind pyridoxine (vitamin-B6)-responsive epilepsy19,20

could be relevant to common genetic generalized epilepsies.
Biological prioritization implicates SCN1A, SCN2A, SCN3A, and
TTC21B as the most likely genes underlying the signal at 2q24.3 for
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Fig. 1 Manhattan plots for epilepsy genome-wide association analyses. Genome-wide association analyses of a all epilepsy, b focal epilepsy, and c genetic
generalized epilepsy. Negative log10-transformed P-values (Y-axis) are plotted against chromosomal position (x-axis). P-values were calculated with
METAL using fixed-effects trans-ethnic meta-analyses. The red line represents the genome-wide significance threshold (p < 5 × 10−8). Previously known
loci are indicated in black; novel loci in red. The names above each locus represent the prioritized gene in the locus (see Fig. 2) or the name of the locus
itself in case of multiple prioritized genes in the locus
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all epilepsy, focal epilepsy and genetic generalized epilepsy.
Pathogenic variants in the sodium channels SCN1A, SCN2A and
SCN3A are associated with various epilepsy syndromes16 and
mutations in TTC21B impair forebrain development21,22. Our
analyses implicate STX1B as a potential gene underlying the
association of JME at the 16p11.2 locus and the top variant in the
locus is an eQTL that strongly correlates with expression of STX1B
in the dorsolateral prefrontal cortex (Spearman’s correlation: Rho
= 0.33, p= 3 × 10−14)23. Interestingly, for one of the prioritized
genes in genetic generalized epilepsy, PCDH7, an eQTL was
recently detected in epileptic hippocampal tissue24. Prioritized
genes associated with focal epilepsy with hippocampal sclerosis
include the gap-junction gene GJA1.

In addition we identified eight genes from Fig. 2 (BCL11A,
GJA1, ATXN1, GABRA2, KCNAB1, SCN3A, PCDH7, STAT4)
with evidence of co-expression in at least two independent brain
expression resources, using a brain gene co-expression analysis
with brain-coX25. These eight candidates are embedded in several
established epilepsy gene co-expression modules (Supplementary
Fig. 9; Supplementary Table 9).

SNP annotation and tissue-specific partitioned heritability. We
functionally annotated all 492 genome-wide significant SNPs
from all phenotypes (Fig. 3a–c) and found that most SNPs
were either intergenic (29%) or intronic (46%); 78% were in
open chromatin regions (as indicated by a minimum chro-
matin state of 1–726,27, and 50% of SNPs showed some evi-
dence for affecting gene transcription (RegulomeDB score
≤628). Four were coding SNPs of which two were missense
variants.

To gain further biological insight into our results, we next used
a partitioned heritability method29 to assess whether our genome-
wide significant signals contained SNPs associated with enhanced
transcription in any of 88 tissues. We found significant
enrichment of H3K4me1 markers in all epilepsy (stratified LD-
score regression; p= 4 × 10−5) and H3K27ac markers in genetic
generalized epilepsy (stratified LD-score regression; p= 1.3 ×
10−6), specifically in the dorsolateral prefrontal cortex. Moreover,
the distribution of heritability enrichment P-values was strongly
skewed towards brain tissues for all epilepsy phenotypes (Fig. 3d,
Supplementary Figs. 10–12).
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H3K27ac and H3K4me1 are epigenetic markers associated with
regulating gene transcription, suggesting that altered transcrip-
tion in the dorsolateral prefrontal cortex could be one of the
underlying mechanisms of epilepsy. This is further supported by
a tissue-specific heritability enrichment analysis (using data from
the GTEx Consortium), showing strongest enrichment for genetic

generalized epilepsy with genes expressed in Brodmann Area 9
(stratified LD-score regression; p= 1.56 × 10−6), which encom-
passes the dorsolateral prefrontal cortex (Fig. 3e). These findings
further corroborate our TWAS results (using data from the
unrelated CommonMind Consortium database), which shows
significant associations of epilepsy with gene expression of several
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genes in the dorsolateral prefrontal cortex (Fig. 2; Supplementary
Table 3). Although genetic generalized epilepsy has been regarded
as a generalized process, anatomical, electrophysiological, cogni-
tive, and functional imaging studies implicate dysfunction in the
frontal lobes30–34. Altogether, we have converging evidence from
several unrelated methods and databases suggesting epigenetic
regulation of gene expression in the dorsolateral prefrontal cortex
as a potential pathophysiological mechanism underlying our
epilepsy GWAS findings.

Finally, we leveraged the Brainspan database, as implemented
in FUMA35, to assess whether the genes implicated by our GWAS
are differentially expressed in the brain at various prenatal and
post-natal ages. These analyses were performed for the genes
prioritized in any epilepsy phenotype (21 genes), any focal
epilepsy subtype (8 genes) or any genetic generalized epilepsy
syndrome (15 genes). The results suggest that the expression of
genes associated with focal epilepsy is up-regulated in late-infancy
and young adulthood, whereas expression of those genes
associated with genetic generalized epilepsy is down-regulated
in early childhood and differentially expressed prenatally and at
adolescence (Supplementary Fig. 13).

Enrichment analyses. A previous exome-sequencing study found
an association for common epilepsies with ultra-rare variants in
known monogenic epilepsy genes36. To assess whether common
epilepsies are also associated with common variants in monogenic
epilepsy genes (see Methods), we pooled the 146 genes that were
mapped to our genome-wide significant loci and performed a
hypergeometric test. Results illustrated an enrichment of known
monogenic epilepsy genes within the genes mapped to our
genome-wide significant loci (6 genes overlapped; hypergeometric
test: odds ratio [OR]= 8.45, p= 1.3 × 10−5). This enrichment is
considerably more significant when limited to the 21 genes with
the highest biological priority from Fig 2 (5 genes overlapped;
hypergeometric test: OR= 61.4, p= 9.9 × 10−10). We did not find
a bias for gene size in our enrichment analyses when using a
conservative method to correct for this (see Methods). This
suggests that both common and rare variants in monogenic
epilepsy genes contribute to common epilepsy susceptibility,
corroborating and further extending previous observations8,37.
Further studies are required to establish whether the signals from
common and rare variants are independent of each other.

Using public databases of drug-targets, we found that 13 out of
24 currently licensed anti-epileptic drugs target genes that are
implicated in our GWAS. Using the same list of 146 genes as
described above, we performed a hypergeometric test which shows
a significant enrichment of genes that are known targets of anti-
epileptic drugs (8 genes overlapped; hypergeometric test: OR=
19.6, p= 1.3 × 10−9). This enrichment is considerably more
significant when limited to the 21 most biologically plausible
candidate genes (5 genes overlapped; hypergeometric test: OR=
101.2, p= 5.7 × 10-11). This observation suggests that other drugs
that target genes from our GWAS could also have potential for the
treatment of epilepsy. The Drug-Gene interaction database (http://
dgidb.org) lists 166 drugs that target biologically prioritized genes
from our GWAS (see Supplementary Data 2 for a full list), that
may be further investigated for their anti-seizure potential.

Next, we used a complementary approach38 to search for
repurposable drugs. By comparing GWAS-imputed and drug-
induced transcriptomes, we predicted drugs capable of rectifying
epilepsy-associated gene expression changes (see Methods). Our
predictions are enriched with licensed antiepileptic compounds
(permutation based p-value <1.0 × 10−6) and with other licensed
compounds that have proven antiepileptic efficacy in animal
models (permutation based p-value<1.0 × 10−6). We list 30 of our
predicted drugs that are licensed for other conditions and have

published evidence of efficacy in animal models of epilepsy
(Supplementary Table 4).

Heritability analyses. Twin-based and genetic heritability studies
have suggested that while epilepsy is strongly heritable8,39, there
is a substantial missing heritability component40,41. We used
LDAK to estimate h2SNP: the proportion of heritability that can be
attributed to SNPs42–44. We estimate h2SNP = 32.1% (95%CI:
29.6–34.5%) for genetic generalized epilepsy and h2SNP = 9.2%
(8.4–10.1%) for focal epilepsy (estimates are on the liability scale,
assuming a prevalence of 0.002 and 0.003, respectively) which are
consistent with previous estimates8. These results indicate that
SNPs explain a sizeable proportion of the liability of genetic
generalized epilepsy syndromes, but less so for focal epilepsy
phenotypes (Fig. 4). To delineate the heritability of the different
epilepsy phenotypes, we used LDAK to perform genetic correla-
tion analyses between the different forms. We found evidence for
strong genetic correlations between the genetic generalized epi-
lepsies, whereas we found no significant correlations between the
focal epilepsies (Fig. 4). Interestingly, we found a significant
genetic correlation between JME and lesion-negative focal epi-
lepsy (LDAK genetic correlation: R2=0.46, p=8.77 × 10−4), sug-
gesting either pleiotropy and/or misclassification. It is known that
focal EEG features can be seen in JME45.

In view of the increasing data on comorbidities with epilepsy,
we next used LD-score regression to analyze the genetic
correlation between epilepsy and various other brain diseases
and traits from previously published GWAS (Fig. 5; see
Supplementary Table 5 for values). Perhaps surprisingly, we did
not find significant correlations with febrile seizures. Similarly, we
did not find any significant genetic correlations between epilepsy
and other neurological or psychiatric diseases. However, we did
observe significant correlations for all epilepsy and genetic
generalized epilepsy with cognitive ability. We then used the
method Multi-Trait Analysis of GWAS (MTAG)46 to leverage the
larger sample size of the genetically correlated GWAS of cognitive
ability (n= 78,308) in order to boost the effective sample size of
our all and genetic generalized epilepsy GWAS to 53,244 and
41,515 respectively. Using this approach, we found a novel
genome-wide significant locus at 10q24.32 in all epilepsy (MTAG
p= 2.2 × 10-8) and genetic generalized epilepsy (MTAG p= 4.0 ×
10-8) which encompasses the Kv-channel-interacting protein 2
(KCNIP2) gene (Supplementary Fig. 14), loss of which is
associated with seizure susceptibility in mice47.

Discussion
The increased sample size in this second ILAE Consortium
GWAS of common epilepsies has resulted in the detection of 16
risk loci for epilepsy and illustrates how common variants play an
important role in the susceptibility of these conditions. But
compared to other common neurological diseases our sample size
is modest. For example the latest GWAS in schizophrenia con-
sidered 36,989 schizophrenia cases and 113,075 controls, resulting
in the identification of 108 risk loci48. Larger efforts would deliver
further insight to the genetic architecture of the common
epilepsies.

The majority of the loci are associated with genetic generalized
epilepsy. This observation is a welcome partial explanation for the
high heritability of genetic generalized epilepsy, in light of the
relative lack of rare variant variants discovered to date. We also
show that there is substantial genetic correlation between the
generalized syndromes. We speculate that the subtypes share a
large part of the genetic susceptibility for generalized epilepsies,
with specific modifying factors determining the specific
syndrome.
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Some syndrome-specific associations were detected, such as the
relatively strong signal for STX1B in JME, and the association of
GJA1 with focal epilepsy-hippocampal sclerosis. Interestingly,
although the association signal for STX1B was only significant in
the JME analysis, rare pathogenic variants in STX1B have been
recently found in a spectrum of epilepsies, including genetic
epilepsy with febrile seizures plus (GEFS+), genetic generalized
epilepsies (including JME), epileptic encephalopathies and even
some focal epilepsies49,50 (Wolking et al., Manuscript submitted
(2018). Further, mutations in the gap-junction gene GJA1
are associated with impaired development of the hippocampus51

and different expression has been reported in epileptic hippo-
campal and cortical tissue52,53. These findings represent a tan-
talizing glance of the different biological mechanisms underlying
epilepsy syndromes that may guide us to the introduction of
genetics for improved diagnosis, prognosis and treatment for
these common epilepsies. However, the relatively low sample size
of our subtype analysis warrants a conservative interpretation and
follow-up with a larger cohort.

At least three association signals are shared between focal
epilepsy and genetic generalized epilepsy. The clearest over-
lapping signal remains the 2q24.3 locus, as we reported pre-
viously15. However, this association signal is complex and we
demonstrate that the locus consists of at least two independent
signals (Supplementary Fig. 3). Our Hi-C chromatin analysis
suggests the complexity includes levels of functional association
to SCN2A and SCN3A, that are located more distally to the
SCN1A locus. Mutations in SCN2A and more recently SCN3A are
established monogenic causes of epileptic encephalopathy that,
like SCN1A, cause dysfunction of the encoded ion-channels,
which is believed to disturb the fine balance between neuronal
excitation and inhibition. This may involve independent variation
that either affects regulation of SCN1A, SCN2A, or SCN3A
independently. However, the complex association may also reflect
multiple rare risk variations, and large resequencing studies will
shed further light on this issue.

The number of association signals we detected and increased
power relative to our previous meta analysis15 allowed us to
explore the biological mechanisms behind the observed genetic
associations. We show that the signals converge on the dorso-
lateral prefrontal cortex as the tissue in which most functional
effect is observed; this is broadly consistent with the importance
of the frontal lobes in generalized epilepsies. Indeed, our analyses
of the epigenetic markers H3K27ac and H3K4me1, TWAS, and
tissue-specific heritability enrichment analysis all point towards
epigenetic regulation of gene expression in the dorsolateral pre-
frontal cortex as a potential pathophysiological mechanism
underlying our epilepsy GWAS findings.

Altogether, we found 16 loci that are associated with the
common epilepsies. Our heritability analyses show that collec-
tively, common genetic variants explain a third of the liability for
genetic generalized epilepsy. Our analyses suggest that the asso-
ciated variants are involved in regulation of gene expression in
the brain. The 21 biological epilepsy candidate genes implicated
by our study have diverse biological functions, and we show that
these are enriched for known epilepsy genes and targets of cur-
rent antiepileptic drugs. Our analyses provide evidence for
pleiotropic genetic effects that raise risk for the common epi-
lepsies collectively, as well as variants that raise risk for specific
epilepsy syndromes. Determining the shared and unique genetic
basis of epilepsy syndromes should be of benefit for further
stratification and eventually lead to possible applications for
improved diagnosis, prognosis, and treatment. Future studies
including pharmacoresponse data, imaging, and other clinical
measurements have the potential to further increase the benefit of
these studies for people with epilepsy. In combination, these

findings further our understanding of the complex genetic
architecture of the epilepsies and could provide leads for new
treatments and drug repurposing.

Methods
Ethics statement. We have complied with all relevant ethical regulations. All study
participants provided written, informed consent for use of their data in genetic
studies of epilepsy. For minors, written informed consent was obtained from their
parents or legal guardian. Local institutional review boards approved study pro-
tocols at each contributing site.

Cohorts and phenotype definition. A list of the sites included in this study is
described in Supplementary Table 6. We classified seizures and epilepsy syndromes
according to the classification and terminology outlined by the ILAE15,54. For all
cases, epilepsy specialists assessed each phenotype at the contributing site. Indi-
viduals with epilepsy were initially assigned to one of three phenotypic categories:
genetic generalized epilepsy, focal epilepsy, or unclassified epilepsy. Based on EEG,
MRI and clinical histories we further classified our cohort into the epilepsy sub-
types listed in Supplementary Table 1. We used a combination of population-based
datasets as controls. Some control cohorts were screened by questionnaire for
neurological disorders. 53.4% of cases were female compared to 51.6% of controls.

Study design. We conducted a case-control study in subjects of Caucasian, Asian
(Han Chinese) and African-American ethnicities. Our primary analyses were
structured to test common genetic variants for association with epilepsy according
to broad epilepsy phenotypes. We pooled cases from cohorts of the same ethnic
group to perform linear mixed model analysis, followed by subsequent meta-
analyses of regression coefficients across the three ethnic groups. Our secondary
analyses tested for associations with specific syndromes of genetic generalized
epilepsy (childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic
epilepsy, and generalized tonic-clonic seizures alone) and phenotypes of focal
epilepsy (lesion negative, focal epilepsy with hippocampal sclerosis, and focal
epilepsy with other lesions). The secondary analyses were limited to Caucasian
subjects due to sample size. We prioritized the results of the GWAS by incor-
porating eQTL information, transcriptome-wide analysis, and biological annota-
tion. Finally, we estimated the genetic correlation of epilepsy phenotypes using
Linkage-Disequilibrium Adjusted Kinships (LDAK).

Genotyping. The EpiPGX samples were genotyped at deCODE Genetics on Illu-
mina OmniExpress-12 v1.1 and OmniExpress-24 v1.1 single nucleotide poly-
morphism (SNP) arrays. The EPGP samples were genotyped on Illumina
HumanCore beadchips at Duke University, North Carolina. The remainder of the
samples were genotyped on various SNP arrays, as previously published15.

Genotyping quality control and imputation. Quality control of genotyping was
performed separately for each cohort using PLINK 1.955. Each genotype cohort was
temporarily merged with a genetically similar reference population from the 1000
Genomes Project (CEU, CHB, or YRI). A test for Hardy–Weinberg equilibrium
(HWE) was performed and SNPs significant at p < 1 × 10−10 were removed. All
samples and all SNPs with missing genotype rate >0.05 and all SNPs with minor
allele frequency (MAF) <0.01 were removed. Next, we pruned SNPs using the
PLINK --indep-pairwise command (settings: window size 100 kb, step size 25, R2 >
0.1). Using this subset of SNPs, we removed samples with outlying heterozygosity
values (>5 SD from the median of the whole cohort). Identity by descent (IBD) was
calculated in PLINK to remove sample duplicates (>0.9 IBD) and to identify cryptic
relatedness. We removed one from each sample pair with IBD>0.1875, with the
exception of the EPGP familial epilepsy cohort. Subjects were removed if sex
determined from X-chromosome genotype did not match reported gender. Array-
specific maps were used to update all SNPs positions and chromosome numbers to
the Genome Reference Consortium Human Build 37 (GRCh37), and remove all A/
T and C/G SNPs to avoid strand issues. We applied pre-imputation checks
according to scripts available on the website of Will Rayner of the Wellcome Trust
Centre for Human Genetics (www.well.ox.ac.uk/~wrayner/tools/) to remove SNPs
with allele frequencies deviating >20% from the frequency in the Haplotype
Reference Consortium. Samples were submitted to the Sanger Imputation Service
(https://imputation.sanger.ac.uk/)56. We selected the Human Reference Con-
sortium (release 1.1; n= 32470) dataset as reference panel for Caucasian and Asian
datasets and the African Genome Resources (n= 4956) for the African-American
datasets. Post-imputation quality control filters were applied to remove SNPs
within each imputed cohort with an imputation info score <0.9 or HWE p<1e-6.
Imputed genotype dosages with a minimum certainty of 0.9 per subject were
converted to hard-coded PLINK format after which all samples were pooled into a
single cohort. We performed a principal components analysis using GCTA. From
the PCA results we stratified our subjects into three broad ethnic groups (Cau-
casian, Asian and African) while removing extreme outliers. After stratifying by
ethnicity, we removed SNPs with HWE p < 1e-6, call rate <0.95 or MAF<0.01. In
total 816 subjects out of 45705 subjects were filtered out by quality control pro-
cedures, leaving 44889 subjects for analyses.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-07524-z

8 NATURE COMMUNICATIONS |          (2018) 9:5269 | DOI: 10.1038/s41467-018-07524-z | www.nature.com/naturecommunications

http://www.well.ox.ac.uk/~wrayner/tools/
https://imputation.sanger.ac.uk/
www.nature.com/naturecommunications


Study power. We estimated using PGA57 that the study had 80% power to detect a
genetic predictor of relative risk for all epilepsy (approximated to odds ratio) ≥1.45
with MAF= 1% and an alpha level of 5 × 10−8. We estimated that our meta-
analyses had 80% power to detect genome-wide significant SNPs of MAF= 1%
with relative risks ≥1.5 and ≥1.8, for focal and generalized epilepsy respectively (see
Supplementary Figure 15). Our analysis of generalized epilepsy sub-phenotypes
had 80% power to detect genome-wide significant SNPs of MAF= 1% with relative
risks ≥2.6, ≥3.3, and ≥2.4 for CAE, JAE, and JME respectively. Our analysis of focal
epilepsy sub-phenotypes had 80% power to detect genome-wide significant SNPs of
MAF= 1% with relative risks ≥1.9, ≥2.8, and ≥1.9 for focal epilepsy lesion negative,
focal epilepsy with hippocampal sclerosis and focal epilepsy with lesion other than
hippocampal sclerosis, respectively.

Statistical analyses. Association analyses were conducted within the three
ethnic subgroups using a linear mixed model in BOLT-LMM58. A subset of SNPs,
used to correct for (cryptic) relatedness and population stratification by BOLT-
LMM, were derived by applying SNP imputation info score >0.99, MAF >0.01, call
rate >0.99 before pruning the remaining variants using LDAK with a window size
of 1 Mb and R2 > 0.243. All analyses included gender as a covariate and the
threshold for statistical significance was set at 5 × 10−8. We compared χ2 values of
the BOLT-LMM output between all pairs of SNPs in high LD (R2 > 0.4) and
removed pairs of SNPs with extreme χ2 differences using a formula that scales

exponentially with magnitude of χ2 and LD: χ2 difference cutoff=
3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SNP1�χ2þSNP2�χ2
2

p

ðR2Þ2 ;

where SNP1- χ2 and SNP2− χ2 are the χ2-statistic of the two SNPs in each pair and
R2 is their squared correlation (LD). We tested the homogeneity of all SNPs by
splitting the pooled cohort into 13 distinct clusters of ethnically matched cases
and controls and removed SNPs exhibiting significant heterogeneity of effect
(Phet < 1 × 10−8). Fixed effects, trans-ethnic meta-analyses were conducted using
the software package METAL59. Manhattan plots for all analyses were created
using qqman. Considering that our study had unequal case-control ratios, we
calculated the effective sample size per ethnicity using the formula
recommended by METAL: Neff= 4/(1/Ncases+ 1/Nctrls). Since >95% of all cases
were Caucasian, we included all SNPs that were present in at least the Caucasian
dataset (~5 million).

Conditional association analysis was performed with PLINK on loci containing
significant SNPs to establish whether other genetic variants in the region (500 Kb
upstream and downstream) were independently associated with the same
phenotype. The conditional threshold for significance was set at 2 × 10−5, based on
approximately 2500 imputed variants per 1MB region.

Assessment of inflation of the test statistic. Potential inflation of the test sta-
tistic was assessed per ethnicity and phenotype by calculating the genomic inflation
factor (λ; the ratio of the median of the empirically observed distribution of the test
statistic to the expected median) and the mean χ2. Since λ is known to scale with
sample size, we also calculated the λ1000, i.e λ corrected for an equivalent sample
size of 1000 cases and 1000 controls60. We observed some inflation of the test
statistic (λ > 1) across the different phenotypes (Supplementary Table 7), suggesting
either polygenicity or confounding due to population stratification or cryptic
relatedness. Therefore, we applied LD score regression61, estimating LD scores
using matched populations from the 1000 GP (EUR for Caucasians (n= 669), AFR
for African-Americans and EAS for Asians). These LDSC results suggested that
inflation of the test statistic was primarily due to polygenicity for most analyses
(Supplementary Table 7). Only the Caucasian focal and all epilepsy analyses had
LDSC intercepts >1.1, suggesting confounding or an incomplete match of the LD-
score reference panel. Our focal and all epilepsy analyses included cohorts from
various Caucasian ethnicities, including Finnish and Italian focal epilepsy cohorts,
and it has been shown that LD differs considerably between Finnish and Italian
populations61. Therefore, we consider an incomplete match of the LD-score
reference panel the most likely cause of the observed inflation, since we used a
mixed-model analysis that corrects for population stratification and cryptic
relatedness58.

Gene mapping and biological prioritization. Genome-wide significant loci of all
phenotypes were mapped to genes in and around these loci using FUMA35.
Genome-wide significant loci were defined as the region encompassing all SNPs
with P < 10-4 that were in LD (R2 > 0.2) with the lead SNP (i.e. the SNP with the
lowest P-value in the locus with P < 5 × 10−8). Positional mapping was performed to
map genes that were located within 250 kb of these loci. Additionally, we mapped
genes that were farther than 250 kb away from the locus using chromatin interac-
tion data to identify genes that show a significant 3D interaction (PFDR < 10−6)
between their promoter and the locus, based on Hi-C data from dorsolateral
prefrontal cortex, hippocampus, and neural progenitor cells62. This resulted in a
total of 146 mapped genes across all phenotypes, of which some genes (e.g. SCN1A)
were associated with multiple epilepsy phenotypes.

We next devised various prioritization criteria to prioritize the most likely
biological candidate genes out of the 146 mapped genes, similar to previous
studies17,18,63, based on the following 6 criteria:

1. A significant correlation between the epilepsy phenotype and expression of
the gene, as assessed with a transcriptome-wide association study (TWAS).
Default settings of the FUSION software package64 were used to impute gene-
expression based on our GWAS summary statistics and RNA-sequencing data
from dorsolateral prefrontal cortex tissue (n= 452, CommonMind Con-
sortium65), after which the association between the epilepsy phenotype with
gene-expression was calculated. It was possible to test the TWAS expression
association for 53 out of our 146 mapped genes, since only the expression of
these 53 genes was significantly heritable (heritability p-value <0.01, as
suggested by Gusev et al.64). We set a Bonferroni corrected p-value threshold
of 0.05/53= 0.00094 to define significant TWAS associations.

2. Genes for which a SNP in the genome-wide significant locus (as defined
above) is a significant cis-eQTL (Bonferroni corrected P < 8 × 10−10)23 based
on data from the ROS and MAP studies, which includes RNA-sequencing
data from 494 dorsolateral prefrontal cortex tissues23.

3. The gene is preferentially expressed in the brain. This was assessed by using
gene-expression data from all 53 tissues of the Gene-Tissue expression
(GTEx) Consortium66. Genes were considered to be preferentially expressed
in the brain when the average expression in all brain tissues was higher than
the average expression in non-brain tissues.

4. Genes for which a SNP in the genome-wide significant locus (as defined
above) is a missense variant, as annotated by ENSEMBL67.

5. Genes prioritized by protein-protein interaction network, as calculated using
the default settings of DAPPLE68, which utilizes protein–protein interaction
data from the InWeb database69. The 146 genes implicated by our GWAS
were input after which DAPPLE assessed direct and indirect physical
interactions to create a protein-interaction network. Next, DAPPLE assigned a
significance score to each gene according to several connectivity parameters;
genes with a corrected P < 0.05 were considered to be prioritized by DAPPLE.

6. Genes for which a nervous system or behavior/neurological phenotype was
observed in knockout mice. Phenotype data of knockout mice was
downloaded from the Mouse Genome Informatics database (http://www.
informatics.jax.org/) on 17 January 2018 and nervous system (phenotype ID:
MP:0003631) and behavior/neurological phenotype (MP:0005386) data were
extracted.

All 146 genes were scored based on the number of criteria met (range 0–6 with
an equal weight of 1 per criterion), see Supplementary Data 1 for a full list. We
considered the gene(s) with the highest score in each locus as the most likely
biological epilepsy candidate gene. Multiple genes in a locus were selected if they
had an equally high score whilst no genes were selected in a locus if all genes within
it had a score <2, similar to previous studies17,18.

Gene co-expression analysis for epilepsy with brain-coX. In silico gene
prioritization was performed using brain-coX25. brain-coX uses a compendium
of seven large-scale normal brain gene expression data resources to identify co-
expressed genes with a set of given genes (known, or putative, disease
causing genes) likely to encapsulate gene expression networks involved in
disease. This approach can identify, and thus leverage networks that are not
currently known and not present in available resources such as PPI networks
and is a complementary approach to these. We used a set 102 monogenic
epilepsy genes (Supplementary Table 8) as the set of known disease genes. An
FDR of 0.2 was used to identify genes that significantly co-express with the known
set of genes. Prioritization in at least three datasets at an FDR of 0.2 led to a
specificity of 0.925.

In the first analysis we used a set of 16 candidate epilepsy genes identified by the
GWAS analysis and prioritized using additional methods (Fig. 2). These excluded
any genes already included in the set of known epilepsy genes (Supplementary
Table 8). Supplementary Fig. 9 shows the gene co-expression pattern using the
weighted average gene co-expression across all seven datasets for candidate genes
from the GWAS that show significant gene co-expression with any of the 102
known epilepsy genes.

In the second analysis we used the set of all the 146 candidate genes identified in
the GWAS analysis (Supplementary Data 1). Only 140 of these were identified as
having available expression data in the gene expression resources. Many genes
showed some evidence of gene co-expression but few showed co-expression in
more than 2 datasets (18 out of 140). BCL11A (6) and GJA (6) remain the most
robust candidate genes co-expressed with known epilepsy genes. The complete
results are shown in Supplementary Table 9.

Functional annotations. We annotated all genome-wide significant SNPs (p<5×10−8)
from all phenotypes using the Variant Effect Predictor of ENSEMBL67 and the
RegulomeDB database28. We annotated chromatin states using epigenetic data
from the NIH Roadmap Epigenomics Mapping Consortium70 and ENCODE71.
We used FUMA35 to annotate the minimum chromatin state (i.e. the most active
state) across 127 tissues and cell types for each SNP, similar to a previous study27.

Heritability enrichment of epigenetic markers and gene-expression. We used
stratified LD-score regression72 to assess tissue-specific heritability enrichment of
epigenetic markers in 88 tissues, using standard procedures29. We used the same
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settings and pre-calculated weights that accompanied the paper by Finucane et al.
to calculate the heritability enrichment of all epilepsy, focal epilepsy and general-
ized epilepsy, based on epigenetic data of 6 chromatin markers in 88 tissues from
the Roadmap Consortium and gene-expression data in 53 tissues from the GTEx
Consortium.

Enrichment analyses. Hypergeometric tests were performed with R (version 3.4.0)
to assess whether the genes mapped to genome-wide significant loci and the subset
of prioritized biological epilepsy genes (see above) were enriched for: (i) known
monogenic epilepsy genes (n= 102) and (ii) known anti-epileptic drug target genes
(n= 64), relative to the rest of the protein-coding genes in the genome (n= 19180).
We supplemented the list of 43 known dominant epilepsy genes36 with an addi-
tional 59 monogenic epilepsy genes from the GeneDX comprehensive epilepsy
panel (www.genedx.com). We compiled the list of drug target genes from73, sup-
plemented with additional FDA & EMA licensed AEDs. The full list of gene targets
considered in each analysis are listed in Supplementary Tables 8 and 10.

Enrichment analyses corrected for gene size. Brain expressed genes are known
to be larger in size than non-brain expressed genes. To assess whether gene size
could be a cause of bias for our enrichment analyses, we first assessed whether the
size of the genes mapped in our analyses was different than non-mapped genes in
the genome. We found that the size of the 146 genes mapped to genome-wide
significant loci was 65.6 kb, whereas the average gene size of all other protein-
coding genes is on average 62.2 kb, suggesting there is no strong bias towards
preferentially mapping loci to small or large genes.

We also observed that the 102 established monogenic epilepsy genes are on
average 2.44 times longer than non-epilepsy genes (152.0 kb vs 62.2 kb). As a
conservative approach to correct for this size difference, we have used the
Wallenius’ noncentral hypergeometric distribution, as implemented in the R-
package ‘BiasedUrn’. Using this distribution, we repeated our hypergeometric
analyses under the conservative assumption of a 2.42 times increased likelihood of
mapping epilepsy genes as opposed to non-epilepsy genes. Using this distribution,
the 146 genes that were mapped to genome-wide significant loci were significantly
enriched for monogenic epilepsy genes (Wallenius’ noncentral hypergeometric test
p= 8.3×10−3). When limiting our results to the 21 biological prioritized genes, the
enrichment of monogenic epilepsy genes became more significant (Wallenius’
noncentral hypergeometric distribution p= 5.3×10−4).

Similarly, we observed that the targets of AEDs are on average 2.43 times longer
than non-AED target genes (151.8 kb vs 62.4 kb). When correcting for this gene-
size difference under the assumption of a 2.43 times increased likelihood of
mapping our genome-wide significant loci to AED target genes, we find that the
146 mapped genes were significantly enriched for AED target genes (Wallenius’
noncentral hypergeometric test p= 1.7×10−5). When limiting our results to the 21
biological prioritized genes, the enrichment of AED target genes became more
significant (Wallenius’ noncentral hypergeometric test p= 1.0×10−8).

Connectivity mapping. Connectivity mapping was performed using our GWAS
results in order to identify drugs which can potentially be repurposed for the
treatment of epilepsy, enabling significant savings in the time and cost of anti-
epileptic drug development. Recently, So et al. identified candidate drugs that could
be repurposed for the treatment of schizophrenia by using GWAS results to impute
the gene-expression changes associated with the disease and, then, identifying
drugs that change gene-expression in the opposite direction in cell lines38. Inter-
estingly, the set of candidate drugs they identified was significantly enriched with
antipsychotics. We adopted a similar strategy.

Gene-expression changes associated with epilepsy were imputed from the all
epilepsy GWAS summary statistics using the FUSION software package64 and
dorsolateral prefrontal cortex tissue RNA-sequencing data (n= 452,
CommonMind Consortium65). We calculated z-scores for the association between
epilepsy and changes in expression of all 5261 significantly heritable genes, using
default settings of the FUSION software package as described above64. The top 10%
of the gene-expression changes most strongly associated with epilepsy were used to
construct the disease signature. Then, we identified drugs that change gene-
expression in the opposite direction in cell lines, using the Combination
Connectivity Mapping bioconductor package and the Library of Integrated
Network-Based Cellular Signatures (LINCS) data74. This package utilizes cosine
distance as the (dis)similarity metric75,76. A higher (more negative) cosine distance
value indicates that the drug induces gene-expression changes more strongly
opposed to those associated with the disease. A lower (more positive) cosine
distance value indicates that the drug induces gene-expression changes more
similar to those associated with the disease. In the LINCS dataset, some drugs have
been profiled in more than one cell line, concentration, and time-point. For such
drugs, the highest absolute cosine distance, whether positive or negative, was
selected, as this value is less likely to occur by chance. The output of this analysis
comprised 24,051 drugs or ‘perturbagens’, each with a unique cosine distance value.

To demarcate the set of drugs predicted to significantly reverse epilepsy-
associated gene-expression changes, the threshold of statistical significance for
cosine distance values was determined. For this, we performed 100 permutations of
the disease gene-expression z-scores and compared them to drug gene-expression

signatures. We combined the distribution of cosine distance values across all
permutations, such that the null distribution was derived from 2,405,100 cosine
distance values under H0. The cosine distance value corresponding to α of 0.05 was
−0.386. Of the drugs with a cosine distance less than −0.386, thirty were
experimentally-validated drug repurposing candidates from the Prescribable Drugs
with Efficacy in Experimental Epilepsies (PDE3) database—a recently published
systematic and comprehensive compilation of licenced drugs with evidence of
antiepileptic efficacy in animal models77. We determined whether this is more than
expected by chance, by creating 1,000,000 random drug-sets of the same size as
drugs with a significant cosine distance. Next, we counted the number of subsets
containing an equal or higher number of experimentally-validated drug
repurposing candidates, as those found within drugs with a significant cosine
distance. This permutation-based p-value was 1.0 × 10−6.

Supplementary Table 4 lists the 30 candidate re-purposable drugs that are
predicted to significantly reverse epilepsy-associated gene-expression changes, have
published evidence of antiepileptic efficacy in animal models, and are already
licensed for the treatment of other human diseases. Of this list, 22 drugs have
corroborated evidence of antiepileptic efficacy from multiple published studies or
multiple animal models. For each drug, we list the studies demonstrating
antiepileptic efficacy in animal models, the animal models used, and the licensed
indication(s).

Validation of connectivity mapping results. Validation of the connectivity
mapping results was performed using two non-overlapping sets of drugs with
known antiepileptic efficacy: (1) a set of ‘clinically-effective’ drugs that have anti-
epileptic efficacy in people, and (2) a set of ‘experimentally-validated’ drugs that
have antiepileptic efficacy in animal models. For the clinically-effective drug-set, we
used the names of all recognized antiepileptic drugs, as listed in category N03A of
the World Health Organization (WHO) Anatomical Therapeutic Chemical (ATC)
Classification System, and of benzodiazepines and their derivatives (ATC codes
N05BA and N05CD), and of barbiturates (ATC code N05CA), as these drugs are
known to have antiepileptic efficacy in people. For the experimentally-validated
drug-set, we extracted drug names from the PDE3 database77.

We determined whether, in our results, clinically effective drugs are ranked
higher than expected by chance. The median rank of all drugs was 12,026. The
median rank of clinically effective drugs was 3725. Hence, the median rank of
clinically-effective drugs was 8301 positions higher than that of all drugs. A
permutation-based p-value was determined by calculating the median ranks of
1,000,000 random drug-sets, each equal in size to the number of clinically effective
drugs in the LINCS database. This permutation-based p-value was <1.0 × 10−6.
Similarly, we determined whether, in our results, experimentally-validated drugs are
ranked higher than expected by chance. The median rank of experimentally-
validated drugs was 6372. Hence, the median rank of experimentally-validated drugs
was 5654 positions higher than that of all drugs. A permutation-based p-value was
determined by calculating the median ranks of 1,000,000 random drug-sets, each
equal in size to the number of experimentally-validated drug repurposing candidates
in the LINCS database. This permutation-based p-value was <1.0 × 10−6.

Heritability analysis. Linkage-Disequilibrium Adjusted Kinships (LDAK42,43) was
used to calculate SNP-based heritability of all epilepsy phenotypes. Since these
analyses require homogeneous cohorts, only Caucasian subjects (which represent
>95% of epilepsy cases) were used for these analyses. SNP based heritabilities (h2o)
were converted to liability scale heritability estimates (h2L) using the formula:8

h2L ¼ h2o � K2ð1� KÞ2=pð1� pÞ � Z2, where K is the disease prevalence, p is the
proportion of cases in the sample, and Z is the standard normal density at the
liability threshold. We estimated disease prevalence based on a combination of
previous studies8,78,79 (Supplementary Table 11). Although prevalence estimates
vary between studies, the h2L estimate has been shown to be fairly robust to such
differences8. Similarly, we have modeled h2L using half and double of our prevalence
estimates which lead to h2L estimates that varied between 0.4 and 11% (Supple-
mentary Table 11). In addition, we compared the heritability estimates from LDAK
with the alternative methods BOLT-REML80 and LDSC58 (Supplementary
Table 12). Next, LDAK was used to calculate the genetic correlation between the 7
epilepsy subtypes. Subjects with a diagnosis of both CAE and JAE were excluded
from heritability and genetic correlation analyses.

We computed the genetic correlation between all, focal and genetic generalized
epilepsy with other brain diseases and traits using LDSC, as implemented in LD
hub81. LD hub is a centralized database that contains publicly available GWAS
summary statistics from various diseases and traits. We selected published GWAS
of psychiatric, neurological, auto-immune diseases with known brain involvement
and cognitive/behavioral traits from LD hub. We contacted the authors of
published GWAS to provide us with summary statistics when no summary
statistics were available on LDhub or when a more recent GWAS of a disease/trait
was published that was not included on LDhub. The Caucasian subset of our data
was used for all analyses and only other GWAS with primarily Caucasian subjects
were included in our analyses. We used a conservative Bonferroni correction to
assess significance of genetic correlations (p= 0.05/48= 0.001).

Multi-trait analysis of GWAS (MTAG)46 was used with default settings to
increase the effective sample size from our Caucasian all and generalized epilepsy
GWAS by pairing it with the significantly correlated GWAS on cognitive ability (as
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assessed above) with a larger sample size (n=78,307). MTAG utilizes the fact that
estimations of effect size and standard error of a primary GWAS, in this case
epilepsy, can be improved by matching them to a genetically correlated secondary
GWAS, in this case cognitive ability.

Data availability
The GWAS summary statistics data that support the findings of this study are
available at http://www.epigad.org/gwas_ilae2018_16loci.html.
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