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Abstract Ordinary differential equation models have become a standard tool for the mechanistic descrip-
tion of biochemical processes. If parameters are inferred from experimental data, such mechanistic models
can provide accurate predictions about the behavior of latent variables or the process under new experimen-
tal conditions. Complementarily, inference of model structure can be used to identify the most plausible
model structure from a set of candidates, and, thus, gain novel biological insight. Several toolboxes can in-
fer model parameters and structure for small- to medium-scale mechanistic models out of the box. However,
models for highly multiplexed datasets can require hundreds to thousands of state variables and parameters.
For the analysis of such large-scale models, most algorithms require intractably high computation times.
This chapter provides an overview of state-of-the-art methods for parameter and model inference, with an
emphasis on scalability.

1 Introduction

In systems biology, ordinary differential equation (ODE) models have become a standard tool for the anal-
ysis of biochemical reaction networks [1]. The ODE models can be derived from information about the
underlying biochemical processes [2, 3] and allow the systematic integration of prior knowledge. ODE mod-
els are particularly valuable as they can be used to predict the temporal evolution of latent variables [4, 5].
Moreover, they provide executable formulations of biological hypotheses and therefore allow the rigorous
falsification of hypotheses [6, 7, 8, 9, 10, 11], thereby deepening the biological understanding. Furthermore,
ODE models have been applied to derive model-based biomarkers [12, 13, 14], that enable a personalized
design of targeted therapies in precision medicine.

To construct predictive models, model parameters have to be inferred from experimental data. This infer-
ence requires the repeated numerical simulation of the model. Consequently, parameter inference is compu-
tationally demanding if the required computation time for the numerical solution is high. For many appli-
cations, small- and medium-scale models, i.e., models consisting of a small number of species belonging to
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the core pathway, accurate prediction and hypothesis testing [2, 15, 16, 17]. Low-dimensional models can be
derived directly or obtained from large-scale models by model reduction, e.g., by lumping multi-step reac-
tions to one-step reactions [18] or by assuming time-scale separation [19]. These small- and medium-scale
models can be analyzed using established toolboxes implementing state-of-the-art methods [20, 21, 22].

For models describing few conditions, e.g., the response of a single cell line to a small set of stimu-
lations, the lumping and ignoring of processes might be appropriate. Yet, if a model is to be used for a
wide range of conditions, e.g., to describe the responses of many cell lines to many different stimuli, a
detailed mechanistic description is required [4, 23, 24] as simplifications only hold for selected conditions.
Detailed mechanistic, generalizing models appear particularly valuable for precision medicine, where the
model must accurately predict treatment outcomes for many different patients [25]. These comprehensive
models, typically describing most species in multiple different pathways including respective crosstalk, can
easily describe thousands of molecular species involved in thousands of reactions with thousands of pa-
rameters. For such models, parameter inference is often intractable as it is prohibitively computationally
expensive [26, 27].

Beyond model parameters, also the model structure might be unknown, e.g., the biochemical reactions
or their regulations might be unknown [28, 29]. Then, inference of model structure can be used to generate
new mechanistic insights. For ODE models this can be achieved by constructing multiple model candidates
corresponding to different biological hypotheses. These hypotheses can be falsified using model selection
criteria such as the Akaike Information Criterion (AIC) [30], or Bayesian Information Criterion (BIC) [31].
For large models, a high number of mutually non-exclusive hypotheses is not uncommon and typically leads
to a combinatorial explosion of the number of model candidates (see, e.g., [32, 33, 34]). Computing the AIC
or BIC for all model candidates for comparison would require parameter inference for each model candidate
and may seem futile, given that parameter inference for a single model can already be challenging.

In this chapter, we will review scalable methods that render model parameter and model structure in-
ference tractable for large-scale ODE models, which have hundreds to thousands of molecular species,
biochemical reactions and parameters. For parameter inference, we will focus on different gradient-based
optimization schemes and describe their scaling properties with respect to the number of molecular species
and number of parameters. For inference of model structure, we will focus on complexity penalization
schemes that allow the simultaneous inference of model structure and parameters and thus scale better than
linearly with the number of model candidates.

2 Inference of Model Parameters

An ODE model describes the temporal evolution of the concentrations of nx different molecular species xi.
The dynamics of x are determined by the vector field f and the initial condition x0:

ẋ = f (t,x,θ), x(t0) = x0(θ). (1)

Both of these functions may depend on the unknown parameters θ ∈Θ ⊂ Rnθ such as kinetic rates. The
parameter domain Θ can constrain the parameter values to biologically reasonable numbers.

In general, x and f can also be derived from a discretization of a partial differential equation model [35,
36, 37, 38] or describe the temporal evolution of empirical moments of stochastic processes [39, 40, 41].

Experiments usually provide information about ny different observables yi which depend linearly or
nonlinearly on the concentrations x. A direct measurement of x is usually not possible. The dependence of
the observable on concentrations and parameters is described by

y(t,θ) = h(x(t,θ),θ). (2)

2.1 Problem Formulation

To build predictive models, the model parameters θ have to be inferred from experimental data. This infer-
ence problem is usually formulated as an optimization problem. In this optimization problem, an objective
function J(θ), describing the difference between measurements and simulation, is minimized. In the fol-
lowing, we will first formulate the optimization problem and then discuss methods to solve it efficiently.
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Experimental data are subject to measurement noise. A common assumption is that the measurement
noise for all time-points t j and observables yi is additive and independent, normally distributed for all time-
points:

ȳi j = yi(t j,θ)+ εi j, εi j
id∼N (0,σ2

i j(θ)). (3)

At each of the T time-points t j up to ny different measurements ȳi j can be recorded in the experimental
data D = {((ȳi j)

ny
i=1, t j)}T

j=1. As the standard deviation of the measurement noise is potentially unknown,
we model it as σi j(θ). This yields the likelihood function

p(D |θ) =
T

∏
j=1

ny

∏
i=1

1√
2πσ2

i j(θ)
exp

(
−1

2

(
ȳi j− yi(t j,θ)

σi j(θ)

)2
)
. (4)

Other plausible noise assumptions include log-normal distributions, which correspond to multiplicative
measurement noise [42]. Distributions with heavier tails, such as the Laplace distribution, can be used to
increase robustness to outliers in the data [43].

The model can be inferred from experimental data by maximizing the likelihood (4), which yields the
maximum likelihood estimate (MLE). However, the evaluation of the likelihood function, p(D |θ), involves
the computation of several products, which can be numerically unstable. Thus, the negative log-likelihood

J(θ) =− log(p(D |θ)) =1
2

ny

∑
i=1

T

∑
j=1

log
(
2πσ

2
i j(θ)

)
+

(
ȳi j− yi(t j,θ)

σi j(θ)

)2

(5)

is often used as objective function for minimization. As the logarithm is a strictly monotonously increasing
function, the minimization of J(θ) = − log(p(D |θ)) is equivalent to the maximization of p(D |θ). There-
fore, the corresponding minimization problem

θ∗ = argmin
θ∈Θ

J(θ), (6)

will infer the MLE parameters. If the noise variance σ2
i j does not depend on the parameters θ, (5) is a

weighted least-squares objective function. As we will discuss later, this least-squares structure can be ex-
ploited by several optimization methods.

If prior knowledge about the parameters is available, this can be encoded in a prior probability p(θ).
According to Bayes’ theorem [44], the posterior probability p(θ|D) is defined by:

p(θ|D) =
p(D |θ)p(θ)

p(D)
. (7)

The evidence p(D) is usually difficult to compute. However, as it is independent of θ, the respective term
can be omitted for parameter inference. This yields the objective function

J(θ) =− log(p(D |θ))− log(p(θ)), (8)

which corresponds to the log-posterior up to the constant log(p(D)). The respective optimization problem
yields the maximum a posteriori estimate (MAP).

2.1.1 Properties of the Optimization Problem

The optimization problem (5) is convex in yi(t j,θ), but usually non-convex in θ. Thus, the objective func-
tion J(θ) can possess local minima and saddle points. Local minima can be problematic as optimization
algorithms may get stuck, yielding a suboptimal agreement between experimental data and model simula-
tion. Interestingly, recent literature suggests that saddle points might affect the efficiency of optimization
more severely than local minima [46]. For unconstrained problems, saddle points and local minima are both
stationary points θ∗ at which the gradient vanishes

∇J(θ∗) = 0, (9)

i.e., they both satisfy a necessary local optimality condition (see Figure 1A left for an example). The suf-
ficient condition for a local minimum is the positive definiteness of the Hessian ∇2J(θ∗), which indicates
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Fig. 1 Overview of numerical methods and scaling properties for parameter inference. (A) Schematic scaling properties of
optimization. Icons and properties of local and global optimizations are shown on the right. (B) Examples of gradient-based
methods to determine parameter updates. Computation times of different approaches for gradient computation are shown on
the right. (C) Schematic scaling properties of simulation algorithms. Dense and sparse direct linear solvers are compared on
the right. Reordering was performed using the Approximative Minimum Degree (AMD) ordering algorithm [45]

that there are only directions of positive curvature. For a saddle point the Hessian ∇2J(θ∗) is indefinite or
semi-definite, which indicates that there may be directions of negative or zero curvature.

The dependence of the number of local minima and saddle points for ODE models on the number of
parameters is poorly understood. For deep learning problems, an exponential increase in the number of local
minima with the number of parameters is primarily attributed to parameter permutation symmetries [47],
which are rare in ODE models. Yet, for deep learning problems, saddle points are also problematic as
they affect the performance of local optimization methods [46]. Arguments for an exponential increase in
stationary points with the number of parameters are often based on random matrix theory [46] and rely
on strong assumptions on the distribution of entries in the Hessian of the objective function J(θ). These
assumptions have to be rigorously checked as they can lead to wrong conclusions, as shown for the stability
of ODEs [48]. As the objective function J(θ) depends on the solution to an ODE, the validity of such
assumptions is not evident and difficult to assess rigorously. For saddle points, we are not aware of any
rigorous evaluation. Thus, the exact dependence of the number of local minima and saddle points on the
parameter dimensionality remains elusive.
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Table 1 Examples for local and global, as well as derivative-free and gradient-based optimization algorithms

Derivative-Free Gradient-Based
Pattern Search [53] Gradient Descent [54]

Local Nelder-Mead [55] Newtons Method [54]
Hill Climbing [56] Levenberg-Marquardt [57, 58]

Genetic Algorithm [59] Multi-Start [51]
Global Particle Swarm [60] Scatter Search [61]

Simulated Annealing [62] Clustering Search [63]

2.2 Optimization Methods

The infamous No Free Lunch Theorem for optimization [49] states that there exists no single optimization
method that performs best on all classes of optimization problems. Accordingly, empirical evidence as well
as a careful analysis of the problem structure should be considered when selecting a suitable optimization
method. The plethora of different optimization methods commonly used in systems biology can be classified
as

1. local and global methods, as well as
2. gradient-based and derivative-free methods.

Local methods search for local optima, while global methods search for global minima. The separation into
local and global methods is often not clear-cut. Thus, methods, such as simulated annealing, are sometimes
classified as local and sometimes as global methods [50, 51, 52]. Therefore, the following paragraph con-
tains many soft statements that should only serve as guidelines. Gradient-based methods exploit first and
potentially higher order derivatives of the objective function, while derivative-free methods solely use the
objective function.

Local methods construct a sequence of trial points that successively decrease the objective function
values (See Figure 1A middle). This procedure is usually faster than global methods, but can get stuck in
local minima [64]. Most local derivative-free methods are direct search methods [53]. In contrast to local
methods, global methods often rely on a population of trial points which are iteratively refined (see Figure
1A right). This can increase the chance of reaching the global minimum, but usually slower [64]. Global
derivative-free methods mostly employ stochastic schemes, which are often inspired by nature [65], while
global gradient-based methods usually perform repeated local optimizations. Examples of local and global
as well as respective derivative-free and gradient based methods are given in Table 1.

Not all global methods are guaranteed to converge to the global minimum [51]. Convergence to the
global minimum is only guaranteed for rigorous and (asymptotically) complete global methods, such as
branch-and-bound [66] and grid search [51]. As long as only local information, i.e., function values and
respective parameter derivatives, is available, the termination of these methods will require exponentially
expensive dense search [51, 67]. The termination of global methods is crucial, as it might be relatively
easy to find the global minimum but comparably hard to guarantee that it is indeed the global minimum.
Global information, such as Lipschitz constants, is rarely available for ODE problems, such that dense,
i.e., exhaustive, search would be necessary for guaranteed convergence. As the parameters θ are generally
continuous, dense search is rarely possible. Instead, meta-heuristics for termination and optimization are
employed.

For many meta-heuristic methods, there exists little to no theoretical justification or convergence
proofs [51]. Others may converge with probability arbitrarily close to 1, but might only do so after in-
finitely many function evaluations. In practice, many meta-heuristic algorithms even fail to work reliably
for smooth, convex problems with few parameters [68]. In fact, for some algorithms, non-convergence
can even be proven mathematically [69]. Eventually, even a rigorous convergence guarantee will be use-
less if the convergence rate is too slow for practical purposes. For most methods, there exists a plethora
of disparate variants, which renders comprehensive analysis of convergence proofs and convergence rates
challenging. This is quite unsatisfying from a theoretical perspective. In practice, reasonable results can be
obtained using global optimization methods [70, 71, 72]. Yet, usually no guarantees of global optimality
can be given.

For the remainder of this chapter we will primarily focus on global gradient-based optimization methods,
which typically rely on repeated local optimization. For these meta-heuristic methods, a local optimization
is started at (random) points in parameter space. The termination of these methods usually relies on a
specified maximum number of local optimizations, but also Bayesian methods can be applied [73]. For the
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convergence to the global minimum, the local optimization has to be started in the region of attraction of
the global optimum. Thus, the probability of convergence will depend on the relative volume of the region
of attraction with respect to the search domain θ. Several adaptive methods, such as scatter search [61] or
clustering search [63], try to improve the chance of starting a local optimization in the region of attraction
of the global optimum, but rely on the embeddedness of the global optimum [74]. The embeddedness of the
global optimum characterizes how well local minima cluster and determines how indicative the objective
function value at the starting point is of the chance of converging to the global minimum. We are not aware
of any analysis of embeddedness of the global minimum for models in systems biology, but it is likely to
be problem dependent. The resulting rate of convergence will be determined by the rate of convergence of
the local method and the probability to sample a starting point from the region of attraction of the global
optimum.

For most methods that employ repeated local optimization, the individual local optimization runs can
trivially be run in parallel [75], which enables efficient use of high performance computing structure. More-
over, multiple global runs can be asynchronously parallelized to enhance efficiency through cooperativ-
ity [76]. Following recent studies [38, 71], we deem this repeated local optimization a suitable candidate
for scalable optimization and will in the following discuss the properties of respective local gradient based
methods (see Figure 1B) in more detail.

2.2.1 Line-Search Methods

Line-search methods are local optimization methods that iteratively update the parameter values in direction
s ∈ Rnθ , such that the objective function value J(θ) is successively reduced:

θk = θk−1 + γ · s s.t. J(θk)< J(θk−1),γ > 0, (10)

where γ ∈R+ controls the step size. For line-search, the update direction s is fixed first and then a suitable γ

is determined. The alternative to line-search methods are trust-region methods which first define a maximum
step length and then find a suitable update direction. We will discuss trust-region methods in more detail
in the following subsection. The classification in line-search or trust-region methods can be ambiguous and
may depend on the specific implementation of the method. This will be discussed in more detail at the end
of this subsection. In this chapter, we will follow the classification of Nocedal and Wright, who also provide
an excellent discussion of the topic [54].

Line-search methods are particularly appealing as they reduce the possibly high-dimensional optimiza-
tion problem to a sequence of one-dimensional problems of finding good values for γ . To ensure con-
vergence, γ has to meet certain conditions [77, 78]. Methods to determine the step size that satisfy these
conditions are sometimes referred to as globalization techniques. Note that enforcing these conditions only
guarantees convergence to a local stationary point, i.e., a local minimum, local maximum or saddle point,
but not to a global minimum [54].

It is more or less well established that for local optimization, gradient-based methods should be used
when applicable. Kolda et al. state in their review on direct search methods that "Today, most people’s first
recommendation (including ours) to solve an unconstrained problem for which accurate first derivatives
can be obtained would not be a direct search method, but rather a gradient-based method" [79]. Lewis et
al. claim that "the success of quasi-Newton methods, when applicable, is now undisputed" [80]. Gradient-
based methods, such as quasi-Newton methods, are applicable when the gradient (and the Hessian) of the
objective function is continuous and can be computed accurately. By definition, the gradient ∇J(θ) is only
continuous with respect to parameters when the objective function is continuously differentiable. Higher
order continuous differentiability corresponds to continuity of the respective higher order derivatives, such
as the Hessian. For many noise distributions, such as the normal and log-normal distribution, the negative
log-likelihood is infinitely often continuously differentiable with respect to the observables, given that a
finite number of measurements is considered. Thus, the continuity of derivatives of the objective function
(5) only depends on the continuity of derivatives of the model output (2). However, for particular noise
distributions, such as the Laplace distribution, the negative log-likelihood may not be differentiable with
respect to the model outputs. In the following, we will assume that both, (2) and (5), are twice continuously
differentiable with respect to the parameters.

For continuously differentiable objective functions, an intuitive choice for s is the gradient

sgrad =−∇J(θk−1). (11)
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Optimization methods using this search direction are called gradient descent methods. Locally, the gradient
provides the steepest descent with respect to the euclidean norm. This means that the gradient points in
the direction d, with unit length in the euclidean norm, which yields the strongest decrease of J(θ) in a
neighborhood around θ:

∇J(θ)
‖∇J(θ)‖2

= argmin
d:‖d‖2=1

∇J(θ)T d. (12)

Yet, depending on the objective function, this neighborhood might be arbitrarily small, resulting in small
values γ . This, for instance, is the case for objective functions with curved ridges, e.g., the Rosenbrock
function [81], which can arise from (non-linear) dependencies between parameters. Moreover, gradient
descent methods take small steps in the vicinity of saddle points [46], which can lead to high iteration
numbers or premature termination in individual optimization runs.

The issue of small step sizes is addressed in the Newton’s method by including the Hessian ∇2J(θk−1),
which encodes the curvature, in the calculation of the search direction s:

snewt =−∇
2J(θk−1)

−1
∇J(θk−1). (13)

For the classical Newton’s method, the step size is fixed to γ = 1. However, many modern implementations
implement Newton’s method as line-search using 1 as default value and adapting the step size if neces-
sary [54].

As the Hessian is symmetric, highly efficient methods such as Cholesky factorization can be used to
solve this problem for convex optimization problems. However, for ODE models, the computation of the
Hessian itself will usually be computationally far more expensive than the computation of the Newton step.
Thus, the computational cost of solving (13) is usually negligible for objective functions depending on ODE
models.

For non-convex problems, the computation of the Newton step (13) may be an ill-posed or not even
well-defined problem [54]. Moreover, the Newton step might not be a descent direction. The Newton step
is only a direction of descent if the scalar product with the gradient is negative:

sT
newt ·∇J(θk−1)< 0. (14)

By substituting the formula for the Newton step, we obtain the following inequality:

−∇J(θk−1)
T (

∇
2J(θk−1)

)−1
∇J(θk−1)< 0, (15)

which is globally satisfied only if the inverse of the Hessian ∇2J(θk−1)
−1 is positive definite, i.e., the

problem (6) is convex. As previously discussed, (6) is typically non-convex, thus simple Newton steps will
not always yield a direction of descent. Moreover, in the vicinity of a saddle point, the Newton step may
point in the direction of the saddle point, thus attracting the optimizer to saddle points [46, 82].

In the literature, several modifications of Newton’s method that always yield descent directions have
been proposed [57, 58, 83]. The Gauss-Newton [83] method exploits the least-squares structure of the ob-
jective function (5) and constructs a positive semi-definite approximation to ∇2J(θk−1). Levenberg [57] and
Marquardt [58] independently extended this method by introducing a dampening term in the step equation.
This yields the Levenberg-Marquardt method

− (Ĥ(θk−1)+λI)s = ∇J(θk−1), (16)

where Ĥ is the positive semi-definite Gauss-Newton approximation to the Hessian, λ ≥ 0 is the dampening
factor and I is the identity matrix. The magnitude of the dampening factor λ regulates the conditioning of
(16). The geometric interpretation of λ is that it allows an interpolation between a gradient and a Gauss-
Newton step, where λ = 0 corresponds to a pure approximate Newton step. Due to the positive-definiteness
of the Gauss-Newton approximation, the respective methods cannot follow directions of negative curvature
and are thus not attracted to saddle points, but again limited to small step-sizes in the vicinity of saddle
points [46].

As the Gauss-Newton method is limited to least-squares problems, the traditional formulation of the
Levenberg-Marquardt method has the same limitation. However, it is possible to apply the dampening of
the Hessian without the Gauss-Newton approximation. The resulting algorithms are often still referred
to as Levenberg-Marquardt method [84]. In such a setting, the dampening is often chosen according to
the smallest negative eigenvalue [54], using e.g., the Lanczos method [85], to ensure the construction of a
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direction of descent. In the vicinity of saddle points, these methods can be modified to also follow directions
of negative curvature [86].

An alternative to determine the dampening factor λ is the use of a trust-region method. A trust region
method fixes ‖γs‖=∆ and then determines an approximately matching λ [54]. Thus, Levenberg-Marquardt
algorithms can be implemented as line-search methods or as trust-region methods, depending on how λ and
γ are computed. In the following we will discuss trust-region methods more generally.

2.2.2 Trust-Region Methods

Line-search methods determine a search direction d first and then identify a good step size γ . Trust region
methods do the converse, by specifying a maximum step-size first and then identifing a good search direc-
tion [54, 87, 88]. This allows trust region methods to make large steps close to saddle points and always
yield descent directions.Within the trust-region, J(θ) is replaced by a local approximation, giving rise to the
trust-region subproblem. Most trust-region algorithms use the objective function derivatives to construct a
quadratic trust-region subproblem

min
s∈BD,∆ (θ)

1
2

sT
∇

2J(θ)s+ sT
∇J(θ), (17)

where BD,∆ (θ) = {s : ‖D(s−θ)‖2 ≤ ∆} is the trust region. The trust region is an ellipsoid with radius ∆ and
scaling matrix D around the current parameter θ. The size of the trust region can be adapted over the course
of iterations. Trust-region methods that do not use quadratic approximations use other local approximations,
e.g., via radial basis functions [89].

Trust-region methods that solve the subproblem (17) exactly are not attracted to saddle points and not
limited to small step sizes [46]. However, the quadratic problem (17) is usually difficult to solve exactly
and is approximatively solved instead [54]. For convex problems, the dogleg method [90], which em-
ploys a linear combination of gradient and Newton step, can be applied. For non-convex problems, the
two-dimensional subspace minimization method [91, 92] can be used. The two-dimensional subspace mini-
mization method dampens the Hessian and can be seen as a trust-region variant of the Levenberg-Marquardt
method. The dogleg and two-dimensional subspace minimization method both reduce the trust-region sub-
problem to a two dimensional problem, which renders the computational cost of determining the update
step from a given gradient per se independent of the number of parameters of the underlying problem. This
feature makes them particularly suited for large-scale problems. However, the dampening of the Hessian
can again lead to small step-sizes close to saddle points [46].

2.2.3 Implementation and Practical Considerations

State-of-the-art parameter inference toolboxes for computational biology, such as D2D [21], PESTO [108],
MEIGO [101] and COPASI [20], feature a mix of local and global methods which include derivative-free
and gradient-based methods (see Table 2). In terms of global, derivative-free methods, most toolboxes pro-
vide interfaces to Particle Swarm and Pattern Search methods. In terms of local, gradient-based methods,
most toolboxes feature various flavors of the trust-region algorithm. All MATLAB toolboxes provide in-
terfaces to the fmincon and lsqnonlin routines from the MATLAB Optimization Toolbox. Only COPASI
provides the implementation of more basic algorithms such as Levenberg-Marquardt [57, 58], Truncated
Newton and Steepest Descent. In terms of global optimization schemes, all toolboxes employ either multi-
start or scatter search algorithms [61].

Choosing a particular optimization method from this plethora of choices is not an easy task. There are
no exhaustive studies that compare the full range of different optimization methods on a large set of prob-
lems. In some studies, gradient-based optimization algorithms perform best [38, 71], but others also show
that derivative-free methods can perform well [111]. In general, a rigorous evaluation of optimization al-
gorithms is highly involved, as there are small differences in the implementations of various algorithms.
For example, STRSCNE [99], RESNEI [100], NL2SOL [107], lsqnonlin and fmincon all implement trust-
region algorithms and even for expert users it may be difficult to pinpoint differences between individual
implementations. A recent study suggests substantial differences in the efficiency of various implementa-
tions of trust-region algorithms and identified lsqnonlin to be the best performing algorithm [112]. Even for
a single implementation the specification of hyper-parameters can have substantial impact on performance.
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Table 2 Implementations and interfaces of of optimization methods in popular computational biology toolboxes. Some tool-
boxes may feature variants of the cited algorithms. Some entries may be names of functions that feature multiple different
algorithms.

Toolbox Global Local
Derivative-Free Gradient-Based

COPASI [20] Evolutionary Programming [93] Nelder Mead [55] Levenberg-Marquardt [57, 58]
Genetic Algorithm [94] Pattern Search [53] Steepest Descent [54]

Particle Swarm [60] PRAXIS [95] Truncated Newton [96]
Random Search [97]

Simulated Annealing [62]
Scatter Search [61]

SRES [98]
D2D [21] fminsearchbnd (MATLAB) arNLS (custom)

Genetic Algorithm (MATLAB) CERES (Google)
multi-start (custom) fmincon (MATLAB)

Pattern Search (MATLAB) lsqnonlin (MATLAB)
Particle Swarm (custom) STRSCNE [99]

Simulated Annealing (MATLAB) TRESNEI [100]
MEIGO [101] fminsearchbnd (MATLAB) DHC [56] fmincon (MATLAB)

NOMAD [102] Pattern Search [103] IpOpt [104]
multi-start(custom) SOLNP [105] lsqnonlin (MATLAB)
Scatter Search [61] MISQP [106]

N2FB [107]
NL2SOL [107]

PESTO [108] multi-start (custom) BOBYQA [109] fmincon (MATLAB)
Particle Swarm [110] DHC [56] lsqnonlin (MATLAB)

MEIGO [101]

Many algorithms require user specifications of technical parameters. Finding good values for these hyper-
parameters may be challenging for non-expert users and default values may not work for all problems.

As few researchers are experts in a large number of different optimization methods, a rigorous evaluation
of multiple different algorithms is challenging. To circumvent this problem, a recent study [113] suggested
a set of benchmark problems on which other researchers are invited to evaluate their algorithms. Yet, few
algorithms have been evaluated on that benchmark so far [75, 76]. Complementarily, [114] suggests the
construction of statistical models to assess the performance of methods and the effect of hyper-parameters.

The different optimization algorithms we outlined in this section rely on evaluations of the objective
function, its gradient or even its Hessian. In the following sections we will the discuss methods to evaluate
these terms.

2.3 Simulation

The objective function and its gradient are typically not available in closed form, but have to be computed
numerically. For large-scale models the computational cost of computing the objective function and its
gradient is high, which makes parameter estimation computationally demanding. Depending on the class of
the employed model and simulation algorithm, the computation time will depend on different features of
the underlying model, which we will discuss in detail in the following.

The timescales of biochemical processes span multiple orders of magnitude [115, 116]. As compre-
hensive models often cover a large variety of different biological processes, they are particularly prone to
possess multiple timescales [117]. This results in the stiffness of corresponding ODEs [118]. As the stiffness
of the equations typically depends on the choice of parameters, it is rarely possible to assess the stiffness a
priori. Consequently, it is always advisable to use implicit solvers, which can adequately handle stiffness,
for parameter inference [119].

2.3.1 Implicit Methods

For stiff problems, implicit differential equation solvers from the fully implicit Runge-Kutta solver fam-
ily [120], the Singly Diagonally Implicit Runge-Kutta solver family [121] or the Rosenbrock solver fam-
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ily [122] should be used. These solvers compute the state variables at the next time step ξi based on the
state variables at previous iterations x(ξi−1),x(ξi−2),x(ξi−3), . . . by solving an implicit equation

G(x(ξi),x(ξi−1),x(ξi−2),x(ξi−3), . . .) = 0,

where the function G depends on the choice of the method and on the right hand side of the differential
equation f .

For single-step methods, such as the Runge-Kutta type solvers, the function G will only depend on
x(ξi−1), and not on previous values. For implicit Runge-Kutta solvers, a system of linear equations with
nx · s equations has to be solved in every iteration [123]. Here s is a the number of stages, which is a
particular property of a Runge-Kutta solver which determines the order of the method.

For multi-step methods, the function G will also depend on previous values of x. A popular implemen-
tation of the multi-step method is the implicit linear multi-step Backwards Differentiation Formula (BDF)
implemented in the CVODES solver [124]. In every iteration i, the BDF solves an equation of the form

hiβi,0 f (ξi,x(ξi),θ)+
q

∑
j=0

αi, jx(ξi− j) = 0,

where q is the order of the method, α and β are the coefficients that are determined in every iteration. The
order q and the step size hi will determine the local error of the numerical solution [124] and are often chosen
adaptively. This implicit equation is typically solved using Newton’s method [123, 125]. For the BDF, the
function G depends on ẋ and thus on f . Consequently, the Newton solver computes multiple solutions to
linear systems defined by the Jacobian ∇x f (t,x,θ) of the right hand side of the differential equation at every
integration step. As this linear system only has nx equations, in contrast to the nx ·s equations for single-step
methods, the computational cost of solving the linear system increases less strongly with the number of
state variables nx.

The computation time of the BDF method primarily depends on two factors: (i) the evaluation time
of the function f and the Jacobian ∇x f (t,x,θ), which usually scales linearly with nx and (ii) the time to
solve the linear systems defined by ∇x f (t,x,θ). The matrix ∇x f (t,x,θ) is typically not symmetric and
neither positive nor negative definite. For such unstructured problems, LU decomposition (see Figure 1C
middle), which factorizes ∇x f (t,x,θ) into a lower-triangular matrix L and an upper-triangular matrix U,
is the method of choice to solve the linear system, as long as L and U can be stored in memory. After
performing the decomposition, the solution to the linear systems can be computed by matrix multiplication.
When no additional structure of the matrix is exploited, the computational complexity of matrix multipli-
cation with state-of-the-art algorithms increases at least with exponent 2.376 with respect to nx [126] and
thus dominates the computation time for sufficiently large nx.

2.3.2 Sparse Implicit Methods

For ODE models arising from discretization of partial differential equations, the Jacobian can usually be
brought into banded form. For such banded matrices, specialized solvers that scale with the number of off-
diagonals of the Jacobian have been developed [127]. Unfortunately, ODE models of biochemical reaction
networks cannot generally be brought into a banded structure. For example, in polymerization reactions
that include dissociation of monomers, the monomer species will always be influenced by all other species
and the number of off-diagonals in the Jacobian will be equal to nx. Other frequently occurring motifs, such
as feedback loops and single highly interactive species [128], will also increase the number of necessary
off-diagonals.

As alternative to banded solvers, sparse solvers have been introduced in the context of circuit simu-
lations [129]. For sparse solvers, the computation time depends on the number of non-zero entries in
∇x f (t,x,θ), which scales with the number of biochemical reactions. The sparse solver relies on an ap-
proximate minimum degree (AMD) ordering [45] which is a graph theoretical approach that can be used to
minimize the fill-in of the L and U matrices of the LU-decomposition (see 1C right). Currently, no formulas
for the expected speedup or the general scaling with respect to non-zero entries exist. For biochemical re-
action networks, the application of such a sparse solver seems reasonable [119], but no rigorous evaluation
of the scaling has been performed.
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Table 3 Implementations of simulation methods in popular computational biology toolboxes.

Toolbox Simulation Library Jacobian Dense Solver Sparse Solver

AMICI [75] CVODES [124] symbolic
COPASI [20] LSODA [130] numeric ×

D2D [21] CVODES [124] symbolic
libRoadRunner [22] CVODES [124] numeric ×

2.3.3 Implementation and Practical Considerations

Most toolboxes use CVODES [124] or LSODA [130] for simulation (see Table 3). In contrast to CVODES,
which only implements an implicit solver, LSODA dynamically switches between explicit and implicit
solvers. To the best of our knowledge, no comparison between LSODA and CVODES has ever been pub-
lished. However, LSODA does not provide an interface to the Clark Kent LU solver (KLU) [129] or any
other sparse solver and thus might perform poorly on large-scale problems with sparsity structure. An-
other notable difference is that only few toolboxes analytically compute the Jacobian of the right hand side
and provide it to the solver. The symbolic processing is necessary for the sparse representation, but also
likely to be beneficial for dense solvers. Thus, D2D [21] and AMICI [75] are also the only general purpose
simulation libraries for systems biology that allow the use of the sparse KLU solver.

For explicit solvers, no linear system has to be solved and the algorithm largely consists of elementary
operations which can be efficiently parallelized on GPUs [131]. For explicit solvers, also parallelized solvers
are available [132]. However, the computational overhead of parallelization is usually too high, unless
models with several thousand state variables are considered [132].

All of the considered toolboxes allow the definition of ODE models in the Systems Biology Markup
Language (SBML) [133]. This also allows for the definition of models in terms of biochemical reactions.
Here COPASI and libRoadRunner aim for a full support of SBML features, while AMICI and D2D only
support a subset of SBML features.

Sparse numerical solvers can be used to efficiently compute the numerical solution to the ODE, which are
required for objective function evaluation. They can also be used to compute objective function gradients as
solution to one or more ODEs. Several different gradient computation approaches exist and in the following
we will discuss the three most common approaches.

2.4 Gradient Calculation

Providing an accurate gradient to the objective function is essential for gradient-based methods [54, 71,
134]. For ODE constrained optimization problems, the gradient of the objective function can be computed
based on the parametric derivative of the solution to the ODE. These derivatives are often called the sen-
sitivities of the model. Several approaches to compute sensitivities for ODE models exist, including finite
differences [135], as well as the direct approach via forward sensitivity analysis [136, 137].

2.4.1 Finite Differences and Forward Sensitivity Analysis

For finite differences, the entries of the gradient are approximated according to

dJ
dθk
≈ J(θ+aek)− J(θ−bek)

a+b
,

with a,b≥ 0 and the kth unit vector ek. In practice, forward differences (a = ζ , b = 0), backward differences
(a = 0, b = ζ ) and central differences (a = ζ , b = ε), with ζ � 1, are widely used. As the evaluation
of J(θ+ aek) and J(θ− bek) may require additional solutions to the model ODE, the scaling of finite
differences with respect to the number of parameters is also linear.

For forward sensitivity analysis, the entries of the gradient of the objective function are computed ac-
cording to
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dJ
dθk

=−
ny

∑
i=1

T

∑
j=1

∂J
∂yi(t j,θ)

sy
i,k(t j,θ)+

∂J
∂θk

,

with sy
i,k(t,θ) denoting the sensitivity of output yi at time point t j with respect to parameter θk. This output

sensitivity can be computed by applying the total derivative to the functions h:

sy
i,k(t j,θ) =

∂hi

∂x

∣∣∣∣
x(t,θ),θ

sx
k(t j,θ)+

∂hi

∂θk

∣∣∣∣
x(t,θ),θ

with sx
k(t,θ) denoting the sensitivity of the state x with respect to θk. The state sensitivity is defined as

solution to the ODE system:

ṡx
k(t,θ) =

∂ f
∂x

∣∣∣∣
x(t,θ),θ

sx
k(t,θ)+

∂ f
∂θk

∣∣∣∣
x(t,θ),θ

, sx
k(t0,θ) =

∂x0

∂θk

∣∣∣∣
θ

.

Thus, forward sensitivity analysis requires the computation of a solution to an ODE system of the same
size as the model ODE for every gradient entry. Consequently, the scaling with respect to the number of
parameters is linear (see Figure 1B right).

2.4.2 Adjoint Sensitivity Analysis

The linear scaling of forward sensitivity analysis and finite differences can be computationally prohibitively
demanding for large-scale models with thousands of parameters. The alternative adjoint approach, which
computes the objective function gradient via adjoint sensitivity analysis, has long been deemed to be com-
putationally more efficient for systems with many parameters [137]. In other research fields, e.g., for partial
differential equation constrained optimization problems, adjoint sensitivity analysis [125] has been adopted
in the past decades. In contrast, in the systems biology community there are only isolated applications of
adjoint sensitivity analysis [138, 139, 140].

In the mathematics and engineering community, adjoint sensitivity analysis is frequently used to compute
the gradients of a functional with respect to the parameters if the functional depends on the solution of a
differential equation [141]. In these applications, measurements are continuous in time and J(θ) is assumed
to be a functional of the solution x(t) of a differential equation. However, this approach can also be applied
to discrete-time measurements and in contrast to forward sensitivity analysis, adjoint sensitivity analysis
does not rely on the state sensitivities sx

k(t), but on the adjoint state p(t).
For discrete-time measurements – the usual case in systems and computational biology – the adjoint

state is piece-wise continuous in time and defined by a sequence of backward differential equations [75].
For t > tN , the adjoint state is zero, p(t) = 0. Starting from this end value, the trajectory of the adjoint
state is calculated backwards in time, from the last measurement t = tN to the initial time t = t0. At the
measurement time points tN , . . . , t1, the adjoint state is reinitialized as

p(t j) = lim
t→t+j

p(t)+
∂J
∂x

, (18)

which usually results in a discontinuity of p(t) at t j. Starting from the end value p(t j) as defined in (18)
the adjoint state evolves backwards in time until the next measurement point t j−1 or the initial time t0 is
reached. This evolution is governed by the time dependent linear ODE

ṗ =−
(

∂ f
∂x

)T

p. (19)

The repeated evaluation of (18) and (19) until t = t0 yields the trajectory of the adjoint state. Given this
trajectory, the gradient of the objective function with respect to the individual parameters is

dJ
dθk

=−
∫ tN

t0
pT ∂ f

∂θk
dt−p(t0)T ∂x0

∂θk
+

∂J
∂θk

. (20)

The key advantage of this approach is that (20), which has to be evaluated for every parameter separately,
can be evaluated very efficiently, while (19), which is computationally more demanding, only has to be
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Table 4 Implementations of gradient computation methods in popular computational biology toolboxes.

Toolbox Finite Differences Forward Sensitivity Adjoint Sensitivity

AMICI [75] ×
COPASI [20] × ×

D2D [21] ×
libRoadRunner [22] × ×

solved once [75]. As (19) is of the same dimensionality as the original ODE model, this allows the compu-
tation of gradients at the cost of roughly two solutions of the original ODE model. In practice the adjoint
sensitivity approach has an almost constant scaling with respect to the number of parameters.

2.4.3 Implementation and Practical Considerations

Many toolboxes rely on finite differences to compute gradients (see Table 4). D2D [21] and AMICI [75]
are two notable examples that allow the computation of gradients via sensitivity analysis, but only AMICI
allows adjoint sensitivity analysis.

2.5 Hessian Computation

In addition to the gradient, Newton-type methods also require the Hessian ∇2J(θ) of the objective function.
The numerical evaluation of the Hessian can be challenging as the dependence of the computational com-
plexity on the number of parameters nθ is one order higher than for the gradient: The computation time for
finite differences and forward sensitivities scale quadratically with the number of parameters [142, 143].
For adjoint sensitivities, the computation time depends linearly on the number of parameters [144].

2.5.1 Gauss-Newton Approximation

For independent, normally distributed measurement noise, as assumed in (5), and known noise parameters
σ , the optimization problem (6) is of least squares type. This structure can be exploited by using Gauss-
Newton (GN) [145] type algorithms, which ignore second order partial derivatives in the Hessian. The
respective approximations of the Hessian coincide with the Fisher information matrix (FIM) [146] of the
respective parameter estimate. The key advantage of this approach is that the FIM can be computed for the
same cost as one gradient using forward sensitivity analysis.

2.5.2 Quasi-Newton Approximation

For problems that are not of least-squares type, quasi-Newton methods such as the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [147, 148] algorithm can be used. The BFGS algorithm iteratively computes
approximations to the Hessian based on updates which are derived from the outer products of the gradient
∇J(θ) of the objective function. The resulting approximation is guaranteed to be positive definite, as long
as the Wolfe condition [78] is satisfied in every iteration and the initial approximation is positive definite.
As previously discussed, positive definiteness ensures descent directions for line-search methods, but will
generally lead to small step sizes in the vicinity of saddle points. The symmetric rank 1 (SR1) algorithm
addresses this problem by allowing for negative- and indefinite approximations [149]. This procedure facil-
itates the application of optimization methods which avoid saddle points by allowing directions of negative
curvature [150].

Quasi-Newton versions are generally cheap to compute, as they only require simple algebraic manip-
ulations of the gradient. Algorithms based on limited memory variants such as L-BFGS [151, 152] or
L-SR1 [150] have been applied to machine learning problems with millions of parameters [153].
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Table 5 Implementations of (approximative) Hessian computation methods in popular computational biology toolboxes. For
BFGS and SR1 we list the function or option that allows the respective approximation. SE = sensitivity equations, FD = finite
differences, GN = Gauss-Newton, N/A = Not applicable

Toolbox FIM / GN Hessian BFGS SR1
AMICI [75] SE SE N/A N/A

COPASI [20] FD × Truncated Newton ×
D2D [21] SE/FD × fmincon arNLS_SR1

libRoadRunner [22] × × N/A N/A
MEIGO [20] N/A N/A fmincon, IpOpt IpOpt
PESTO [108] N/A N/A fmincon ×

2.5.3 Implementation and Practical Considerations

The implementation of methods for the computation of (approximate) Hessians is quite disparate across
toolboxes (see Table 5). AMICI is the only toolbox that allows sensitivity-based computation of the Hes-
sian. Most other toolboxes use FIM/Gauss-Newton, BFGS or SR1 approximations. Most of iterative ap-
proximations BFGS and SR1 are implemented as part of the optimization algorithm and it is not possible to
use them with other methods. Only D2D provides a relatively flexible implementation of SR1. For the FIM
approximation and the exact Hessian computations, the implementations are usually transferable between
optimization methods. In theory, the computation of the exact Hessian, with adjoint sensitivity analysis,
and the FIM, with forward sensitivity analysis, both scale linearly with the number of parameters and only
the exact Hessian can be used to construct methods that avoid saddle points [46]. In practice, the effect of
using the FIM over the Hessian on the efficiency of respective optimization methods has not been studied
for systems biology problems. For problems with thousands of parameters, the computation of both may be
challenging and the BFGS and SR1 approximations become more appealing.

In this section, we split the parameter inference problem in three parts: optimization, simulation and
gradient computation and discussed respective scaling properties. These techniques generalize to other
model analysis techniques that require optimization or gradient computation, such as uncertainty analy-
sis [154, 155], experimental design [156] and the inference of model structure. A detailed discussion of all
these methods is beyond the scope of this book chapter, but in the following we will discuss the inference
of model structure in more detail.

3 Inference of Model Structure

In many applications, it is not apparent which biochemical species and reactions are necessary to describe
the dynamics of a biochemical process. In this case, the structure of the ODE model (1), i.e., vector field
f (x,θ) and initial condition x0(θ), have to be inferred from experimental data. The selection should com-
promise between goodness-of-fit and complexity. Following the concept of Occam’s razor [157], one tries
to control variability associated with over-fitting while protecting against the bias associated with under-
fitting.

In the following, we formulate the problem of model structure inference. We introduce and discuss
criteria that select models out of a set of candidate models and describe approaches to reduce the number
of candidate models. We outline the scalability of the approaches and their computational complexity.

3.1 Model Selection Criteria

Given a set of candidate models M1,M2, . . . ,MnM the aim of model inference is to find a model or a set of
models which (i) describe the data available and (ii) generalize to other datasets [158]. The choice of model
can be made with several selection criteria, differing among others in asymptotic consistency [159], asymp-
totic efficiency [146] and computational complexity. If the true model is included in the set of candidate
models, a consistent criterion will asymptotically select the true model with probability one and an efficient
criterion will select the model that minimizes the mean squared error of the prediction.
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Table 6 Decisions based on the Bayes factor and differences in BIC and AIC values [160, 163, 166].

Blm BICm−minl BICl AICm−minl AICl decision
1−3 0−2 0−4 do not reject model Mm

3−100 2−10 4−10 -
> 100 > 10 > 10 reject model Mm

While the concepts in the previous sections followed the frequentist approach, some of the concepts
presented in this section are Bayesian. For these approaches, prior knowledge about the parameters is in-
corporated and the posterior probability (7) is analyzed instead of the likelihood function.

One popular criterion is the Bayes factor [160], which has been shown to be asymptotically consistent
for a broad range of models (e.g., [161, 162]), however, for the case of general ODE models, no proofs
for asymptotic efficiency and consistency are available for all the criteria presented in this section. Bayes’
Theorem yields the posterior model probability

p(Mm|D) =
p(D |Mm)p(Mm)

p(D)
(21)

with marginal likelihood

p(D |Mm) =
∫

Θm

p(D |θm)p(θm|Mm)dθm (22)

with model prior p(Mm) and marginal probability p(D) = ∑ j p(D |M j)P(M j). The Bayes factor of models
M1 and M2 is the ratio of the corresponding marginal likelihoods

B12 =
p(D |M1)

p(D |M2)
. (23)

The Bayes factor describes how much more likely it is that the data are generated from M1 instead of M2.
A Bayes factor B12 > 100 is often considered decisive for rejecting model M2 [163]. The Bayes factor
intrinsically penalizes model complexity by integrating over the whole parameter space of each model.
Bayes factors can be approximated by Laplace approximation, which has a low computational complexity
but provides only a local approximation. To enable a more precise computation of the Bayes factors, bridge
sampling [164], nested sampling [165], thermodynamic integration [7], or related methods can be employed.
These approaches evaluate the integral defining the marginal likelihood p(D |Mm). As the approaches re-
quire a large-number of function evaluations, the methods are usually computationally demanding and the
computational complexity is highly problem-dependent. Thus, efficient sampling methods are required.

For high-dimensional or computationally demanding problems, the calculation of Bayes factors might
be intractable and computationally less expensive model selection criteria need to be employed. A model
selection criterion which is based on the MLE, instead of a marginal likelihood (an integral over the whole
parameter space), is the Bayesian Information Criterion (BIC) [31]. The BIC value for model Mm is

BICm =−2log(p(D |θ∗m))+ log(|D |)nθm . (24)

For structural identifiable models, the BIC provides in the limit of large sample sizes information about the
Bayes factors,

lim
|D |−>∞

−2logB12− (BIC1−BIC2)

−2logB12
= 0 . (25)

From information theoretical arguments, the Akaike Information Criterion (AIC)

AICm =−2log(p(D |θ∗m))+2nθm , (26)

has been derived [30]. Low BIC and AIC values are preferable and differences above 10 are assumed to be
substantial (see Table 6 and [160, 166]).

For model selection in many problem classes, the AIC is asymptotically efficient, but not consistent,
while the BIC is asymptotically consistent, but not efficient [167, 168, 169].
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When incorporating prior information about parameters, the priors can conceptually be treated as addi-
tional data points and, thus, be part of the likelihood to still allow the use of BIC and AIC. Also extensions
of the criteria exist, such as the corrected AIC [170], which provides a correction for finite sample sizes.
Also other extended versions of the criteria have been developed (see, e.g., [171]), however, the discussion
of these is beyond the scope of this chapter.

For the comparison of nested models Mm and Ml , i.e., θm ∈Θm and θl ∈Θl where Θm is a subset of Θl ,
the likelihood ratio test can be applied [172], which is an efficient test [173]. The likelihood ratio is defined
as

Λ =
p(D |θ∗m)
p(D |θ∗l )

≤ 1 , (27)

and model Mm is rejected if Λ is below a certain threshold which is obtained using Wilks’ Theorem [172].
This theorem states that it holds in the large sample limit (see [172] for further details)

2(log p(D |θ∗l )− log p(D |θ∗m))∼ χ
2(·|nθl −nθm). (28)

Given a certain α level, model Mm is rejected if∫ 2(log p(D |θ∗l )−log p(D |θ∗m))

0
χ

2(ψ|nθl −nθm)dψ ≥ 1−α . (29)

While only Bayes factors and the likelihood ratio test are proven to be valid for non-identifiable parameters,
the use of AIC and BIC can be problematic for these cases.

The discussion of further criteria, such as the log-pointwise predictive density [174] or cross-validation
(see, e.g., [175]), which evaluate the predictive quality of the model, is beyond the scope of this chapter.

3.1.1 Implementation and Practical Considerations

AIC and BIC are rather simple to compute and are, among others, available in PESTO [108]. From the pre-
viously discussed toolboxes of this review, PESTO also provides sampling methods that can be employed to
calculate Bayes factors, such as parallel tempering. Other toolboxes which can be employed for computing
Bayes factors are, amongst others, BioBayes [176], MultiNest [177], or the C++ toolbox BCM [178].

3.2 Reduction of Number of Models

For most models, computing Bayes’ factors is computationally demanding compared to optimization and
the evaluation of AIC, BIC, or likelihood ratio. Yet, if the number of candidate models nM is large, even the
evaluation of AIC and BIC can become limiting as nM optimization problems have to be solved. For non-
nested models, the model selection criterion of choice needs to be calculated for each model to determine
the optimal model.

In this section, we consider a nested set of candidate models. In this case, all candidate models are
a special case of a comprehensive model and can be constructed by fixing a subset of the parameters to
specific values (Figure 2A). For the remainder of this chapter, we will assume that we can split the model
parameters θ into general parameters η ∈ Rnη , which are present in all models, and difference parameters
r ∈ Rnr , which encode the nesting between models. Moreover, without loss of generality, it is assumed
that ri = 0, i = 1, . . . ,nr corresponds to the simplest model and ri 6= 0, i = 1, . . . ,nr corresponds to the most
complex model (see Figure 2A). These difference parameters could for example be the kinetic rates of
hypothesized reactions [33] or scaling factors for possibly cell-type or condition-specific parameters (see,
e.g., [32]). Such settings yield a total of 2nr candidate models, where nr is limited by nθ . Thus, for models
with a high number of parameters, also a high number of nested models is possible. When nr and nθ are
both high, the inference of model parameters and thus the inference of model structure is challenging.
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Fig. 2 Illustration of methods for model reduction. (A) Set of candidate models, varying in the existence of connections
between nodes x1,x2 and x3. In total, there are 2nr = 23 models with at least nη = 1 parameters. (B) Illustration of forward-
selection starting from minimal model. In the first iteration, the model with r1 6= 0,r2,r3 = 0 is selected (green) and in the
second iteration the model with r1,r3 6= 0,r2 = 0. The full model is rejected based on the selection criteria. (C) To apply
l0 penalization a MINLP problem needs to be solved, comprising continuous parameters η and r and discrete parameters
q ∈ {0,1}nr . (D) l1 penalization reduces the number of potential models to a set of preselected models by increasing the
penalization and thus forcing parameters r to zero. (E) Illustration of model averaging. The thickness of the arrows corresponds
to the posterior probability, Akaike weight, or BIC weight and indicates the contribution of the model to the averaged model
properties.

3.2.1 Forward-Selection and Backward-Elimination

In statistics, step-wise regression is an often-used approach to reduce the number of models that need to
be tested. This comprises forward-selection and backward-elimination (e.g., [158]) and combinations of
both [179]. Forward-selection is a bottom-up approach which starts with the least complex model and
successively activates individual difference parameters (i.e., setting ri 6= 0) until a sufficient agreement
with experimental data is achieved, evaluated using a model selection criterion (Figure 2B). In contrast,
backward-elimination is a top-down approach starting with the most complex model, successively deacti-
vating individual difference parameters (i.e., setting ri = 0) that are not required for a good fit to the data.
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Forward-selection and backward-elimination reduce the number of models that need to be compared
with the model selection criteria described before from 2nr to at most nr(nr+1)

2 . However, they are both
greedy approaches and do not guarantee to find the globally least complex candidate model that explains
the data.

3.2.2 l0 Penalized Objective Function

An alternative approach is to penalize the number of parameters in the objective function. This can be
achieved by imposing an l0 penalization on the objective function (see, e.g., [180]):

Jl0(η,r) = J(η,r)+λ

(
nη +

nr

∑
i=1

(1−δri)

)
, with δz =

{
1 if z = 0
0 otherwise

(30)

This l0 penalization supports sparsity, i.e., reduces the model such that only a minimum number of differ-
ence parameters are used. As all models contain at least nη parameters, only nr contributes to changes in
the complexity. For λ = 1, the objective function Jl0 is the AIC divided by two. For λ = 1

2 log(|D |), the ob-
jective function Jl0 is the BIC divided by two. Accordingly, minimization of Jl0 can provide the best model
according to different information criteria. To directly assess the predictive power, λ can also be determined
using cross-validation.

Following [181], the objective function (30) allows for the formulation of structure inference as a mixed-
integer nonlinear programming (MINLP) problem

JMINLP(η,r,q) = J(η,diag(rqT ))+λ

nr

∑
i=1

qi, (31)

with real-valued η ∈Rnη ,r∈Rnr , and integer-valued q∈ {0,1}nr . The optimization is done simultaneously
for all parameters, η,r,q. This objective function is neither differentiable, nor continuous with respect to q.
Thus, gradients with respect to the discrete parameters will not be informative for optimization. This limits
the choice of optimization algorithms to derivative-free and specialized gradient-based solvers, such as the
MISQP algorithm [182]. Besides the above described and commonly used methods, further approaches,
among others belief propagation [10] or iteratively reweighted least squares [183] can be employed, under
certain model assumptions.

For the MINLP (31) resulting from the l0 penalized objective functions, only the comprehensive model
is estimated. This, however, results in a more complex optimization problem which suffers from a high
dimensional parameter space.

3.2.3 l1 Penalized Objective Function

To simplify the optimization problem, the l0 norm is often replaced by its convex relaxation, the l1
norm [184]. This yields the penalized objective function

Jl1(η,r) = J(η,r)+λ

nr

∑
i=1
|ri|, (32)

with ri ∈ R, which is forced to be zero for higher λ corresponding to the situations where the parameter θi
has no effect. In linear regression, l1 penalization is more commonly known as Lasso [184], while in signal
processing it is usually referred to as Basis Pursuit [185]. The l1 norm is continuous, but not differentiable
in zero. Thus, specialized solvers have been developed which handle the non-differentiability at zero [32].

For the special case of linear regression models Jl0(η,r) and J(η,r) are convex. As the l1 norm is a
convex relaxation of the l0 norm, the resulting objective function is also convex. Thus, it can be shown that
the estimated parameters ri are unique and continuous with respect to λ [186]. Moreover, ri can be shown to
be piecewise linear with respect to λ , which allows an implementation that can efficiently compute solutions
for all values of λ [186]. For ODE models, Jl1(η,r) and J(η,r) will generally be non-convex and ri may be
non-unique and discontinuous which is challenging for numerical methods. Thus, equation (32) is usually
minimized for varying penalization strengths λ , until a reduced set of model candidates is selected. As the l1
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norm is an approximation of the l0 norm, model selection should subsequently be performed on the reduced
set of model candidates using the criteria introduced in Section 3.1 (Figure 2D).

The computational complexity of the l1 penalization depends on the number of different penalization
strengths that are used. With a higher number of tested penalizations it is more likely to obtain the globally
optimal model, while a lower number of tested penalizations decreases the computational effort.

3.2.4 Implementation and Practical Considerations

Only few toolboxes implement methods that allow simultaneous inference of model parameters and struc-
ture. MEIGO implements the MISQP algorithm, while D2D implements the l1 penalization via a modifica-
tion of the fmincon routine [32].

3.3 Model Averaging

For large sets of candidate models and limited data, it frequently happens that not a single model is chosen
by the model selection criterion. Instead, a set of models is plausible, cannot be rejected, and should be con-
sidered in the subsequent analysis. In this case, model averaging can be employed to predict the behaviour
of the process (Figure 2E).

Given that a certain parameter is comparable between models, an average estimate can be derived as

E[θ j] = ∑
m

wmθm, j (33)

with wm denoting the weight of model Mm and θm, j denoting the MLE of the parameter for model Mm [166,
187]. Accordingly, uncertainties can be evaluated, e.g., the variance of the optimal values

var[θ j] =
1

nM−1 ∑
m
(wmθm, j−E[θ j])

2. (34)

The weights capture the plausibility of the model. An obvious choice is the posterior probability p(Mm|D).
Alternatively, the Akaike weights

wm =
exp(− 1

2 AICm)

∑
nM
i=1 exp(− 1

2 AICi)
(35)

or the BIC weights

wm =
exp(− 1

2 BICm)

∑
nM
i=1 exp(− 1

2 BICi)
. (36)

can be employed. The weights for models that are not plausible are close to zero and, thus, these models do
not influence the averaged model.

4 Discussion

This chapter provided an overview about methods for parameter inference and structure inference for ODE
models of biochemical systems. For parameter inference we discussed local optimization methods and
identified the number of stationary points as key determinant of computational complexity. In the context
of local optimization we identified gradient-based optimization methods as suitable method as the compu-
tational complexity of determining the parameter update for optimization from the gradient of the objective
function is per se independent of the number of state variables and number of model parameters. Still,
numerical optimization requires the computation of the ODE solution, which scales with the number of
molecular species, and the computation of respective derivatives, which scales with the number of parame-
ters. In both cases we discussed scaling properties of state-of-art algorithms and identified adjoint sensitivity
analysis and sparse solvers as most suitable methods for large-scale problems.
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We believe that key challenges to improve the scalability of parameter inference lie in the treatment
of stationary points of the objective function, such as local minima and saddle points. In contrast to deep
learning problems [46], the dependence of the number of stationary points on the underlying (ODE) model
remains poorly understood [188, 189] and should be evaluated. Local optimization methods that can ac-
count for saddle points and local minima have been developed [46, 51, 63], but lack implementations in
computational biology toolboxes and evaluations on ODE models of biochemical systems.

For structure inference, large-scale models often also give rise to a large set of different model can-
didates. Many model comparison criteria require parameter inference for all model candidates, which is
rarely feasible if the number of model candidates is high. We discussed an l1 penalization based approach
that allows the simultaneous inference of model parameters and structure. We believe that key challenges
to improve the scalability of structure inference lie in the treatment of non-differentiability of the l1 norm,
which prohibits the application of standard gradient-based optimization algorithms. Methods such as itera-
tively reweighted least-squares were developed decades ago [190], but were not adopted for ODE models.

We anticipate that, with the advent of whole cell models [27, 191, 192] and other large-scale models [193,
194], the demand for scalable methods will drastically increase in the coming years. However, already for
medium-scale models, which are much more commonplace, parameter inference and in particular structure
inference can be challenging. Accordingly, there is a growing demand for novel methods with better scaling
properties.
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