
REVIEW

https://doi.org/10.1083/jcb.201708075 1
J. Cell Biol. 2018
Rockefeller University Press

T helper cell subsets orchestrate context- and pathogen-specific responses of the immune system. They mostly do so by 
secreting specific cytokines that attract or induce activation and differentiation of other immune or nonimmune cells. The 
differentiation of T helper 1 (Th1), Th2, T follicular helper, Th17, and induced regulatory T cell subsets from naive T cells 
depends on the activation of intracellular signal transduction cascades. These cascades originate from T cell receptor and 
costimulatory receptor engagement and also receive critical input from cytokine receptors that sample the cytokine milieu 
within secondary lymphoid organs. Signal transduction then leads to the expression of subset-specifying transcription 
factors that, in concert with other transcription factors, up-regulate downstream signature genes. Although regulation of 
transcription is important, recent research has shown that posttranscriptional and posttranslational regulation can critically 
shape or even determine the outcome of Th cell differentiation. In this review, we describe how specific microRNAs, long 
noncoding RNAs, RNA-binding proteins, and ubiquitin-modifying enzymes regulate their targets to skew cell fate decisions.
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Introduction
Lymphocytes carry unique T cell receptors (TCRs) or B cell recep-
tors that enable specific recognition of nearly all pathogen-de-
rived antigens. Upon TCR binding to the cognate antigen, CD4 
T helper cells become activated to coordinate responses of the 
immune system to diverse pathogens, including intracellular 
viruses, intra- or extracellular bacteria, fungi, or multicellular 
parasites. Among other functions (Table 1), CD4 T cells provide 
help to antibody-producing B cells and cytotoxic CD8 T cells, 
which are central effector cells of humoral and cellular responses 
of the adaptive immune system, respectively.

Mature CD4 T cells exit the thymus and home to secondary 
lymphoid organs, where they may recognize pathogen-derived 
peptides that are processed by antigen-presenting cells and 
presented to the TCR on major histocompatibility complexes 
(MHCs). In this initial antigen encounter in the periphery, the 
so-called priming step, several signals are integrated so that 
the naive CD4 T cell becomes productively activated and subse-
quently acquires specific effector functions (Table 1).

T helper cell activation and differentiation starts with anti-
gen recognition. TCR binding to peptide/MHC class II activates 
tyrosine kinases, which enables the assembly of phosphory-
lation-dependent signaling complexes and ensuing activation 
of phospholipase C. Phospholipase C cleaves phosphatidyli-
nositol 4,5-bisphosphate (PIP2) into two second messengers, 

inositol-trisphosphate and DAG (Figs. 1, 2, 3, 4, and 5). Inositol- 
trisphosphate causes Ca2+-store depletion of the ER, which 
triggers store-operated Ca2+ influx over the plasma membrane, 
thereby stimulating the phosphatase calcineurin to dephosphor-
ylate and activate the transcription factor NFAT (Feske et al., 
2006). DAG activates the Ras/MAPK cascade and PKC enzymes, 
which subsequently activate AP-1 and NF-κB transcription fac-
tors (Altman and Villalba, 2003). The combined induction of 
NFAT, AP1, and NF-κB is required for productive T cell activa-
tion, leading to the expression of IL-2, the hallmark cytokine of 
activated T cells. In addition to TCR signaling, B7 family members 
B7-1 (CD80) and B7-2 (CD86) on the cell surface of antigen-pre-
senting cells induce costimulation through the CD28 receptor 
on T cells (Figs. 1, 2, 3, 4, and 5). The CD28 receptor directly 
interacts with the class I phosphatidylinositol 3-kinase (PI3K), 
thereby promoting the production of phosphatidylinositol 
3,4,5-trisphosphate (PIP3). PIP3 signaling activates NF-κB and 
promotes cell survival. It also leads to cytoskeletal rearrange-
ments, enhances signal transduction from the TCR, and activates 
mTOR to increase the metabolic activity of the cell (Acuto and 
Michel, 2003; Okkenhaug and Vanhaesebroeck, 2003; Gamper 
and Powell, 2012).

Our current understanding of T helper cell differentiation has 
been greatly influenced by in vitro cell culture systems that reca-
pitulate T helper 1 (Th1), Th2, Th17, and induced regulatory T cell 
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(iTreg) differentiation. These reductionist approaches describe 
differentiation as a result of integrating TCR and costimulatory 
signals with coinciding signal transduction from cytokine recep-
tors (Figs. 1, 2, 3, 4, and 5). The involved signaling cascades even-
tually promote transcription of subset-specific gene expression 
profiles. Once a gene expression program is established, it can 
be further stabilized and epigenetically fixed. The differential 
decisions are most strongly influenced by signals from cytokine 
receptors that are transmitted by Stat proteins (Table 1). Cyto-
kine-induced phosphorylation of cytoplasmic Stats causes their 
homodimerization, nuclear translocation, promoter binding, 
activation of transcription, and expression of subset-specify-
ing transcription factors (O’Shea et al., 2011). Subset-specifying 
transcription factors are not only necessary but also sufficient to 
drive differentiation into the respective T helper cell subset and 
hence have been at the center of many research activities (Ansel 
et al., 2006; Zhou and Littman, 2009; Shih et al., 2014).

Important cell fate decisions also occur posttranscriptionally 
by regulating the half-life or function of specific mRNAs or pro-
teins, which challenges the long-held paradigm that only tran-
scriptional networks control the differentiation of CD4 T cells. 
In this review, we summarize what is currently known about 
posttranscriptional and posttranslational regulation, focusing 
on the functions of noncoding RNAs (miRNAs and long noncod-
ing RNAs [lncRNAs]), RNA-binding proteins (RBPs), and ubiq-
uitin-modifying enzymes (E3 ligases/deubiquitinating enzymes 
[DUBs]) during differentiation processes of T helper cells.

Posttranscriptional and posttranslational mechanisms with an 
impact on CD4 T cell differentiation
Among the numerous mechanisms of posttranscriptional/post-
translational control of T cell differentiation, the best-under-
stood examples (at this stage) involve miRNAs, lncRNAs, RBPs, 

and ubiquitin-modifying enzymes (see text box). Installing these 
layers of regulation likely provides more rigorous control over 
inappropriate stimulation of potent immune cells. Moreover, 
compared with transcriptional and epigenetic regulation, post-
transcriptional/posttranslational processes are fast and there-
fore can instantly tune cell fate decisions in response to envi-
ronmental cues. In the following, we discuss the mechanisms of 
posttranscriptional and posttranslational regulation for each of 
the five major CD4 T cell subsets.

Posttranscriptional regulation of Th1 cells
RBPs are involved in the differentiation of all CD4 T cell subsets, 
including Th1. The Roquin and Regnase family proteins have 
been found to interact with an overlapping set of target mRNAs 
and either induce mRNA decay through interaction with mRNA 
degrading enzymes or, as in the case of Regnase proteins, cleave 
target mRNAs endonucleolytically (Akira, 2013; Heissmeyer and 
Vogel, 2013; Jeltsch and Heissmeyer, 2016; Takeuchi, 2018). A 
homozygous single-point mutation (M199R) in the amino termi-
nus of the RBP Roquin-1, the so-called sanroque mutation, weak-
ened its posttranscriptional activity (discussed below in further 
detail) and caused an accumulation of Th1 cells (Fig. 1; Vinuesa et 
al., 2005; Yu et al., 2007; Lee et al., 2012). Moreover, the sanroque 
mutation or Regnase-1 deletion as well as the combination of both 
genotypes induced Th1 cells and led to lymphocyte infiltration 
and inflammation of multiple organs (Uehata et al., 2013; Cui et 
al., 2017). The increased IFNγ production in the sanroque mouse 
model was shown to drive a lupus erythematosus–like phenotype 
and T follicular helper (Tfh) cell accumulation. A potential direct 
or indirect regulation of Ifng mRNA by Roquin may explain these 
phenotypes (Vinuesa et al., 2005; Yu et al., 2007; Lee et al., 2012). 
Surprisingly, when the alleles encoding for Roquin-1 were inacti-
vated in T cells in combination with those encoding for its paralog 

Table 1. Differentiation and function of CD4 effector T cells

CD4 subset Figure Differentiation and function

Th1 1 Stat4 activation upon IL-12 signaling promotes the expression of the master regulator T-bet and the signature cytokine 
IFNγ. Th1 cells are proinflammatory effector T cells involved in the activation of macrophages and cytotoxic T cells.

Th2 2 Stat6 activation upon IL-4 signaling induces the expression of the master regulator Gata3 and the signature cytokines 
IL-4, IL-5, and IL-13. Th2 cell effector functions drive immune responses directed against helminths and are central in 
allergic reactions.

Tfh 3 Tfh cell differentiation involves multiple cell–cell interactions that are spatially and temporally defined. Stat3 activation 
upon IL-6 signaling triggers the expression of the master regulator Bcl6. Tfh cells provide help to B cells through direct cell–
cell interactions and release of different cytokines (e.g., IL-21 at first and subsequently IL-4, IL-17, or IFNγ). Their effector 
function is critical for controlling the development of humoral immunity and the generation of high-affinity antibodies.

Th17 4 Stat3 activation in the context of IL-6 and TGFβ signaling promotes the expression of the master regulator Rorγt and the 
signature cytokine IL-17. Th17 effector functions are proinflammatory and protect epithelial barriers of the gastrointestinal 
tract, the respiratory tract, and the skin from bacterial and fungal infections.

iTreg 5 Stat5 activation upon IL-2 signaling as well as TGFβ-dependent Smad signaling lead to the expression of the master 
regulator Foxp3. Treg cells suppress effector functions of other T cells through a variety of mechanisms, including IL-10 and 
TGFβ production, thereby limiting tissue damage and other inflammatory effects of acute or chronic immune responses.

Differentiation of CD4 T helper cell subsets can be described in a simplified scheme (Figs. 1, 2, 3, 4, and 5; O’Shea and Paul, 2010). Activation, 
proliferation, survival, and differentiation are induced by TCR and costimulatory receptor signaling. Additional engagement of cytokines with their 
receptors activates Stat proteins. Differential activation of Stats controls the expression of subset-specifying transcription factors, which in turn induce 
additional differentiation-associated genes, including those of signature cytokines.
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Roquin-2, a stronger bias toward Tfh and Th17 than Th1 differen-
tiation was observed (Vogel et al., 2013; Jeltsch et al., 2014).

Early miRNA profiling of primary hematopoietic cells and 
hematopoietic cell lines indicated that differential miRNA expres-
sion might contribute to lineage commitment (Monticelli et al., 
2005). Subsequently, it was published that complete disruption 
of miRNA biogenesis resulted in the abnormal production of the 
Th1 cell signature cytokine IFNγ; however, the contributions of 
individual miRNAs remained unknown (Muljo et al., 2005; Cobb 
et al., 2006; Chong et al., 2008; Liston et al., 2008; Zhou et al., 
2008). It is now clear that the miR-17∼92 cluster as well as miR-
155 promote, whereas miR-29 limits IFNγ expression (Fig. 1).

The miR-17∼92 cluster of miRNAs has pleiotropic functions in 
hematopoietic cells. Germline deletion of miR-17∼92 led to peri-
natal death, whereas deficiency of the paralogous clusters miR-
106a∼363 or miR-106b∼25 did not result in obvious phenotypes 
(Ventura et al., 2008). During T cell activation, the transcription 

of miR-17∼92 is strongly up-regulated in a CD28 costimulation–
dependent manner (de Kouchkovsky et al., 2013), and posttran-
scriptional processing of the polycistronic pre-miRNA transcript 
results in six different mature miRNAs (miR-17, miR-18a, miR-
19a, miR-20a, miR-19b-1, and miR-92a-1) that together promote 
CD4 T cell proliferation and survival (Jiang et al., 2011; Steiner 
et al., 2011). Several publications have described specific func-
tions of the miR-17∼92 cluster and individual miRNAs thereof 
in the differentiation of Th1, Th2, Tfh, Th17, and iTreg cells 
(Baumjohann, 2018), which will be discussed in the respective 
sections. Because of space restrictions, we do not depict individ-
ual miRNAs of the cluster in Figs. 1, 2, 3, 4, and 5.

IFNγ was up-regulated in CD4 T cells of transgenic mice that 
overexpressed miR-17∼92 (Xiao et al., 2008), whereas T cell– 
specific deletion of this miRNA cluster decreased Th1 cell 
responses (Jiang et al., 2011). These findings could largely be 
attributed to miR-19b and the repression of its primary target 

Figure 1. Regulatory processes during Th1 differentiation. Noncoding RNAs, RBPs, and E3 ligases/DUBs are shown in blue, red, and green, respectively. 
For clarity of depiction, these posttranscriptional regulators were not necessarily placed at the correct cellular site of activity. Dashed lines indicate an indirect 
effect. Molecular interactions are explained in the text.
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Pten (Fig. 1; Jiang et al., 2011). Recently, the role of miR-17∼92 in 
T cells was analyzed during lymphocytic choriomeningitis virus 
(LCMV) infection of mice (Baumjohann et al., 2013; Kang et al., 
2013; Wu et al., 2015). In WT mice, the viral challenge would typ-
ically cause naive antigen-specific T cells to differentiate into 
Th1 or Tfh cells. These subsets control the infection by either 

producing IFNγ and TNFα or inducing germinal center (GC) reac-
tions and humoral immune responses, respectively. Upon LCMV 
infection, mice with a T cell–specific ablation of the miR-17∼92 
cluster predominantly exhibited a reduced clonal expansion of 
antigen-specific Th1, but also of Tfh cells (Wu et al., 2015). Con-
sistently, opposing phenotypes were observed in transgenic mice 
overexpressing miR-17∼92 (Wu et al., 2015).

Another well-characterized, immune cell-expressed miRNA 
is miR-155. Similar to the miR-17∼92 cluster, miR-155 promotes 
T cell–dependent immunity in a variety of contexts. miR-155 
maps to the bic locus, whose role in the development of B cell 
malignancies had been known before the discovery of miRNAs. 
miR-155 is strongly up-regulated during T cell activation and 
has important functions during humoral immune responses 
mediated by Tfh cells (Hu et al., 2014). However, miR-155 also 
drives T cell–dependent tissue inflammation by enhancing Th17 
and Th1 differentiation. A Th1-promoting effect of miR-155 was 
demonstrated through retroviral overexpression of either a 
miR-155–encoding sequence or an antagomir of miR-155 in acti-
vated T cells, causing the increased or decreased production of 
the Th1 cytokine IFNγ, respectively. Although counterintuitive, 
one target of miR-155 is the mRNA encoding for the IFNγRα, 
which may contribute to the observed down-regulation of this 
receptor in Th1 cells (Banerjee et al., 2010; Fig. 1). Genetic abla-
tion of miR-155 resulted in a bias toward Th2, and this effect 
was at least in part attributed to a direct, miR-155-dependent 
repression of the transcription factor c-MAF (Fig. 2), a potent 
transactivator of the Th2 cytokine IL-4 (Rodriguez et al., 2007; 
Thai et al., 2007). c-MAF expression is controlled both at the 
posttranscriptional level and epigenetically through Th1 subset–
specific expression of the lncRNA linc-MAF-4 (Fig. 1). During T 
cell activation under either Th1- or Th2-polarizing conditions, 
linc-MAF-4 and c-MAF expression are inversely correlated, and 
linc-MAF-4 recruits the chromatin modifiers EZH2 and LSD1 to 
silence the c-MAF–encoding locus (Ranzani et al., 2015). The 
clinical relevance of these findings was recently suggested for 
multiple sclerosis (MS), as increased levels of linc-MAF-4 were 
found in peripheral blood mononuclear cells of MS patients 
(Zhang et al., 2017).

In contrast to miR-155 and miR-17∼92, miR-29 limits IFNγ 
expression in Th1 cells (Fig.  1). The miR-29 family consists of 
miR-29a, b, and c and is transcribed from two bicistronic clus-
ters. miR-29s have pleiotropic effects in normal hematopoiesis, 
immune responses, and hematologic malignancies (Amodio et 
al., 2015). A broad repertoire of partly unique functions has been 
reported for miRNAs of this family. In a gain-of-function screen 
using miRNA-deficient CD4 T cells, the electroporation of miR-
29a and miR-29b mimics reduced aberrantly high IFNγ levels 
(Steiner et al., 2011). Supporting these results, the activation of 
T cells from miR-29ab1 cluster-deficient mice under Th1-skewing 
conditions showed strong derepression of IFNγ and the master 
transcription factor T-bet (Smith et al., 2012). Both were con-
firmed as direct miR-29 targets in HEK-293 and T cells (Fig. 1; 
Ma et al., 2011; Steiner et al., 2011; Smith et al., 2012). Because 
IFNγ was identified as a driver of miR-29 expression (Smith et 
al., 2012), this negative feedback loop seems to control overshoot-
ing cytokine expression in Th1 cells.

Factors involved in posttranscriptional and posttranslational  
gene regulation

RBPs
RBPs recognize RNA by binding to cis-acting elements, such as secondary 
structures or target sequences with regulatory potential, often found in 
the 5' or 3' UTRs of mRNAs. This interaction of the trans-acting factor with 
the cis-element typically initiates the recruitment of general regulators of 
mRNA half-life and/or translation efficiency. Many cytokine mRNAs that are 
expressed by T helper cells contain long 3' UTRs. For instance, the 3' UTR of 
the IL-17A mRNA makes up more than 70% of the entire transcript (Turner et 
al., 2014). Long 3' UTRs can contain high numbers of encoded cis-elements 
that render them prone to posttranscriptional gene regulation, which can 
be mediated by trans-acting factors, such as miRNAs or RBPs, individually 
or in combination.

miRNAs
MicroRNAs are ∼22-nt-long, single-stranded, noncoding RNAs that, in com-
plex with proteins of the miRNA-induced silencing complex, bind specific 
sequences in the 3' UTRs of target mRNAs, which results in translational 
repression and mRNA degradation (Hoefig and Heissmeyer, 2008). Today, 
2,588 mature miRNAs have been identified in humans (1,915 in mice), and 
the cellular network of miRNAs is believed to fine-tune tissue-specific gene 
expression. Typically, the impact of a single miRNA on the protein level of 
a target gene is rather small (Baek et al., 2008). However, the accumula-
tion of silencing effects may be key to miRNA-mediated repression, because 
for each miRNA, the predicted target gene numbers range in the hundreds, 
whereas many 3' UTRs offer more than one miRNA target site. This involves 
synergistic biological effects of several different miRNAs regulating the 
same mRNA or one miRNA regulating many different mRNA targets in the 
same pathway (Baumjohann and Ansel, 2013). Nevertheless, miRNA-depen-
dent repression can determine cell fate choices, and often the deregulation 
of just one protein can account for much of the phenotype elicited by the ge-
netic ablation of one specific miRNA (Xiao et al., 2007; Dorsett et al., 2008; 
Johnnidis et al., 2008; Teng et al., 2008).

lncRNAs
lncRNAs (typically >200 nt) are structurally and functionally different 
from miRNAs. In recent years, thousands of lncRNAs have been identified 
in the human and mouse genomes, many of which are of intergenic origin, 
have their own promoters, and are tissue-specifically transcribed. Such 
transcripts often possess a 5' cap structure and are polyadenylated; never-
theless, they do not possess extended ORFs and hence have little coding 
potential. lncRNAs carry out diverse nuclear and cellular tasks, including nu-
cleation of nuclear domains, bridging of proteins and chromatin, and acting 
as decoy or scaffold (Ulitsky and Bartel, 2013).

Ubiquitination
Although posttranscriptional regulators typically affect mRNA stability, the 
function and half-life of proteins are profoundly controlled by ubiquitina-
tion. This posttranslational modification involves three different types of 
proteins, termed E1, E2, and E3, which successively activate, transfer, and 
covalently link one or more 76-aa-long ubiquitins to target proteins. The 
highly conserved polypeptide chain of ubiquitin contains seven different ly-
sines (K), all of which can be used to build side chains in polyubiquitination. 
Among many linkage possibilities, K48 polyubiquitination usually targets 
proteins for proteasomal degradation, whereas K63 polyubiquitination may 
confer activation of kinases or change the intracellular location of proteins. 
E3 ubiquitin ligases act in a target-specific manner, thereby explaining why 
hundreds of such gene products have evolved. Ubiquitination is a reversible 
process, and given its complexity, it is little surprising that ∼100 DUBs are 
predicted in the human proteome. In the last 10 years, the functions of a re-
markable number of E3 ligases and DUBs have been elucidated. Their targets 
include key factors of T cell differentiation, such as the master transcription 
factors T-bet, Gata3, Rorγt, Foxp3, and Bcl6 (Figs. 1, 2, 3, 4, and 5).
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Posttranslational regulation of Th1 cells
The strength of the TCR signal affects T cell activation and 
differentiation. Proximal pathway components are therefore 
tightly controlled and modulated by phosphorylation and/or 
ubiquitination. The deubiquitinase Otud7b has been identified 
as a positive regulator of Zap70 (Fig. 1), a tyrosine kinase and 
key upstream mediator of TCR signaling (Hu et al., 2016). Indeed, 
in vitro activated naive Otud7b−/− T cells produced less IL-2, and 
aged Otud7b-deficient mice had increased frequencies and num-
bers of naive CD4 T cells, whereas those of effector-memory 
phenotype were decreased. Additionally, in vitro differentiated 
Otud7b−/− Th1 cells produced less IFNγ, a result that was sub-
stantiated by in vivo experiments showing that Otud7b−/− mice 
generated fewer Th1 cells in response to bacterial infection or 
during myelin oligodendrocyte glycoprotein (MOG)–induced 
experimental autoimmune encephalomyelitis (EAE; Hu et al., 
2016). Mechanistically, Otud7b deubiquitinated Zap70 at K544. 

Such deubiquitination attenuated its interaction with negative 
regulatory phosphatases (Carpino et al., 2009) and reinforced 
TCR signaling (Hu et al., 2016).

Differentiation of Th1 cells results from IL-12 and IFNγ signal-
ing through Stat4 and Stat1, respectively (Fig. 1). In the context of 
TCR/Ca2+-dependent NFAT activation, Stat4 induces expression 
of T-bet, which subsequently causes up-regulation of Th1 sig-
nature genes. In addition to the mentioned miRNAs, regulation 
of Th1 differentiation also occurs on the posttranslational level. 
The E3 ligase Slim was the first ubiquitinating enzyme found 
to target Stat proteins (Tanaka et al., 2005), which are rapidly 
activated and subsequently deactivated (Villarino et al., 2017). 
Slim-mediated ubiquitination of Stat1 and Stat4 triggered pro-
teasome-dependent degradation and reduced IFNγ production 
(Fig. 1; Tanaka et al., 2005). Additionally, the E3 ligase Smurf1 
was found to engage in the ubiquitination and destabilization 
of Stat1 (Fig. 1). In a series of biochemical experiments, Smurf1 

Figure 2. Regulatory processes during Th2 differentiation. Noncoding RNAs, RBPs, and E3 ligases/DUBs are shown in blue, red, and green, respectively. 
For clarity of depiction, these posttranscriptional regulators were not necessarily placed at the correct cellular site of activity. Molecular interactions are 
explained in the text.
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interacted with Stat1 and promoted its K48-linked polyubiquiti-
nation in a phosphorylation-independent manner, which nega-
tively affected IFNγ signaling (Yuan et al., 2012). Interestingly, 
IFNγ also induced expression of Smurf1, thereby creating a neg-
ative feedback loop (Yuan et al., 2012).

Antagonizing the function of the E3 ligases Slim and Smurf1, 
the deubiquitinase Usp13 was identified in an RNAi screen 
searching for a positive regulator of IFNα-mediated antiviral 
effects (Yeh et al., 2013). Usp13 mainly interacted with the non-
activated form of Stat1 (Fig. 1). Affecting the same pathway fur-
ther downstream, the deubiquitinase Usp10 was demonstrated 
to bind, deubiquitinate, and stabilize T-bet in the nucleus (Fig. 1; 
Pan et al., 2014).

Posttranscriptional regulation of Th2 cells
The majority of cytokine mRNAs contain adenine and uridine 
(AU)–rich elements (AREs) in their 3′ UTRs (Turner et al., 2014). 

These can be recognized by RBPs of the tristetraproline family 
and by the ARE/poly(U)-binding/degradation factor 1 (Auf1), 
which typically inhibit expression of the respective cytokine. 
AREs are also bound by the RBP Hu antigen R (HuR), which in 
contrast stabilizes these transcripts. So far, only HuR has been 
implicated in the differentiation of CD4 T cells, despite a likely 
function of other ARE-binding factors. Specifically, HuR was 
shown to promote Th2 cell differentiation, as it directly inter-
acted with the 3' UTRs of the subset-specifying transcription fac-
tor Gata3, as well as with those of the signature cytokines IL-4 
and IL-13 (Fig. 2; Stellato et al., 2011; Gubin et al., 2014).

Similar to some RBPs, miRNAs are involved in mRNA desta-
bilization to influence Th2 cell differentiation. miRNA pro-
filing of human CD4 T cells derived from asthma patients and 
healthy donors revealed elevated miR-19a expression in this 
Th2-driven disease (Simpson et al., 2014). Culturing miR-17∼92–
deficient mouse CD4 T cells under Th2-polarizing conditions 

Figure 3. Regulatory processes during Tfh differentiation. Noncoding RNAs, RBPs, and E3 ligases/DUBs are shown in blue, red, and green, respectively. 
For clarity of depiction, these posttranscriptional regulators were not necessarily placed at the correct cellular site of activity. Dashed lines indicate indirect 
effects. Molecular interactions are explained in the text.
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demonstrated reduced IL-4 and IL-13 expression. Transfection 
with miR-19a and miR-19b mimics restored WT cytokine lev-
els (Fig. 2), whereas the remaining miRNAs of the cluster only 
marginally rescued the phenotype. Investigating 38 previously 
identified direct miR-19 targets, Simpson et al. (2014) found that 
knockdown of Socs1 and A20 specifically increased the pro-
duction of Th2 cytokines, indicating a functional correlation 
between miR-19 and these two target genes. Further evidence 
came from a gain-of-function screen involving electroporation 
of miRNA mimics into miRNA and T-bet double-deficient T cells, 
which independently identified miR-19a as a positive regulator of 
IL-4 expression (Pua et al., 2016). In the same experiment, miR-
24 and miR-27 were found to limit IL-4 production (Fig. 2). These 
miRNAs are encoded in two polycistronic clusters together with 
miR-23. In a mouse model of allergic airway inflammation, elim-
ination of both clusters in T cells enhanced Th2 cytokine pro-
duction and increased eosinophil infiltration of the lung (Pua et 

al., 2016). A network of overlapping miR-24 and miR-27 targets 
was identified that included the Th2 master transcription fac-
tor Gata3 (Fig. 2), but also factors not previously associated with 
Th2 cell biology, such as the deadenylation complex component 
Cnot6 (Pua et al., 2016). In a different study, transgenic mice were 
produced that overexpressed the whole miR-23∼27∼24 cluster or 
each of the three miRNAs individually in a T cell–specific manner 
(Cho et al., 2016). Surprisingly, cultivation of miR-23∼27∼24–
expressing T cells under different polarizing conditions resulted 
in reduced differentiation of Th1, Th2, Th17, and iTreg cells, as 
opposed to the increased effector-memory phenotype and aug-
mented cytokine production after ex vivo stimulation of CD4 T 
cells from this transgenic mouse. Analyzing the effects of indi-
vidual miRNAs in the same experimental setting showed that 
miR-23 and miR-27 functions mirrored the results previously 
obtained for the whole cluster, whereas miR-24 promoted Th1, 
Th17, and iTreg differentiation. These findings show that under 

Figure 4. Regulatory processes during Th17 differentiation. Noncoding RNAs, RBPs, and E3 ligases/DUBs are shown in blue, red, and green, respectively. 
For clarity of depiction, these posttranscriptional regulators were not necessarily placed at the correct cellular site of activity. Dashed lines indicate a suspected 
effect. Molecular interactions are explained in the text.
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different conditions, members of the same cluster can exhibit 
cooperative or antagonistic functions.

lincRNAs, which are lncRNAs expressed from intergenic tran-
scripts, have also been found to have a supporting function for 
Th2 cell differentiation. A whole-genome sequencing approach 
identified 28, 17, or 29 lincRNAs to be selectively expressed in 
human Th1, Th2, or Th17 cells, respectively (Spurlock et al., 
2015). Among these, the Th2-specific TH2-LCR promoted the 
expression of IL-4, IL-5, and IL-13, as demonstrated by a knock-
down approach in developing human Th2 cells (Fig. 2). The Th2 
locus control region (LCR) has previously been established by 
genomic deletion of sequences that showed Th2-specific demeth-
ylation after antigenic stimulation (Lee et al., 2005; Koh et al., 
2010). The newly discovered expression and function of Th2-LCR 
now provide a molecular explanation why this genomic region 
has critical importance for Th2 responses in vitro and in vivo 
(Spurlock et al., 2015).

Posttranslational regulation of Th2 cells
The E3 ligase Itch has diverse yet specific functions in the differ-
entiation of helper T cells, as it crucially influences Th2, Tfh, and 
Th17 cells (Figs. 2, 3, and 4). Itch-deficient (itchy) mice have acti-
vated, strongly proliferating T cells, increased IL-4 cytokine pro-
duction, and elevated levels of IgG1 and IgE antibodies in addition 
to a severe immune dysregulation manifested in inflammation of 
the large intestine and skin (Perry et al., 1998; Fang et al., 2002). 
Molecularly, Itch ubiquitinates and induces proteasomal degra-
dation of JunB (Fig. 2; Fang et al., 2002). JunB cooperates with 
c-MAF in the activation of IL-4 expression in Th2 cells (Li et al., 
1999). The function of Itch likely depends on its association with 
and activation by Nedd4 family interacting protein 1 (Ndfip1), a 
transmembrane protein associated with intracellular vesicles 
and the Golgi apparatus. Ndfip1−/− mice phenocopied itchy mice, 
and the phenotypes were reminiscent of the human condition 
atopic dermatitis (Oliver et al., 2006).

Figure 5. Regulatory processes during iTreg cell differentiation. Noncoding RNAs, RBPs, and E3 ligases/DUBs are shown in blue, red, and green, respec-
tively. For clarity of depiction, these posttranscriptional regulators were not necessarily placed at the correct cellular site of activity. Dashed lines indicate an 
indirect effect. Molecular interactions are explained in the text.



Hoefig and Heissmeyer 
T cell regulation downstream of transcription

Journal of Cell Biology
https://doi.org/10.1083/jcb.201708075

9

Investigations of posttranslational regulation of IL-4 signal-
ing indicate that the E3 ligases Grail and Cbl-b both target Stat6 
and thereby control Th2 differentiation (Fig. 2). Grail expression 
was up-regulated by Stat6 and Gata3 during T cell activation in 
an IL-4–dependent manner, specifically in Th2 cells (Sahoo et 
al., 2014). As negative feedback, Th2 differentiation was strongly 
repressed by Grail. In vitro–differentiated naive Grail−/− T cells 
generated higher levels of the Th2 cytokines IL-4, IL-5, and IL-13 
as well as increased expression of Gata3 and IL-4R. These results 
were confirmed in Grail-deficient mice, which not only produced 
more Th2 cells and cytokines after OVA immunization, but also 
were more susceptible to the induction of allergic asthma. Stat6 
was identified as a direct target of the E3 ligase Grail, and its 
ubiquitination resulted in proteasomal degradation (Sahoo et 
al., 2014). Surprisingly, similar results were presented for Cbl-
b, whose induced expression in Th2 cells appeared to be more 
dependent on TCR and costimulatory receptor signaling (Qiao et 
al., 2014). Whereas the exact site of Grail-mediated ubiquitina-
tion of Stat6 remains unknown, amino acids K108 and K398 of 
Stat6 were identified as being specifically ubiquitinated by Cbl-
b. Consistently, reexpression of Stat6 with the corresponding 
mutations in Stat6−/− CD4 T cells increased the ability of recon-
stituted cells to produce IL-4 (Qiao et al., 2014).

Posttranscriptional regulation of Tfh cells
In Tfh cells, the subset-specifying transcription factor Bcl6 is 
up-regulated by Stat3 in response to the cytokines IL-6 and IL-21 
(Fig. 3). Additionally, costimulatory signals transmitted through 
the Icos-PI3K-Akt axis are essential for Tfh cell differentiation 
(Rolf et al., 2010). Several miRNAs have been implicated in the 
regulation of Tfh cells, including miR-17∼92, miR-155, and miR-
146 (Maul and Baumjohann, 2016).

As mentioned above, mice with a T cell–specific ablation of the 
miR-17∼92 cluster had defects not only in Th1 but also in Tfh cell 
differentiation (Baumjohann et al., 2013; Kang et al., 2013; Wu et 
al., 2015). A recent publication suggested a promoting contribution 
of miR-92a on human Tfh cell differentiation (Serr et al., 2016); 
however, the individual contributions of the remaining cluster 
miRNAs are not well understood. miRNAs of the miR-17∼92 clus-
ter were found to directly target negative regulators of the PI3K-
Akt-mTOR pathway. These include Pten, coding for a PIP3 phos-
phatase, and Phlpp2, an Akt-inhibiting phosphatase (Fig. 3; Xiao 
et al., 2008; Jiang et al., 2011; Baumjohann et al., 2013; Kang et al., 
2013; Liu et al., 2014; Simpson et al., 2014). This is consistent with a 
positive, dose-dependent correlation of PI3K signaling and Tfh cell 
differentiation (Rolf et al., 2010). In addition to its Tfh-promoting 
function, miR-17∼92 inhibited subset-inappropriate gene expres-
sion through directly targeting the Th17-associated transcription 
factor Rora (Baumjohann et al., 2013).

An exciting and little-explored field of research is how RBPs 
and miRNAs engage in mutual regulation, cooperation, or antag-
onism. In addition to the Roquin-mediated inhibition of Icos, 
Ox40, and Irf4 mRNA expression (Yu et al., 2007; Glasmacher 
et al., 2010; Vogel et al., 2013; Jeltsch et al., 2014; Schlundt et 
al., 2014; Janowski et al., 2016; Rehage et al., 2018), which are 
critical for Tfh differentiation, Roquin-1 can also interact with 
the Tfh cell–inhibiting miR-146a and Ago2 to regulate miRNA 

homeostasis (Srivastava et al., 2015). In another example, 
Regnase-1 down-regulates miRNAs by interacting with the termi-
nal loop of pre-miRNA hairpins and interfering with Dicer-me-
diated miRNA biogenesis (Suzuki et al., 2011). Moreover, Roquin 
interacts with a putative stem-loop structure in the 3' UTR of 
Pten, which overlaps with a miRNA binding site, thereby inhib-
iting the recognition of the complementary sequences by mem-
bers of the miR-17∼92 cluster (Essig et al., 2017). As a result, 
Roquin-deficient T cells revealed increased PI3K-Akt-mTOR sig-
naling. Hence, inhibition of mTOR signaling by rapamycin treat-
ment in vivo prevented the spontaneous Tfh differentiation that 
is typically observed upon induced deletion of Roquin-encoding 
alleles (Essig et al., 2017).

Systemic deletion or transgenic overexpression of miR-155 
reduced or enhanced GC responses, respectively (Fig. 3; Hu et al., 
2014). In line with these findings, it has recently been shown in 
a Mir-146−/− mouse model of age-dependent inflammation that 
miR-155 was required for Tfh cell expansion, increased numbers 
of GC B cells, and generation of autoantibodies (Hu et al., 2014). 
21 target genes, including Peli1 and Fosl2, were identified (Fig. 3). 
During Tfh cell differentiation, Peli1 and Fosl2 are involved in 
repressing the NF-κB and AP1 pathways, respectively (Hu et al., 
2014). Moreover, miR-146a was found to be highly expressed in 
Tfh and GC B cells (Pratama et al., 2015). The mRNA of the import-
ant costimulatory receptor Icos was established as one of its direct 
targets in vitro (Pratama et al., 2015). In vivo experiments further 
highlighted the strong contribution of impaired Icos regulation in 
miR-146–deficient mice. Promoter analysis and subsequent exper-
iments revealed that miR-146a expression was up-regulated by the 
NF-κB pathway and itself directly targeted Traf6 and Irak1 to cre-
ate a negative feedback loop (Fig. 3; Taganov et al., 2006). miR-146a 
deficiency caused a spontaneous increase of Tfh and GC B cells, 
which was cell autonomous for T and B cells (Pratama et al., 2015). 
Therefore, miR-146a expression at later time points during Tfh cell 
differentiation opposes the activities of miR-155 and miR-17∼92, 
which are expressed early on. Adding to the regulatory complexity, 
a novel connection of miR-146a and an RBP has recently been elu-
cidated, as Roquin was found to bind to mature miR-146a (Fig. 3) 
and induced its decay, possibly involving 3′-end mono-uridylation 
(Srivastava et al., 2015). These findings suggest cooperative reg-
ulation of mouse Icos mRNA by both factors (Fig. 3). However, 
Roquin-dependent regulation of the human ICOS 3' UTR was 
unimpaired in cells with strongly reduced miRNA levels, including 
Dicer-deficient mouse embryonic fibroblast cells or Ago-deficient 
embryonic stem cells (Glasmacher et al., 2010).

Posttranslational regulation of Tfh cells
Adding to the pleiotropic functions of Itch in T helper cell devel-
opment, it indirectly promotes Bcl6 expression (Fig. 3; Xiao et al., 
2014). Analysis of T and B cell responses of Itchfl/fl; Cd4-Cre mice 
after vaccinia virus infection revealed decreased Tfh and GC B cell 
numbers/frequencies as well as strongly reduced virus-specific 
antibody production (Xiao et al., 2014). Induced deletion of Foxo1 
in Itchfl/fl;Foxo1fl/fl T cells rescued the phenotype (Fig. 4). Mech-
anistically, Itch ubiquitinates Foxo1 for proteasomal degradation 
(Xiao et al., 2014). Interestingly, Itch mRNA is a target of the 
RBP Roquin, which down-regulated Itch expression to promote 
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Foxo1 abundance (Essig et al., 2017). Therefore, the E3 ligase Itch 
emerges as a potent positive regulator of Tfh differentiation while 
inhibiting Th2 and Th17 development. Conversely, Roquin proteins 
repress Tfh and Th17 cell differentiation, and their functions have 
been attributed to the ROQ domain, which is responsible for RNA 
binding and induced mRNA decay (Glasmacher et al., 2010; Jeltsch 
et al., 2014; Schlundt et al., 2014; Sakurai et al., 2015). However, the 
T cell–specific deletion of the RING domain of Roquin-1, but not 
combined deletion of the RING finger in Roquin-1 and Roquin-2, 
led to the paradoxical phenotype of decreased Tfh cell differentia-
tion (Pratama et al., 2013; Ramiscal et al., 2015). Although induced 
activity of AMPK, a negative regulator of mTOR signaling, has 
been implicated in this phenotype, a direct target for the E3 ligase 
activity of Roquin is still elusive. Because complete deletion of 
Roquin-1– and Roquin-2–encoding alleles increased mTOR sig-
naling (Essig et al., 2017), the RING finger may potentially be an 
intramolecular antagonist of Roquin function.

A mechanism to stabilize Bcl6 in response to Icos signaling 
involves the intracellular form of the phosphoprotein osteopon-
tin (Opn-i; Fig.  3; Leavenworth et al., 2015). Opn-i is strongly 
expressed in Tfh cells, and sophisticated mouse models demon-
strated that the intracellular form of Opn was essential for nor-
mal Tfh and GC B development. Intriguingly, costimulation via 
Icos induced binding of p85α, the regulatory subunit of PI3K, 
to Opn-i. This led to the translocation of Opn-i to the nucleus, 
where it directly or indirectly protected Bcl6 from proteasomal 
degradation (Leavenworth et al., 2015).

Bcl6 expression is also down-regulated by the histone-ubiq-
uitinating E3 ligase cullin 3 (Cul3). Cul3 and Bcl6 are both highly 
and transiently expressed in CD4+CD8+ thymocytes and inter-
act to generate Ub-histone marks that were maintained in sin-
gle-positive CD4+ thymocytes. Deletion of Cul3 in T cells resulted 
in the derepression of Batf and Bcl6 and increased Tfh cell fre-
quencies (Fig. 3; Mathew et al., 2014). The transcription factor 
Batf is a critical determinant of Bcl6 induction and a global regu-
lator of the Tfh program (Betz et al., 2010; Ise et al., 2011).

Posttranscriptional regulation of Th17 cells
Th17, Tfh, and Th1 cell differentiation are under control of the 
RBPs Roquin-1, Roquin-2, and Regnase-1 (Figs. 3 and 4). These 
proteins target a common set of mRNA transcripts through inter-
actions with defined stem-loop structures in 3' UTRs (Matsushita 
et al., 2009; Leppek et al., 2013; Uehata et al., 2013; Schlundt et 
al., 2014; Schuetz et al., 2014; Tan et al., 2014; Sakurai et al., 2015; 
Janowski et al., 2016). Their targets include several immune-stim-
ulatory genes: Tnf, Icos (Figs. 3 and 4), Ox40, Nfkbiz (coding for 
IκBζ; Fig.  4), Nfkbid (coding for IκBNS; Fig.  4), cRel, Zc3h12a 
(coding for Regnase-1; Figs. 3 and 4), Irf4, and IL6 (Figs. 3 and 4; 
Matsushita et al., 2009; Suzuki et al., 2011; Leppek et al., 2013; 
Uehata et al., 2013; Vogel et al., 2013; Jeltsch et al., 2014; Mino et 
al., 2015). Indeed, Nfkbiz, Nfkbid, cRel, Irf4, and Il6 have been 
described as key regulators of Th17 differentiation (Brüstle et 
al., 2007; Okamoto et al., 2010; Chen et al., 2011; Reinhard et al., 
2011; Ruan et al., 2011; Kobayashi et al., 2014; Annemann et al., 
2015). Regnase-1, Roquin-1, and Roquin-2 proteins all harbor 
conserved sequence motifs that are recognized and cleaved by 
the paracaspase Malt1 (Figs. 3 and 4), which inactivates these 

proteins downstream of the TCR (Uehata et al., 2013; Gewies et 
al., 2014; Jeltsch et al., 2014). Increased cleavage of Roquin pro-
teins by Malt1 was correlated with high-affinity peptide/MHC 
recognition, and different targets of Roquin were recognized 
with very different affinity/avidity in cells (Schlundt et al., 2014). 
Thereby, differential gene regulation can be achieved in this sys-
tem through altered TCR signal strength, which may then skew 
T helper cell differentiation (Jeltsch and Heissmeyer, 2016). The 
combined knockout of Roquin-1 and Roquin-2 elicited an accu-
mulation of Th17 and Tfh cells in secondary lymphoid organs, 
as well as Th17 and neutrophils in the lung (Vogel et al., 2013; 
Jeltsch et al., 2014). A predisposition toward Th17, Tfh, and Th1 
differentiation of Roquin-deficient T cells was demonstrated as 
a cell-intrinsic property in ex vivo–cultivated CD4 T cells (Vogel 
et al., 2013; Jeltsch et al., 2014; Essig et al., 2017).

Mice with Regnase-1–deficient T cells exhibit autoantibody 
production and excessive IFNγ levels, which may contribute 
to the increased Tfh frequencies (Uehata et al., 2013). Ex vivo– 
stimulated CD4 T cells from spleens of these mice showed 
strongly increased IFNγ-producing Th1 cells and somewhat 
increased IL-17A–producing Th17 cells (Uehata et al., 2013; Cui et 
al., 2017). Indirect evidence that Regnase-1 impinges on Th17 cell 
differentiation also comes from studies on a posttranscriptional 
antagonist of Regnase-1 function, Arid5a, which competes with 
Regnase-1 for binding to stem-loop structures in 3' UTRs (Masuda 
et al., 2013, 2016). In gain- and loss-of-function experiments, it 
was shown that Arid5a or Regnase-1 stabilized or destabilized 
IL-6 and Stat3 mRNAs, respectively (Fig. 3; Masuda et al., 2013, 
2016). Consistently, Arid5a-deficient T cells showed reduced 
differentiation into Th17 cells, and Arid5a−/− mice were less sus-
ceptible to EAE, a mouse model with similarities to the human 
disease MS (Masuda et al., 2013).

Apart from RBPs, many noncoding RNAs have been identified 
to skew Th17 cell differentiation (miR-17∼92, miR-155, miR-301, 
miR-132/212, miR-326, miR-210, Rmrp, and lincRNA-p21). T cell–
specific deficiency of miR-17∼92 reduced Th17 cell differentia-
tion and ameliorated symptoms of EAE after MOG35–55 immu-
nization (Liu et al., 2014). Th17 development could be partly 
compensated by retroviral reintroduction of miR-19b or miR-17 
(Jiang et al., 2011). Paradoxically, miR-20b, a miRNA that shares 
an identical seed sequence with miR-17, repressed rather than 
promoted Th17 cell differentiation in vitro. Furthermore, miR-
20b was down-regulated in CD4 T cells of EAE mice (Zhu et al., 
2014) as well as in blood cells of MS patients (Keller et al., 2009). 
Consistently, the transcripts of Rorγt and Stat3 were identified 
as direct targets of miR-20b (Zhu et al., 2014). Along the same 
lines, miR-18a was demonstrated to be a potent inhibitor of Th17 
differentiation in vitro and in vivo, repressing Smad4, Hif1α, and 
Rora (Montoya et al., 2017).

miR-155 controls the epigenetic regulator Jarid2, whose 
down-regulation is required for Th17 differentiation and expres-
sion of IL-17 (Escobar et al., 2014). miR-155–dependent differen-
tiation of pathogenic Th17 cells was elucidated by analyzing EAE 
in miR155−/− mice after MOG35–55 immunization (O’Connell et al., 
2010). Compared with their WT counterparts, miR155−/− mice 
displayed fewer neurological symptoms at later time points and 
with reduced incidence (Fig. 4).
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An early event during Th17 differentiation involves Stat3 
phosphorylation in response to IL-6 stimulation. This process is 
promoted by miR-301a (Mycko et al., 2012), a miRNA that was 
identified in a profiling approach analyzing MOG35–55–respon-
sive CD4 T cells. In vitro, miR-301a was strongly expressed in 
Th17 cells, and transfection of a miR-301a antagomir inhibited 
IL-6–induced Stat3 phosphorylation. Pias3, a potent inhibitor of 
Stat3, was identified as a direct target of miR-301a (Fig. 4). Con-
sistently, down-regulation of miR-301a or expression of Pias3 
in the transferred MOG-specific T cells resulted in the expected 
ameliorated or exacerbated EAE disease, respectively (Mycko et 
al., 2012). Stat3 regulates the transcription of the lineage-speci-
fying factor Rorγt, whose activity critically depends on posttran-
scriptional and posttranslational regulation (discussed below).

Enrichment of Rorγt-containing complexes and subsequent 
mass spectrometry identified the helicase Ddx5 (Fig.  4) as a 
potential cofactor (Huang et al., 2015). T cell–specific deletion of 
Ddx5 inhibited Th17 differentiation in vitro, and its function as a 
cofactor depended on its helicase activity. Immunoprecipitation 
of Ddx5 or Rorγt and sequencing of associated RNA identified 
the lncRNA Rmrp, which has a crucial role in the localization of 
the tripartite Rorγt/Ddx5/Rmrp complex on Rorγt-bound genes 
(Fig. 4; Huang et al., 2015). The importance of Rmrp sequence 
integrity for Rorγt activity was elegantly confirmed by CRI SPR/
Cas9-mediated single nucleotide exchange (270G>T) in the Rmrp 
locus of the mouse genome. This point mutation inactivates 
Rmrp function and is often found in human cartilage-hair hypo-
plasia syndrome, a rare disorder that includes symptoms such as 
defective immunity and predisposition to lymphoma (Mäkitie et 
al., 1998; Bonafé et al., 2005).

Optimal Rorγt-mediated transcription of the IL-17 signature 
cytokine genes partly depends on the aryl hydrocarbon receptor 
(Veldhoen et al., 2009), which induces miR-132/212 expression 
during Th17 differentiation (Nakahama et al., 2013). Mice defi-
cient in the miR-132/212 cluster exhibited reduced EAE scores 
potentially because of inappropriate Tfh gene expression in Th17 
cells in response to increased Bcl6 levels. Accordingly, Bcl6, the 
lineage-specifying factor of Tfh cells and negative regulator of 
Th17 differentiation, was identified as a miR-212 target (Fig. 4; 
Nakahama et al., 2013).

Th17 and Th1 cells have been recognized as key drivers of 
chronic inflammatory demyelination of the central nervous 
system in MS patients. miR-326 and IL17a were correlated in 
their expression, and miR-326 was strongly overexpressed in 
CD4 T cells of relapsing, but not remitting, MS patients (Du et 
al., 2009). This result could be recapitulated in an EAE mouse 
model, and here Ets-1, a known repressor of Th17 development 
(Moisan et al., 2007), was identified as a direct target of miR-326 
(Du et al., 2009) as well as of miR-155 (Fig. 4; Na et al., 2016). The 
diagnostic value of miR-326 was independently confirmed by a 
study analyzing peripheral blood lymphocytes from relapsing 
and remitting MS patients (Honardoost et al., 2014).

As T cells become activated, metabolic reprogramming leads 
to the Warburg effect: increased glycolysis and decreased oxi-
dative phosphorylation, even in the presence of oxygen. In Th17 
cells, metabolic reprogramming strongly depends on the tran-
scription factor hypoxia-inducible factor 1-α (Hif-1α; Shi et al., 

2011), which promotes transcription of the lineage-specifying 
transcription factor Rorγt (Fig. 4; Dang et al., 2011). Hif-1α lev-
els are rigorously controlled by hypoxia-responsive miR-210 
and lincRNA-p21 at the posttranscriptional level, but also post-
translationally by an E3 ligase called von Hippel–Lindau pro-
tein (VHL; Fig. 4). In response to hypoxia and/or TCR signaling, 
the up-regulation of Hif-1α promotes a dramatic but delayed 
increase in miR-210 expression (Wang et al., 2014). In turn, miR-
210 directly repressed Hif-1α, thereby creating a negative feed-
back loop, possibly preventing an overshooting inflammatory 
response (Fig. 4; Wang et al., 2014).

Under hypoxic conditions that often occur after activation of 
T cells, binding of the E3 ligase VHL to Hif-1α is impaired, result-
ing in reduced polyubiquitination and an increased half-life of 
Hif-1α (Jaakkola et al., 2001). Additionally, Hif-1α is stabilized in 
a positive feedback loop through Hif-1α–dependent lincRNA-p21 
expression (Yang et al., 2014). Mechanistically, lincRNA-p21 
impedes the Hif-1α-VHL interaction by binding to both proteins 
independently (Fig. 4), thereby blocking a region in VHL that rec-
ognizes Hif-1α. This function of lincRNA-p21 indirectly promotes 
glycolysis and Th17 differentiation.

Finally, the Th17 signature cytokine IL-17 is also subject to 
posttranscriptional gene regulation. Its mRNA transcript was 
demonstrated to be a direct target of HuR (Fig. 4), an RBP with a 
known role in Th2 differentiation (Fig. 2). HuR-deficient T cells 
were less able to differentiate into Th17 cells, had less prolifera-
tive capacity, and showed attenuated disease scores of EAE, com-
pared with WT (Chen et al., 2013a).

Posttranslational regulation of Th17 cells
At least four DUBs have been identified to coordinate Th17 dif-
ferentiation by controlling TCR and IL-17 proximal signaling 
(Usp18), as well as Rorγt stability (Usp4, Usp17, and Duba). Defi-
ciency of Usp18 reduced Th17 cell differentiation in vitro and 
in vivo as a result of hyperactivated NF-κB/NFAT signaling and 
increased levels of IL-2 (Liu et al., 2013). To activate the canon-
ical NF-κB pathway, TCR proximal signaling involves the Tak1-
Tab1 complex, of which Tak1 is a K63 ubiquitin-activated kinase 
(Fig. 4; Wang et al., 2001). Interestingly, in transfection experi-
ments, Usp18 bound to and deubiquitinated Tak1, thereby reduc-
ing its kinase activity and the associated downstream signaling 
(Liu et al., 2013). Adoptive transfer of Usp18−/− CD4 T cells into 
Rag1−/− mice followed by MOG-dependent EAE induction caused 
delayed onset and less severe symptoms of EAE, most likely 
because of the inhibition of Th17 differentiation by the observed 
increase in IL-2 production (Liu et al., 2013).

IL-6 signals through Stat3, which promotes Th17 and suppresses 
iTreg lineage commitment. Activated Stat3 has been proposed as a 
nuclear target of the E3 ligase Pdlim2 (Fig. 4; Tanaka et al., 2011; Qu et 
al., 2012). Injection of Pdlim2−/− mice with heat-killed Propionibac-
terium acnes caused significantly more granuloma formation in the 
liver as compared to injected WT mice. T cells from Pdlim2−/− mice 
showed increased Th17 cytokine production including IL-17A, IL-22, 
IL-21, but also IFNγ or IL-4 in response to stimulation with these 
bacteria or upon stimulation with agonistic anti-CD3/anti-CD28 
(Tanaka et al., 2011). Consistently, Pdlim2−/− mice were more sus-
ceptible to EAE as compared to WT counterparts (Qu et al., 2012).
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In Th17 cells, increased activation of Stat3 leads to increased 
expression of Rorγt, whose function is heavily influenced by 
posttranscriptional and posttranslation mechanisms, including 
miRNAs (miR-212 and miR-326), lncRNAs (Rmrp), E3 ligases 
(Itch, Ubr5, and Traf5), and DUBs (Usp4, Usp17, and Duba). 
Whereas Usp4 and Usp17 simply stabilized Rorγt during Th17 
differentiation by means of K48-linked ubiquitin removal (Fig. 4; 
Han et al., 2014; Yang et al., 2015), regulation by Duba was found 
to be more complex. Duba stabilized the E3 ligase Ubr5, which not 
only ubiquitinated Rorγt for proteasomal degradation, but also 
destabilized Duba in a negative feedback loop (Rutz et al., 2015). 
Consistently, T cell–specific deletion of Duba in mice increased 
Th17 and moderately decreased Treg cell frequencies, but caused 
Rorγt expression in some of the Treg cells (Rutz et al., 2015). 
Furthermore, injection of anti-CD3 antibodies triggered exacer-
bated inflammation in the lamina propria of the small intestine 
of Dubafl/fl;Cd4-Cre mice (Rutz et al., 2015).

E3 ligases involved in the regulation of Rorγt include Ubr5, 
Itch, and Traf5 (Fig.  4). Apart from the well-known “itchy” 
phenotype of the skin, mice with an ablation of Itch developed 
spontaneous colitis and an increased incidence of associated 
colorectal cancer (Kathania et al., 2016). Colonic mucosa cells of 
these animals had elevated Rorγt and IL-17 levels, and the cellular 
sources of IL-17 production were identified as Th17 cells, innate 
lymphoid cells, and γδ T cells (Kathania et al., 2016). Increased 
IL-17 expression was likely a consequence of reduced Rorγt ubiq-
uitination in the absence of Itch (Kathania et al., 2016). Although 
Ubr5 and Itch destabilized Rorγt, the E3 ligase Traf5 catalyzed 
K63-linked ubiquitination via its RING domain, stabilized its tar-
get, and increased IL-17a expression (Fig. 4; Wang et al., 2015). 
Together, this large number of E3 ligases and DUBs involved in 
the regulation of Rorγt underscore its pivotal role in the differen-
tiation as well as pathogenicity of Th17 cells. However, the extent 
to which these ubiquitin-modifying enzymes work in a redun-
dant, unique, or cooperative manner is currently unclear.

Posttranscriptional regulation of Treg cells
Only a few publications have directly investigated the posttran-
scriptional regulation of Treg cells. The RBP Lin28b has an inter-
esting function in the differentiation of fetal Treg cells. Lin28b 
specifically recognizes terminal loops of pre-miRNA from let-7 
family members and induces their degradation (Heo et al., 2008, 
2009). In human fetal naive CD4 T cells, Lin28b expression levels 
were far higher compared with adult cells, and Lin28b knockdown 
led to increased let-7 miRNA maturation and decreased TGFβ sig-
naling through TGFβR1, TGFβR2, and SMAD2 (Bronevetsky et al., 
2016). Because TGFβ signaling is crucial for Treg cell differentia-
tion (Fig. 5), Lin28b promotion of TGFβ signaling via inhibition 
of let-7 processing, and indirect stabilization of let-7 targets in 
the TGFβ pathway, help to explain the observed increased fre-
quency of these cells in secondary lymphoid organs of the fetus 
and the resulting tolerance to maternal antigens. In contrast, 
naive CD4 T cells deficient for the RBPs of the Roquin family dif-
ferentiated less efficiently into iTregs (Jeltsch et al., 2014). This 
phenotype could be rescued by inhibitors of PI3K-Akt-mTOR sig-
naling, which promote iTreg differentiation (Sauer et al., 2008). 
These findings are consistent with Roquin targeting Icos, Pten, 

and Itch mRNAs (Essig et al., 2017) and with the importance of 
Foxo1 (Kerdiles et al., 2010) and Pten for Treg cell differentiation 
and function (Huynh et al., 2015; Shrestha et al., 2015).

Thus far, the combined inactivation of the miR-17∼92 cluster 
revealed its function as a driver of Th1, Th2, Tfh, and Th17 differ-
entiation; however, it also inhibited the generation of Treg cells in 
vitro and in vivo (Jiang et al., 2011; de Kouchkovsky et al., 2013). 
These effects were mainly caused by miR-19 and miR-17, the latter 
of which repressed two regulators of Treg development, Tgfbr2 
and Creb1 (Jiang et al., 2011). It was recently shown that miR-17 
expression increased upon IL-6–mediated up-regulation of the 
transcription factor Hif-1α (Yang et al., 2016). Elevated miR-17 lev-
els directly repressed cofactors (e.g., Eos) of the subset-specifying 
factor Foxp3. Accordingly, overexpression of miR-17 in Treg cells 
exacerbated pathology in a murine colitis model (Yang et al., 2016).

miR-31 was also identified as a negative regulator of iTreg dif-
ferentiation (Fig. 5). Its expression is triggered by TCR signaling 
and down-regulated through TGFβ1-induced Foxp3 expression 
(Zhang et al., 2015). T cell–specific deletion of miR-31 amelio-
rated the symptoms of EAE and skewed the CD4 T cell–mediated 
immune balance away from pathogenic Th17 cells in the central 
nervous system. The orphan G protein–coupled receptor Gprc5a 
is a direct target of miR-31, but its molecular function in T cell 
differentiation has not been investigated so far. Nevertheless, a 
combined knockout (miR-31fl/fl;Cd4-Cre;Gprc5a−/−) rescued the 
miR-31 knockout–associated effect on EAE (Zhang et al., 2015).

An in vitro forward screen of adenovirally overexpressed 
miRNAs in naive T cells identified a small set of miRNAs that 
reciprocally increased iTreg and decreased Th17 cell differen-
tiation (Warth et al., 2015). Dissecting the cooperative func-
tions of induced miR-99a and constitutively expressed miR-150 
demonstrated that together they repressed the transcript of the 
Th17-promoting factor mTOR, thereby supporting iTreg cell dif-
ferentiation (Fig. 5; Warth et al., 2015).

A few publications have also described effects of posttran-
scriptional gene regulation on Treg cell plasticity. For instance, 
miR-10a reduces the expression Bcl6 in iTreg cells, thereby 
preventing their plasticity toward the Tfh cell differentiation 
program (Jeker et al., 2012; Takahashi et al., 2012). In another 
example, miR-146a directly repressed Stat1 expression, which 
was required in Treg cells to efficiently suppress Th1 responses 
and IFNγ-driven pathology (Lu et al., 2010). Finally, the lack of 
Roquin-encoding alleles in Tregs imposed a Tfr gene expression 
program that enabled these cells to regulate GC B cell responses 
but impaired their ability to protect from T cell transfer–induced 
colitis (Essig et al., 2017).

Posttranslational regulation of Treg cells
The reciprocal differentiation of Th17 and iTreg cells partly 
depends on the opposing functions of Stat3 and Stat5 (Figs. 4 
and 5). In response to IL-2 signaling, T cells activate Stat5, which 
subsequently leads to transcriptional up-regulation of Foxp3 and 
repression of the Th17 gene expression program including the 
cytokine IL-17. It has recently been demonstrated that Foxp3 is 
subject to posttranslational regulation, involving factors such 
as Stub1, Usp7, and Hif-1α (Fig.  5; Laurence et al., 2013). The 
E3 ligase Stub1 required the stress response protein Hsp70 for 
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binding and ubiquitinating Foxp3 to trigger its proteasomal deg-
radation (Chen et al., 2013b). Conversely, Usp7 deubiquitinated 
and stabilized Foxp3 (Fig. 5), which was found to be ubiquitinated 
at five different lysine residues (van Loosdregt et al., 2013). Inter-
estingly, Th17-promoting IL-6 signaling reduced Foxp3 levels in 
three ways, by down-regulation of Usp7 (Yang et al., 2012) and 
by up-regulation of Stub1 (Chen et al., 2013b) as well as Hif-1α 
(Dang et al., 2011). In fact, Hif-1α can bind Foxp3 directly and tar-
get it for proteasomal degradation in a VHL E3 ligase–dependent 
manner (Fig. 5; Dang et al., 2011). Treg cell–specific deficiency of 
VHL increased Hif-1α levels, which was followed by augmented 
glycolytic reprogramming, increased IFNγ expression, and con-
version into Th1 cells. Treg cells isolated from mice that lacked 
VHL expression in Tregs no longer suppressed inflammation in 
an adoptive transfer model of colitis (Lee et al., 2015).

During the development of thymic regulatory T cells, Foxp3 
was found to be ubiquitinated and destabilized by the com-
bined activity of the E3 ligases Stub1 and Cbl-b in a TCR/CD28- 
dependent manner (Fig. 5; Zhao et al., 2015). Particularly, CD28 
costimulation potentiated auto-ubiquitination and degradation 
of Cbl-b (Zhang et al., 2002). Consistently, in CD28−/− mice, the 
decreased numbers and frequencies of Treg cells were partially 
rescued after additional deletion of Cbl-b (Zhao et al., 2015).

Within the reciprocal iTreg and Th17 differentiation, the lat-
ter involves many more regulatory mechanisms, which might be 
necessitated because of the high detrimental potential of Th17 
cells. However, it is also tempting to speculate that iTreg cell dif-
ferentiation can operate as a default pathway that is pursued in 
the absence of Th17-inducing factors (Wang et al., 2010).

Concluding remarks
In recent years, research in the field of posttranscriptional and 
posttranslational regulation has advanced our understanding of 
subset-specific gene expression in CD4 T cells. Defining the basis 
of T cell differentiation as a concerted and long-lasting change in 
gene expression, inducing and shaping the output of de novo tran-
scription, appears to be only one way to reach this goal. It is now 
becoming apparent that stability of mRNA, modulation of transla-
tion, and protein stability and function might play much larger roles 
than previously appreciated. Consistently, the differentiation into 
individual T cell subsets is placed under tight posttranscriptional 
control by RBPs and miRNAs, which typically target the mRNAs of 
key signal transducers, transcription factors, and cytokines or their 
receptors or costimulatory receptors (Figs. 1, 2, 3, 4, and 5). Most 
strikingly, in all the CD4 T cell subsets, cytokine-mediated signal-
ing is regulated by a large number of E3 ligases or DUBs (Figs. 1, 2, 
3, 4, and 5). Ubiquitination and deubiquitination are often directed 
toward lineage-specifying factors, but also target signal transducers, 
such as Stat4, Stat6, and Stat3. Because these posttranslational mod-
ifications occur at the protein level, they may serve to directly and 
quickly implement regulatory signals. In contrast, slower but lon-
ger-lasting epigenetic changes may result from the large number of 
lncRNAs with unknown functions, which are highly and specifically 
expressed in T cell subsets. A future challenge will be to integrate 
all the identified individual activities of E3 ligases/DUBs, noncoding 
RNAs, and RBPs and ascertain how all these factors influence each 
other and have concerted cooperative or antagonizing effects.
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