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A B S T R A C T

In mitochondria, copper is a Janus-faced trace element. While it is the essential cofactor of the mitochondrial
cytochrome c oxidase, a surplus of copper can be highly detrimental to these organelles. On the one hand,
mitochondria are strictly dependent on adequate copper supply for proper respiratory function, and the mole-
cular mechanisms for metalation of the cytochrome c oxidase have been largely characterized. On the other
hand, copper overload impairs mitochondria and uncertainties exist concerning the molecular mechanisms for
mitochondrial metal uptake, storage and release. The latter issue is of fundamental importance in Wilson disease,
a genetic disease characterized by dysfunctional copper excretion from the liver. Prime consequences of the
progressive copper accumulation in hepatocytes are increasing mitochondrial biophysical and biochemical
deficits. Focusing on this two-sided aspect of mitochondrial copper, we review mitochondrial copper home-
ostasis but also the impact of excessive mitochondrial copper in Wilson disease.

1. Introduction

Copper is a trace element, essential for neurotransmitter, neuro-
peptide and collagen biosynthesis, wound healing, angiogenesis,
growth and iron utilization (Kaplan and Maryon, 2016; Owen, 1973).
Recently, copper has been suggested to regulate the systemic delivery of
triglycerides from the GI tract (Pierson et al., 2017; Weiss and Zischka,
2018). Intracellularly, the two most important copper functions are
linked to its redox ability as cofactor of either mitochondrial cyto-
chrome c oxidase (CcO) or of the reactive oxygen species (ROS) de-
toxifying Cu/Zn superoxide dismutase (SOD1) (Blockhuys et al., 2017).
These two enzymes manage the biochemical challenge of a safe copper-
mediated reduction/disproportionation of oxygen or ROS, respectively.
Unbound “free” copper ions and ROS would otherwise inevitably cause
the emergence of hydroxyl radicals that are highly detrimental to
proteins, nucleic acids and lipids, via Fenton-based chemistry. Indeed,
physiologically, copper ions are not “free”, i.e., dissolved in water, but
strictly bound to carrier molecules and distributed intracellularly by so-

called copper chaperones to avoid such cellular toxicity (Rae et al.,
1999).

Mitochondria harbor the CcO and around 1–5% of total cellular
SOD1 and, therefore, are a major site of intracellular copper utilization
(Sturtz et al., 2001). Indeed, especially in yeast, these organelles have
been suggested to be the intracellular copper store (Yang et al., 2005;
Cobine et al., 2004). This view originates from the rationale that in-
creased cellular energetic needs may be met by enhanced mitochondrial
oxidative phosphorylation activities and plausibly by elevated CcO and
consequently elevated copper amounts (Cobine et al., 2006; Leary et al.,
2009a). Thus, in order to meet the basal but also enhanced energetic
cellular demand, there is a constant copper supply to mitochondria, and
elevated copper loads can be handled by mitochondria (Cobine et al.,
2004; Zischka et al., 2011). However, a steadily increasing and ex-
cessive mitochondrial copper load may severely affect these organelles.
As it is the case in Wilson disease (WD), hepatic copper overload leads
to mitochondrial destruction, hepatocyte death and even liver failure.
In this article, we focus on current knowledge but also on controversial
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theories about mitochondrial copper homeostasis with a special focus
on liver mitochondria. We further outline how a disturbed copper
balance induces mitochondrial dysfunction and cellular damage in WD.

2. Mitochondrial copper homeostasis

It has been estimated that a rat liver mitochondrion contains about
fifteen to sixteen thousand CcO molecules (Schwerzmann et al., 1986),
and that mitochondrially localized SOD1 constitutes around 0.06% of
the total mitochondrial protein content (Okado-Matsumoto and
Fridovich, 2001). This means that 109 mitochondria comprising about
125 μg total protein (Schmitt et al., 2014) would contain around 75 ng
SOD1, i.e., about 4.7 pmoles SOD1 (M=15,943 g/mol) or about 2,800
SOD1 molecules per mitochondrion. Given three copper ions per CcO
and one per SOD1, this would amount to around 45,000–50,000 copper
atoms per mitochondrion, or around 40 ng/mg mitochondrial protein
(assuming 8.1*109 mitochondria per mg of mitochondrial protein
(Schmitt et al., 2014)). This value matches reported mitochondrial
copper contents of rat liver but also human liver mitochondria ranging
from 30 to 50 ng/mg (Zischka et al., 2011; Sokol et al., 1994; Zischka
and Lichtmannegger, 2014). As these two mitochondrial copper en-
zymes are essential for hepatocyte bioenergetics and survival, mi-
tochondria therefore require an adequate copper supply.

The functional mitochondrial copper need is met by copper trans-
porters, so-called copper chaperones (below) and small molecular
copper ligands as depicted in Fig. 1. Two prerequisites ensure a safe and
robust mitochondrial copper supply. First, in cells, copper is strictly
bound to proteins or small molecule ligands to avoid uncontrolled
copper redox activity (Rae et al., 1999). Second, the main driving force
of copper to be incorporated into CcO and SOD1 is their enormous
copper binding affinity (Cu1+-binding dissociation constant KCu below
femtomolar), and an increasing copper affinity of the intermediate

copper transporting molecules ensures their directed delivery to CcO
and SOD1 (Banci et al., 2010).

As the copper-containing subunits of CcO, COX1 and COX2, are
mitochondrially encoded proteins and as metal free apo-SOD1 is im-
ported into the mitochondrial intermembrane space (IMS), copper
metalation of these proteins occurs within mitochondria (Field et al.,
2003). How is the metal delivered and distributed to and within mi-
tochondria? Most of our current knowledge concerning this issue comes
from sophisticated studies in yeast and several, not mutually exclusive,
hypotheses have been put forward:

First, copper chaperones, low molecular mass proteins that hand
over copper by protein-protein interactions (Banci et al., 2010), have
been suggested to transport copper into mitochondria. Indeed, the CcO
assembly proteins 19 and 23 (COX19, COX23), as well as COX17, are
small soluble proteins containing cysteine residues that bind Cu(I),
exhibiting dual localization in cytosol and the IMS (Fig. 1) (Glerum
et al., 1996; Nobrega et al., 2002; Barros et al., 2004). However, yeast
depleted in these proteins had wild-type mitochondrial copper levels
(Cobine et al., 2004; Glerum et al., 1996; Nobrega et al., 2002; Barros
et al., 2004). Moreover, CcO deficiency in cox17Δ, cox19Δ or cox23Δ
mutant yeast can be restored by external copper supplementation
(Glerum et al., 1996; Nobrega et al., 2002; Barros et al., 2004). The
same holds true for the dually localized CCS, the SOD1 copper cha-
perone (Cobine et al., 2004; Field et al., 2003). Thus, while copper
chaperones enable mitochondrial CcO and SOD1 activities, alternative
mitochondrial copper uptake molecules are likely to be present.

A second potential copper entry or export mechanism to or from the
IMS may occur via the tripeptide glutathione (GSH, Fig. 1), as GSH can
easily cross the mitochondrial outer membrane (MOM) through porin
channels (Mari et al., 2009). However, the idea of such a GSH-copper
cotransport into the IMS or mitochondrial matrix has been challenged
by experiments in yeast depleted in GSH that had wild-type

Fig. 1. Copper trafficking within the mitochondrion.
How copper enters mitochondria, either via an anionic non-protein copper ligand (CuL) or via glutathione (GSH), is currently under debate. The inner membrane
proteins SLC25A3 or MFRN1 have been suggested to transport copper to the mitochondrial matrix, where it may be stored bound to CuL. In the intermembrane space
(IMS), the copper chaperons COX17, SCO1 and SCO2 hand over copper by protein-protein interactions to metalize the CuA and CuB sites of the cytochrome c oxidase
(CcO). The copper binding proteins COX23 and COX19 are involved in CcO assembly. COX19 has been proposed to regulate copper transfer to COX11 via modulation
of its redox state. In contrast, the specific function of COX23 in copper trafficking is presently unclear. The copper chaperon CCS delivers copper to the Cu/Zn
superoxide dismutase (SOD1). CcO, cytochrome c oxidase; CCS, copper chaperone for superoxide dismutase; COX17, cytochrome c oxidase copper chaperone 17;
COX11/19/23, cytochrome c oxidase assembly protein 11/19/23; CuL, copper ligand; GSH, glutathione; IM, inner mitochondrial membrane; IMS, intermembrane
space; MFRN1, mitoferrin 1; OM, outer mitochondrial membrane; SCO1/2, synthesis of cytochrome c oxidase protein 1/2; SLC25A3, solute carrier family 25 member
3; SOD1, Cu/Zn superoxide dismutase.
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mitochondrial copper levels (Cobine et al., 2004). Nevertheless, due to
its high mitochondrial concentration (around 10mM, (Garcia-Ruiz
et al., 1994)), but comparably low copper affinity (KCu= 9.1 pM,
(Banci et al., 2010)), GSH may indirectly regulate or participate in
mitochondrial copper homeostasis, as the redox state of cysteine sulfurs
needs to be controlled for proper copper binding of i.e., COX17 or SCO
and for its copper transfer to CcO (Leary et al., 2009a; Banci et al.,
2008) (Fig. 1).

Third, Winge and coworkers have suggested that mitochondrial
copper transport occurs via a non-protein, anionic copper ligand (CuL)
of low molecular mass that was consistently found in yeast and mam-
malian cytosol as well as within the mitochondrial matrix (Cobine et al.,
2004, 2006). In thorough studies, CuL was detected via a copper-sen-
sitive fluorescence emission at 360 nm in the copper-rich fraction upon
anion exchange chromatography. Gel filtration experiments further
indicated a molecular weight of the CuL of about 13 kDa, but neither
proteinase K digestion, nor mass spectrometry, SDS-PAGE, and protein
detecting Sypro-Ruby stain allowed to establish CuL as a protein
(Cobine et al., 2004). Thus, the molecular identity of the CuL is still
unclear, and further studies are warranted to support this concept of a
CuL-dependent transport into and within mitochondria.

Besides copper entry into the IMS, it was only very recently that the
mitochondrial phosphate carrier SLC25A3 (yeast homologue: Pic2) has
been demonstrated to import copper into the mitochondrial matrix
(Fig. 1) (Boulet et al., 2018; Vest et al., 2013). Copper is also located
within the mitochondrial matrix plausibly bound to CuL, and it has
been suggested that this matrix copper is redistributed to the IMS for
CcO and SOD1 metalation (Cobine et al., 2004). Indeed, SLC25A3
knockdown and knockout cells (e.g., HEK293) presented with lower
CcO activity (Boulet et al., 2018; Vest et al., 2013). Moreover,
SLC25A3, reconstituted into liposomes, demonstrated copper trans-
porting activity and restored CcO activity in pic2Δ yeast (Boulet et al.,
2018). However, lack of SLC25A3 (or Pic2) caused partial copper de-
pletion (30–60%) and lowered (but not absent) CcO activity compared
to wild-type mitochondria (Boulet et al., 2018; Vest et al., 2013). This
either indicates that copper import to the IMS is still present and copper
may metalize CcO via alternative routes, or that further/alternative
mitochondrial copper import routes into the matrix may exist, possibly
via the mitochondrial iron transporter MFRN1/2 (yeast homologue:

Mrs3/4) that has been reported to transport copper besides iron (Vest
et al., 2016; Christenson et al., 2018).

While these molecular players may constitute a large part of the
repertoire to supply mitochondrial CcO and SOD1 with copper, a mo-
lecularly undefined issue is the removal of copper from mitochondria.
Leary et al. have stated that “the [matrix copper] pool can be expanded
to a much greater extent than it can be depleted, [which] supports the
idea that the organelle’s relative priority is to retain sufficient copper”
(Leary et al., 2009b). Indeed, mitochondria can accumulate high copper
amounts before they ultimately break down (Zischka et al., 2011;
Lichtmannegger et al., 2016; Borchard et al., 2018). Thus, at present, it
is unclear whether specific mitochondrial copper excretion routes that
would counterbalance mitochondrial copper overload exist. This ques-
tion, however, is of tremendous importance with respect to human
pathologies, especially in Wilson disease.

3. Liver mitochondrial impairment in Wilson disease

Wilson disease (WD) is an autosomal recessively inherited disorder,
characterized by mutations in the intracellular copper transporting
ATPase ATP7B (Tanzi et al., 1993). ATP7B is localized at the mem-
branes of the trans-Golgi network (TGN) or at the apical membrane of
hepatocytes to facilitate either metalation of secreted copper enzymes
in the TGN or liver copper excretion via the bile (Hung et al., 1997).
Consequently, ATP7B mutation results in disrupted hepatic copper ex-
cretion, copper overload, hepatocyte death and finally liver failure.

Ultrastructural alterations of mitochondria - besides steatosis - have
been amply reported to be early adverse features in hepatocytes of WD
patients and WD animal models (Zischka et al., 2011; Lichtmannegger
et al., 2016; Sternlieb, 1992; Sternlieb and Feldmann, 1976; Sternlieb,
1968). These include organelle elongations, deformations, inclusions
and cristae dilatations (Fig. 2). In their seminal publications, Sternlieb
and coworkers reported these alterations in livers of WD patients being
especially prominent in (still) asymptomatic patients (Sternlieb, 1992;
Sternlieb and Feldmann, 1976; Sternlieb, 1968). In agreement, we have
reported similar mitochondrial structure alterations in livers from ei-
ther LEC or LPP rats that both carry a homozygous ATP7B deletion
(Atp7b−/− rats) (Zischka et al., 2011; Lichtmannegger et al., 2016).
These alterations were already apparent in Atp7b−/− rat livers at an

Fig. 2. Transmission electron micrographs of liver mitochondria from Atp7b−/− LPP rats.
Mitochondria either in situ (upper lane) or isolated (lower lane) from Atp7b−/− LPP rats present with dilated cristae and separated inner and outer membranes in
contrast to Atp7b+/− controls. Methanobactin (MB) treatment reverses these structural abnormalities.
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animal age of 50 days and steadily increased in severity and incidence
with age but also with hepatocellular damage (Zischka et al., 2011;
Lichtmannegger et al., 2016). Importantly, the more copper was de-
posited in these mitochondria the worse their abnormal appearance
was. Moreover, an additional fraction containing mitochondrial debris
with massive copper load was isolated from diseased but not from still
healthy animals (Zischka et al., 2011). These studies are in full agree-
ment with feeding studies with excessive copper in rats (Sokol et al.,
1993; Fuentealba and Haywood, 1988; Sokol et al., 1990). Microcystic
formations at the mitochondrial cristae were visible after 1 week, and
after 3 weeks, mitochondria appeared swollen, indicative of mi-
tochondrial destruction coinciding with a drastic rise in hepatic mi-
tochondrial copper content (Sokol et al., 1993; Fuentealba and
Haywood, 1988; Sokol et al., 1990). In contrast, endoplasmic re-
ticulum, plasma and canalicular membranes appeared structurally
normal (Sokol et al., 1990). Thus, the mitochondrial structure is a
sensitive first responder to an increasing liver copper load. In agree-
ment with these observations in humans and rats, abnormally shaped
and sized liver mitochondria already occurred in 6 weeks old Atp7b−/−

mice with otherwise unremarkable liver histology (Huster et al., 2006).
Of note, the livers of 3 months old toxic milk mice, which carry an
Atp7b missense mutation, also showed these changes prior to liver in-
flammation (first occurring in 6 month old mice) (Roberts et al., 2008).

In further examinations of Atp7b−/− rat liver mitochondria, we
found that copper is progressively deposited at the mitochondrial
membranes, paralleled by a decreased membrane fluidity and mem-
brane stability (Lichtmannegger et al., 2016). Thus, increased mi-
tochondrial copper deposition causes biophysical and biochemical al-
terations in mitochondria. Using isolated wild-type rat liver but also
brain mitochondria, we further found that mitochondrial protein thiols
are important targets of copper exposure (Zischka et al., 2011; Borchard
et al., 2018). While there still is a paucity concerning copper toxicity in
WD patient brains, these findings indicate that mitochondrial copper
toxicity may also be relevant in neurological WD. This suggested me-
chanism of copper-mediated protein impairment is in agreement with
earlier findings about copper toxicity (Nakamura and Yamazaki, 1972)
and resembles “classical” protein damage by direct attack of vulnerable
target amino acid residues (e.g., cysteine and methionine) (Davies
Michael, 2016). Conformational changes and/or loss of protein activity
may occur (Mirzaei and Regnier, 2006), which are especially critical for
proteins of the mitochondrial oxidative phosphorylation.

In agreement with this suggested toxic mode of action of accumu-
lating mitochondrial copper, functional deficits have been reported in
liver mitochondria from WD patients and WD animal models. Patients
with acute hepatic failure present with electron transport chain deficits
in their mitochondria (Gu et al., 2000). A progressive loss of the mi-
tochondrial ATP production capacity, coinciding with increased copper
load and disease severity, was found in Atp7b−/− rats (Lichtmannegger
et al., 2016; Borchard et al., 2018). Of note, oxidative damage or ele-
vated mitochondrial ROS emergence, indicative of Fenton-chemistry
based copper toxicity were rather late features, only observed in irre-
versibly damaged mitochondria (Lichtmannegger et al., 2016; Borchard
et al., 2018). In agreement with these findings, compared to wild-type
controls, 3 to 47 weeks old Atp7b−/−mice appeared with progressively
lower respiratory chain function and GSH levels in liver homogenates.
However, a significantly elevated GSSG/GSH ratio first occurred at an
age of 47 weeks (Sauer et al., 2011).

Maybe the strongest line of evidence for a decisive role of mi-
tochondrial copper overload in the progression from WD comes from
treatments that aimed at liver copper removal. Sternlieb and Feldmann
demonstrated that the successful treatment of WD patients with the
copper chelator D-penicillamine (D-PA) largely resolved the “char-
acteristic mitochondrial abnormalities” and serum parameters in-
dicative of liver damage returned to normal (Sternlieb and Feldmann,
1976). This positive treatment effect is remarkable, as overall liver
copper loads were reported to stay high in WD patients, even after years

of D-PA treatment (Scheinberg et al., 1987). Conversely, three WD
patients who had responded unfavorably to D-PA treatment were found
to have a massive mitochondrial copper load (Sokol et al., 1994). Si-
milarly, four week treatments of Atp7b−/− rats with either D-PA or the
copper binding peptide methanobactin (MB) avoided liver damage and
significantly reduced the mitochondrial copper burden, but only
slightly reduced the overall liver copper load (Zischka et al., 2011).
Moreover, intense methanobactin treatments of just a few days pri-
marily caused a significant mitochondrial copper depletion, restored
mitochondrial structure and function, and avoided or rescued liver
damage (Lichtmannegger et al., 2016). Importantly, upon therapy stop,
within weeks, a re-accumulating mitochondrial copper load was par-
alleled by mitochondrial structural and functional deficits, and by
progressive liver damage (Lichtmannegger et al., 2016). This correla-
tion between disease state and copper was not apparent from the
overall liver copper load, which was comparable in either still healthy
or diseased animals (Lichtmannegger et al., 2016). Mitochondrial
copper overload, therefore, is not an innocent bystander or secondary
effect but appears to be one, but not necessarily the only key parameter
in WD progression (Sternlieb et al., 1973; Abe et al., 1994; Oe et al.,
2016). The mitochondrial copper content, structure, and biochemical
functionality not only serve as early response markers for disease pro-
gression in WD patients or Atp7b−/− rodents, but also as diagnostic
biomarkers of treatment efficacy and predictive markers of recurrence
of liver damage (Lichtmannegger et al., 2016).

In conclusion, mitochondria are strictly copper-dependent orga-
nelles and several molecular players in mitochondrial copper home-
ostasis have been identified. The “dark side” of mitochondrial copper,
however, is that overload is highly detrimental to them, especially in
WD and animal models livers. It appears that their progressively im-
paired biochemical function is a key player in liver demise. Future
studies have to reveal how hepatocytes initially try to counterbalance
such mitochondrial decay and why they ultimately fail.
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