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SUMMARY

Recent advances in genomics technologies have greatly accelerated the progress in both fundamental plant

science and applied breeding research. Concurrently, high-throughput plant phenotyping is becoming widely

adopted in the plant community, promising to alleviate the phenotypic bottleneck. While these technological

breakthroughs are significantly accelerating quantitative trait locus (QTL) and causal gene identification, chal-

lenges to enable even more sophisticated analyses remain. In particular, care needs to be taken to standard-

ize, describe and conduct experiments robustly while relying on plant physiology expertise. In this article, we

review the state of the art regarding genome assembly and the future potential of pangenomics in plant

research. We also describe the necessity of standardizing and describing phenotypic studies using the Mini-

mum Information About a Plant Phenotyping Experiment (MIAPPE) standard to enable the reuse and integra-

tion of phenotypic data. In addition, we show how deep phenotypic data might yield novel trait�trait

correlations and review how to link phenotypic data to genomic data. Finally, we provide perspectives on the

golden future of machine learning and their potential in linking phenotypes to genomic features.
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INTRODUCTION

The last decade has seen a considerable increase in pub-

lished plant genomes, enabled by advances in sequencing

technologies. The initial post-Sanger sequencing advance-

ment came in the form of high-throughput short-read tech-

nologies, frequently termed second-generation sequencing

(see glossary Table 1). Although the maximum read length

of about 600 bases was considerably shorter than that

available from contemporary Sanger sequencing, the high

throughput and low relative cost ensured that this technol-

ogy was quickly adapted. This was followed by the more

recent long-read technology (third-generation sequencing)

led by the PacBio platform. This overcame the read length

problem inherent in second-generation sequencing,

enabling multi-kilobase reads, but at a cost of read quality.

Third-generation sequencing was initially used to rese-

quence well studied model species such as Arabidopsis

thaliana, yeast and Drosophila (Berlin et al., 2015) before

successfully sequencing new genomes, such as the small

genome from Oropetium thomaeum (Van Buren et al.,

2015).

This trend continues as Oxford Nanopores, the latest

long-read technology, becomes more widely available.

This technology (Jain et al., 2016) has already successfully

been used to reconstruct the Arabidopsis genome (Michael
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et al., 2018) as well as the genome of a non-model wild

tomato species (Schmidt et al., 2017) and has the added

advantage of not requiring large capital investment. Long

reads can not only reveal small-scale variation and pres-

ence�absence dynamics in genes, but also large-scale

variation, including rearrangements from for example

transposon activity, and can lead to potentially novel

insights into a plant species. Additionally, as pangenomic

approaches based on multiple-reference accessions

becomes more common, de novo sequencing of many

lines from each species can be expected (e.g. Brassica:

Golicz et al., 2016, rice including wild relatives: Zhao et al.,

2018). While genome research is certainly well established

and advances in technologies allow for the delivery of data

ever more quickly and efficiently, effective algorithms and

storage capacity for genome data are becoming serious

concerns (Stephens et al., 2015).

As with genomic developments, there are promising

advances in plant phenotyping technology, such as the use

of automated phenotyping machinery (Fiorani and Schurr,

2013) and advanced image analyses (Pound et al., 2014,

2017; Tsaftaris et al., 2016). This has resulted in

Table 1 Glossary table

Term Definition

Best linear unbiased
predictions (BLUP)

A method used to estimate the ‘random’ effects of a mixed model. For a plant researcher this is of
relevance when genotypes are considered a ‘random’ effect (reviewed in Piepho et al., 2008).

Chromosomal
pseudomolecules

The largest sequences assembled and ordered by genome sequencing projects, each representing a
single chromosome in the genome. These are not necessarily complete, i.e. they might contain
stretches of ‘N’s.

Contigs Assembled sequences that contain no unknown (‘N’) bases.
Copy-number variation (CNV) An InDel that increases or decreases the number of copies of a specific DNA sequence.
De Bruijn graph method A method of genome assembly particularly suited to datasets from short-read sequencing platforms,

due to its scalability to large numbers of reads.
De novo assembly The method of assembling a genome from scratch when there is no reference sequence available.
Genome-wide association
studies (GWAS)

An observational study that tries to associate a genome-wide set of variants (e.g. markers/
polymorphisms) to determine whether a variant is associated with a particular trait. Usually requires
many genotypes and relies on natural populations and/or panels with diverse cultivars as opposed to
biparental populations.

Insertions/deletions (InDel) A genomic variant in which one or more bases have been added and/or removed, resulting in a shorter
or longer sequence than originally present.

Machine learning The process of training computers to autonomously extract important information from a data set and
identify patterns. Important subfields for a plant researcher include: (i) classification (e.g. is a plant
diseased or healthy given an image); (ii) regression (e.g. predict plant biomass from several images);
(iii) clustering (e.g. are there subtypes of plants in the experiment based on the measurement)?

Minimum information about
plant phenotyping
experiment (MIAPPE)’

Presents guidelines and a checklist for describing plant phenotyping experiments so that they are
understandable and reproducible.

Ontology An ontology is extending controlled vocabularies (i.e. fixed lists of terms to be used) by relating these
terms to each other. In the simplest case it could describe one term to always imply another term (e.g.
if monocot, dicot and plant could represent a controlled vocabulary and the addition of monocot IS_A
plant; dicot IS_A plant would start to add relationships towards an ontology).

Overlap-layout consensus
(OLC) method

A method of genome assembly particularly suited to datasets from long-read sequencing platforms,
originally developed for Sanger sequencing data.

Polish A post-assembly quality improvement procedure that aims to identify and correct small scale errors.
Quantitative trait locus (QTL) A region of DNA containing one or more genes which are associated to the expression of a quantitative

phenotypic trait.
Reduced representation
libraries (RRL)

A protocol to create a sequencing library that aims to contain sequences only from selected subsets of
the source genome.

Restriction site associated DNA
sequencing (RAD-seq)

A protocol using restriction enzymes to target specific sequences from a genome for including in a
sequencing library.

Second-generation
sequencing/next-generation
sequencing

Usually sequencing by synthesis based, high-throughput sequencing platforms that can sequence
millions of DNA strands in parallel, but compared with Sanger sequencing have a higher error rate and
limited read length, e.g. 50–600 bases, depending on the specific instrument used. Some platforms
offer a paired-end mode, whereby both ends of a DNA fragment are sequenced.

Single nucleotide
polymorphism (SNP)

A genomic variant consisting of a single nucleotide substituted for an alternative nucleotide.

Third-generation sequencing Single-molecule sequencing platforms that can create multi-kilobase reads, but which have much higher
error rates than Sanger or second-generation sequencing platforms.

Variable importance prediction A formalized method to predict the importance of variables in PLS type analyses.
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unprecedented insights into plant physiology, architecture,

and performance. Compared with genomic research, data

output produced by established systems in plant pheno-

typing is still manageable (Coppens et al., 2017), although

expanding the use of advanced imaging platforms such as

hyperspectral cameras by the wider community will likely

result in similar storage capacity concerns. As phenotyping

equipment costs are still prohibitive for many plant labora-

tories, new lower cost phenotyping procedures, including

the deployment of inexpensive sensors and set ups (Pau-

lus et al., 2014) as well as machine-learning techniques for

low-cost devices, are being developed and researched

(Atanbori et al., 2018).

Analyses that combine advanced phenotyping and geno-

mic datasets offer great potential for the discovery of novel

insights, such as in GWAS (Millet et al., 2016, Borevitz

et al., ibid) or genomic prediction technologies, even

within the scope of a single project. Furthermore, machine-

learning and other data science techniques can extract

novel insights from meta analyses of multiple datasets.

However, there are several obstacles that need to be

addressed before this can become widely applicable. This

review outlines the current state of the art in genomics,

plant phenotyping, and standardization. It explains how

these data can be integrated using data science and

machine-learning techniques, and discusses current

challenges that are being addressed by the plant science

community.

From sequences to genomes

De novo sequencing and assembly of plants is often diffi-

cult and tedious (Claros et al., 2012). This is largely due to

the high repeat content of many plant genomes, with

repetitive elements derived from a wide range of sources,

including transposons and tandem gene duplications. The

situation can be further complicated by the fact that many

plants are autopolyploid, or have undergone recent whole

genome duplications (Vogel et al., 2018). This has often

necessitated analyzing diploid relatives (e.g. wild straw-

berry, Shulaev et al., 2011) or using double-monoploid

lines (e.g. Potato Genome sequencing consortium, 2011)

rather than a commercially relevant crop line. Even more

problematic, plants may be derived from the hybridization

of different but related species, giving rise to allopolyploid

species such as rapeseed (Chaloub et al., 2014), tobacco

(Sierro et al., 2014) or petunia (Bombarely et al., 2016),

whose genomes are often tackled by first analyzing the

extant parental genomes. This approach has also been

applied to sequencing the D parent of the allohexaploid

wheat (Luo et al., 2017).

While polyploidy forms an obvious problem, repeats

and the complications that they cause have been known

but not systematically analyzed. Jiao and Schneeberger

(2017) investigated this issue in detail by comparing

approximately 100 diverse plant and vertebrate genomes.

The authors were able to demonstrate higher incidences of

repeats in plant genomes, suggesting that some plant gen-

ome assemblies will require more advanced approaches to

span repetitive regions. Another difficulty of plant gen-

omes is often their sheer size, making costly long-read

sequencing technologies prohibitively expensive, both in

terms of sequencing and computation. This was especially

challenging for the complex 17 Gbp wheat genome, which

consists of three subgenomes (International Wheat Gen-

ome Sequencing Consortium, 2014). Therefore, the initial

assembly relied on sequencing sorted chromosomes, a dif-

ficult wet-lab technique. Conversely, a whole-genome shot-

gun assembly using long-read data required 880 000

central processing unit (CPU) h to compute, taking more

than 6 months, despite being run on a compute cluster

(Zimin et al., 2017). Finally, many plants are self-incompati-

ble (Fujii et al., 2016) and consequently can be highly

heterozygous, adding complexity to the assembly process.

Despite these hurdles, many standard pipelines and

tools that can potentially assemble a reasonable quality

genome, are available (Figure 1). The primary factor deter-

mining the choice of assembly pipeline is the type of reads

in the dataset, as short and long reads are generally

assembled using very different approaches. In the case of

short-read data from the Illumina platform, reads are typi-

cally quality controlled using for example FASTQC fol-

lowed by adapter/quality trimming (Bolger et al., 2014b).

After read trimming, the assembly process can be per-

formed using a variety of short-read assemblers such as

ABySS (Simpson et al., 2009), DISCOVAR (de novo)

(Weisenfeld et al., 2014), Velvet (Zerbino and Birney, 2008)

or SOAPdenovo (Luo et al., 2012). SOAPdenovo is espe-

cially popular as it is easy to install, relatively easy to use

and reasonably fast. Alternatively, commercial software

such as the CLC assembler can be used with small compu-

tational resources and offers a graphical user interface,

whereas the commercial NRGene suite enables the analy-

sis of complex genomes using short-read data (Avni et al.,

2017; Luo et al., 2017).

Examples of long-read assemblers include Miniasm (Li,

2016), Canu (Koren et al., 2017), SMART denovo or its suc-

cessor, wtdbg, and Falcon. In some cases, steps of differ-

ent assemblers can be ‘mixed and matched’ for speed and

efficiency. For instance, it can be beneficial to use the error

correction steps of Canu coupled to SMART denovo (Sch-

midt et al., 2017) or wtdbg (Koren: https://genomeinforma

tics.github.io/na12878update/).

The relative costs and high error rate of long-read tech-

nologies negate some of their benefits. Error rate was par-

ticularly problematic for long reads from early versions of

the third-generation Oxford Nanopore platform, which

offered a read correctness of below 70% (Rang et al.,

2018). Its error rate has improved substantially in
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subsequent versions, but the technology still has difficulty

resolving specific base patterns, such as long homopoly-

mers. As a result, recent versions have been assessed to

give a maximum read correctness of 88% (Wick et al.,

2018), although this is potentially lower in plants (Schmidt

et al., 2017). As these errors are systematic, they cannot be

fully corrected by additional coverage. Therefore, even

after post-assembly read polishing, assemblies are cur-

rently capped at 99.9% accuracy when using Oxford data

alone (Wick et al., 2018). In theory, PacBio reads should

have much fewer systematic errors, and therefore should

converge on the correct result, given sufficient coverage.

Nonetheless, there are indications that real-world assem-

blies may still suffer from some residual accuracy prob-

lems (Watson, 2018).

Given their complementary attributes, it is common to

combine error-prone long reads with highly accurate

short reads to form a potentially superior hybrid assem-

bly (Figure 2). Multi-step hybrid approaches are neces-

sary because established assembly algorithms, namely

the Overlap-Layout-Consensus (OLC) method, used with

long reads, and the De Bruijn Graph (DBG) method, used

with short reads, are only suitable for their respective

kinds of read dataset. An early approach to hybrid

assembly was to first assemble the short reads, then

scaffold the resulting contigs guided by the long reads

(Figure 2). This process can be performed by a post-

assembler tool, such as PBJelly and SSPACE-LongRead,

or by integration directly into an assembler, such as

SPAdes. The MaSuRCA (Zimin et al., 2013) approach is

similar and works by first conservatively assembling the

short reads into longer ‘super-reads’ and then assem-

bling the super-reads in combination with the longer

reads in an OLC approach. These short-read-first

approaches work relatively well when only limited

amounts of long-read data are available.

However, when sufficient long-read data are available, a

long-read assembly approach will generally give a better

result. Short reads can be used before assembly to correct

the individual long reads (Figure 2b) or after assembly to

correct the contigs (Figure 2c), a process commonly

referred to as ‘polishing’ the assembly. For pre-assembly

Figure 1. Preparatory analyses for genomics and phenomics data for new genomes.
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read correction, the simplest approach is to map individual

short reads onto long reads and use the short-read consen-

sus to correct the long reads. This approach is imple-

mented in tools such as Proovread (Hackl et al., 2014) and/

or LSC (Au et al., 2012). As it is difficult to unambiguously

align individual short reads against long reads, an alterna-

tive strategy involves an initial assembly of the short, accu-

rate reads into contigs (HALC, Bao and Lan, 2017) or

assembly graphs (LoRDEC, Salmela and Rivals, 2014) to

correct the long reads. A recent comparison of long-read

correction tools found that HALC performed best on data

sets from ‘complex’ genomes, such as that of humans or

rice (Mahmoud et al., 2017).

Post-assembly polishing using short reads can be per-

formed using Pilon, while Racon supports polishing with

either short or long reads. Although polishing with accu-

rate short reads can dramatically improve assembly accu-

racy, in practice, this often applies only to unique genome

regions.

Although these multistep hybrid approaches often out-

perform assemblers, which use short or long reads alone,

they are inherently wasteful. Information is lost at each

step in the analysis, and therefore results in a suboptimal

assembly. A single step hybrid approach, which would

allow for the seamless integration and combined analysis

of short and long reads, could in principle yield an

improved assembly (Figure 2d).

In addition, especially for some plant genomes, many

short reads cannot be accurately mapped to one location

due to transposon-derived repeats and homologous genes

with a high degree of identity, making the long-read

assembly errors unrecoverable by short reads.

The final endpoint of a genome assembly is ordering

and orienting the assembled sequences to form chromoso-

mal pseudomolecules. This can be guided by marker

sequences from an independently determined genetic

map. Alignment of these marker sequences against the

assembly allows the approximate chromosomal position

and potentially orientation of each scaffold to be deter-

mined. This last step is often not reached, as it is either not

needed for the planned analyses or high resolution genetic

maps are not available. However, in the context of combin-

ing genotypes with phenotypes, the exact chromosomal

position of genes is essential for their correlation with

known QTLs. Hi-C, a new technology providing contact fre-

quencies between sequences, has revolutionized the

Figure 2. Approaches to genome sequencing.

Currently, when approaching genome sequencing, the method used depends on the read lengths available: (a) When more short reads are available, they are

first assembled into contigs, which are then scaffolded, guided by the long reads. When more long reads are available, two assembly options exist. Either (b)

short reads are used to first correct the long reads, which are then assembled or (c) the long reads are first assembled after which the short reads are used to

‘polish’ the assembly. As these approaches lose information at each step, a method (d) that could combine long and short reads in a single step (theoretically

leading to an improved genome assembly) would be optimal.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 182–198

186 Anthony M. Bolger et al.



assembly to chromosomes. For plants it was notably

applied to the 5 Gb barley and 12 Gb wild emmer genome

(Avni et al., 2017; Mascher et al., 2017) and has allowed

chromosome-scale assemblies without a genetic map for

example for raspberry (Van Buren et al., 2018).

One reference, multiple references and the pangenome

Short-read sequencing technologies, in conjunction with

annotated reference genomes, can be readily applied to a

variety of biological questions, including detection (Zhang

et al., 2017) and analysis of gene expression (Ezer et al.,

2017), DNA methylation (Zhong et al., 2013), identification

of transcription factor binding sites and the detection of

causal regions and mutations in mutant screens (James

et al., 2013; Klap et al., 2017) or populations (Thoen et al.,

2017). However, the importance of next-generation

sequencing beyond the context of a single reference acces-

sion has long been recognized (Varshney et al., 2009). As

sequencing became more accessible in terms of cost and

availability, plant projects frequently sequenced multiple

accessions or species in order to investigate natural diver-

sity. This was initially applied to plant species with rela-

tively small genomes such as rice or Arabidopsis, but

has since been extended to field crops such as tomato

(Lin et al., 2014).

Traditionally, the dominant analysis approach for such

projects involved mapping reads from novel accessions to

the reference genome to determine small-scale variation,

especially single-nucleotide polymorphisms (SNPs) and,

less commonly, insertions and deletions (InDels) including

copy-number variations (CNVs). A reduced representation

of a genome is potentially the cheapest way to gain SNP

and marker information in order to enable genome-wide

association studies (GWAS) and genomic selection studies

(Bhat et al., 2016). The key idea was to reduce the sequenc-

ing cost per sample by only sequencing corresponding

parts of genomes, albeit at the cost of a more complex

library preparation, using restriction enzymes to selectively

cut the DNA, therefore focusing the sequencing around the

restriction sites. Multiple approaches have been devel-

oped, including reduced representation libraries (RRL; Van

Tassell et al., 2008), restriction site associated DNA

sequencing (RAD-Seq; Baird et al., 2008) and genotyping-

by-sequencing (GBS; Elshire et al., 2011). New variations

of these techniques continue to be developed (He et al.,

2014; Scheben et al., 2017).

Whole genome resequencing ranging from skim

sequencing (approximately 19 coverage or below) to med-

ium coverage resequencing (in the range of 20–409) is

increasingly common for small to mid-size genomes

(Scheben et al., 2017), but remains so far prohibitively

expensive for large genomes such as wheat. Using this

resequencing approach, sequences from the whole gen-

ome are used, thereby offering more comprehensive SNP

detection than reduced representation approaches. This

whole genome resequencing approach, which was suc-

cessfully used in humans, often performs less well when

applied to plants. This is due to the standard read mapping

approaches, which were mostly tuned for human data sets

and only tolerate minor variations from the reference

sequence (Li and Durbin, 2009; Langmead and Salzberg,

2012). These are therefore ill suited to the high rates of

variation found even within a single plant species. The fre-

quent use of related wild species as breeding material fur-

ther amplifies this problem, due to a broadening of the

genomic pool. Other typical plant genomic characteristics,

including large gene families, ancient whole genome dupli-

cations, polyploidy and a high amount of transposon

derived repeats, further exacerbate the challenge.

While techniques based on mapping reads to reference

genomes are well suited to GWAS and genomic selection,

they are inadequate in identifying new genome variants,

such as novel genes not present in the reference. In maize,

it was estimated that an early genomic reference did not

capture about a quarter of the low-copy gene fraction from

all inbred lines (Gore et al., 2009). Despite the estimated

completeness of this reference being just 91%, mapping

rates of above 95% for whole genome resequencing were

obtained, illustrating that some reads were incorrectly

mapped to repeat regions or paralogous genes (Bukowski

et al., 2018). This represents a major issue as, in order to

improve existing elite accessions using transgenic and

new breeding technologies, finding novel genes or gene

variants is necessary (Scheben and Edwards, 2018).

An alternative strategy to deal with this issue is to map

the reads to the reference plant genome using relatively

strict alignment criteria, followed by assembly of the ‘left-

over’ reads that could not be mapped. Using this two-step

approach, it is expected that the non-mapping reads will

assemble into novel genetic regions present in the particu-

lar strain under study. This strategy has been applied in

the model plant Arabidopsis (Schneeberger et al., 2011),

and more recently to crops cabbage (Golicz et al., 2016)

and wheat (Montenegro et al., 2017). However, the result-

ing novel sequences are typically short and fragmented, as

many of the reads belonging to these regions would have

been inadvertently mapped to similar regions present on

the reference, even if relatively strict alignment criteria are

used.

A radically different approach is to ignore the existing

reference entirely, instead jointly assembling read data

from multiple genomes and tracking read origin (Iqabl

et al., 2012, Muggli et al., 2017). This computationally

elegant method allows the nodes and/or edges of the

graph to be tagged with information, indicating which read

dataset(s) support them. Given these tags, it is easy to

determine the nodes/edges that are either shared by or

unique to specific datasets. Chains of such nodes/edges
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can then be used to infer longer shared or unique

sequences. Despite its elegance, this approach is only used

occasionally in the eukaryotic field due to the computa-

tional resources needed.

Another alternative is the creation of multiple de novo

assemblies that, from the wet-lab perspective, has been

made feasible by recent advances in long-read sequencing

technologies. However, the bioinformatics infrastructure

required for such an endeavor presents a major barrier. A

single gigabase scale assembly can require 10 000+ CPU h

per iteration for Canu (Koren et al., 2017, Schmidt et al.,

2017), but new sequence analysis algorithms (Bolger et al.,

2017b,c) and assembly tools such as wtdbg (see above)

promise to bring these computational costs down.

Multiple de novo genomes from a single species contain

a more complete genetic repertoire than a single haploid

reference. This approach can be extended to a set of related

species such as a crop and its wild relatives. A recent study

used more than 60 diverse rice (Oryza sativa) accessions

together with a wild relative (Oryza rufipogon) to assemble

multiple genomes, revealing gene loss and gain (Zhao

et al., 2018). In a similar approach, 54 Brachypodium lines

were all assembled de novo (Gordon et al., 2017). While

illustrating the power of a multiple-reference genome

approach, these projects required multiple time-intensive

analysis pipelines, and several ad-hoc developments.

A fundamental barrier to the wider adoption of this

approach is that the vast majority of existing analysis tools

and pipelines do not work with multiple-reference gen-

omes. The na€ıve creation of an in silico polyploid, formed

by aggregating multiple-reference genomes, is inadequate

in many scenarios. It is necessary to have a clear concep-

tual difference between the sequences from a single line/

species, which are generally considered in aggregate, and

sequences from different lines/species, which are consid-

ered as alternatives. Furthermore, this in silico polyploid

approach is highly inefficient when working with a large

number of highly related genomes, as each is represented

independently.

The creation of the pangenome promises to address

the conceptual and computational limitations of the in

silico polyploid approach. At its most basic, the pangen-

ome must retain the distinction between multiple

sequences from one origin genotype and sequences from

different genotypes and, more critically, the analysis tools

using the pangenome reference must act appropriately

based on this origin information and the specific analysis

being performed. For computational reasons, the pangen-

ome is likely to be represented as a graph structure, as

described above, rather than a large collection of inde-

pendent linear sequences. This allows regions that are

shared between many genomes to be represented once,

saving both storage space and computational resources

during alignment.

Despite the challenges of their creation, pangenomes

promise to be an extremely powerful resource for analysis

of genomic sequences. However, existing pangenomic

aligners, such as BWBBLE (Huang et al., 2013) can handle

only limited variation beyond what is already known. This

limitation is not critical for genomes (e.g. human) in which

genetic diversity is limited and in which the reference is

very comprehensive. However, for optimal use with crop

species and their wild relatives, pangenomic tools will also

need to support highly divergent, novel sequences as well

as large-scale variations. One approach has been made by

the Variant Graph Team (Variant Graph Team, 2018) that

allows the representation of pangenomes in graphs or to

map reads to these and also to visualize them.

In summary, using multiple-reference genomes, it is

possible to find new genes or new regulatory cis elements.

This would not be possible with only one reference. Espe-

cially in the case of regulatory elements, line-specific trans-

poson insertions bringing their own regulatory elements

might play an important role (Chuong et al., 2017).

Standardized genome annotations

To find and functionally annotate causal genes that under-

lie a QTL region, it is first necessary to identify these genes

in the underlying DNA sequences (Figures 1 and 3, left

panel). While gene finding can still be considered as an art,

tools such as MAKER-P (Campbell et al., 2014) and

BRAKER2 (Hoff et al., 2016) have simplified this task con-

siderably. In situations in which sufficient RNA-Seq expres-

sion data are available, programs such as StringTie (Pertea

et al., 2015) can be used to transform these data into a

first draft gene space. This expression-driven gene calling

improves with the use of full-length cDNA sequencing,

made possible by long-read technologies. However,

expression-driven gene annotation can only detect genes

for which a data set exists and in which these genes are

expressed. This necessitates that samples are subjected to

a wide range of conditions to activate expression of the full

gene space.

In comparison to gene finding, a comprehensive trans-

poson detection method for plant genomes is still in a

more experimental phase. There are currently no estab-

lished pipelines that capture all transposon types in a

single step. This does not pose a major problem when

working with a new genome for which a well curated

repeat library exists from closely related species. In such

cases, a simple homology search against repeat libraries

provided by repeat databases such as RepBase (Bao

et al., 2015) or PGSB-REdat (Spannagl et al., 2017) will

be sufficient to provide a draft transposon annotation.

Suitable matching tools are either RepeatMasker (Smit

et al., 2016) or vmatch (http://www.vmatch.de/), which

greatly improves running times for large genomes (Avni

et al., 2017; Mascher et al., 2017). For novel species
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without curated repeat libraries, the transposon annota-

tion is more cumbersome as de novo detection of spe-

cies-specific transposons needs to be performed first

(Lerat, 2010). Here, packages like REPET (Flutre et al.,

2011) perform well for smaller genomes. Transposons,

formerly considered as junk DNA, are now believed to

be a major contributor to genotype diversity. Their role

in phenotype diversity has been shown for many well

studied single examples (e.g. Butelli et al., 2012; Lutz

et al., 2015) and also in some genome-wide approaches

(e.g. Bolger et al., 2014a,c; Makarevitch et al., 2015).

Given the emerging importance of transposons in the

study of stress and developmental responses, their con-

sistent annotation and analysis is crucial and will be

likely to provide many interesting insights and, when

pangenomes are available, allow tracking of transposon

evolution in a species.

Once genes and transposons have been structurally

annotated, the next step is to ascribe each gene a biologi-

cal function, in a process known as ‘functional annotation’.

While using one-off textual annotations can be beneficial

when inspecting small QTL regions for potential candi-

dates, using a priori biological knowledge is no longer

feasible for large-scale analyses. Therefore, a full genome

annotation will usually first rely on an automatic func-

tional annotation based on domain analyses and

sequence similarity searches. In order to provide consis-

tency, most tools that automatically annotate genomes

frequently employ formalized ontologies such as Gene

Ontology (GO) or MapMan ontology (Jaiswal and Usadel,

2016). The use of these (or other well defined) ontologies

enables consistency of the annotation terms between dif-

ferent genomes.

There are many tools available that automatically anno-

tate genes using ontologies such as the Mercator auto-

mated annotation tool (Lohse et al., 2014), BLAST2GO

(Conesa and Gotz, 2008), KEGG Automatic Annotation Ser-

ver (KAAS) (Moriya et al., 2007), and TRAPID (Van Bel

et al., 2013) (reviewed in Bolger et al., 2017a). The overar-

ching goal of these tools is the rapid automatic annotation

of genes to a high standard, approaching that of manual

annotation.

Figure 3. Combining genomic and phenomic data.

The GWAS image was taken from Voiniciuc et al. (2016).
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Phenotypes and their standardization

An important goal of plant genomics and other ’omics

approaches is to better understand and predict plant phe-

notypes. Despite the challenges involved in plant geno-

mics research, the generation and analysis of genomic

data are largely outpacing the production and interpreta-

tion of phenotyping data (Furbank and Tester, 2011; Cobb

et al., 2013). The reason for this ‘phenotyping bottleneck’

is that plants are highly plastic; one genotype may exhibit

many different phenotypes depending on environmental

conditions. Considerable efforts have been invested into

the automation of plant phenotyping (Fiorani and Schurr,

2013; Fahlgren et al., 2015; Shakoor et al., 2017), which has

dramatically improved the consistency and throughput of

plant phenotyping.

However, even more than in genomics or other ’omics

disciplines, plant phenotyping is a multi-dimensional chal-

lenge, especially for crop species. This is because complex,

commercially important targets, such as ‘yield improve-

ment’, result from a variety of physiological, morphological,

anatomical, and chemical aspects of plant performance.

Therefore, many phenotyping efforts aim to understand

one or more of these components such as photosynthesis,

root architecture, or above ground biomass and subse-

quently build on crop models to scale to yield (Parent and

Tardieu, 2014).

Given the developmental changes observed over time

from seedling to mature plant, emphasis of most newly

developed phenotyping techniques is on non-destructive

approaches, such as (three-dimensional) imaging with red,

green and blue (RGB) cameras (Figure 1), thermal and

hyperspectral imaging, and/or fluorescence measurements

of photosynthesis. Analyses of physiological processes

such as enzyme activities (Gibon and Rolin, 2012), transpi-

ration or carbon flux (carbon gain through photosynthesis,

carbon loss through leaf, stem and root respiration) are far

more challenging, as automation in these fields is not

straightforward. Automated sampling of leaf material

using robots will represent an important advance (Aleny�a

et al., 2012).

A single genotype has the potential to display a range of

different phenotypes depending on the environmental con-

ditions to which it is subjected. One challenge for research-

ers is to consider and address logistical issues that arise

when coordinating physiological studies. For example

large, in-depth studies (such as for GWAS and QTL analy-

ses) require considerable experimental space and

resources necessary for the growth and analysis of a wide

array (>200) of plant genotypes. Proper attention must be

given to environmental conditions, ensuring that they are

consistent across all replicates. Constant environmental

conditions allow for a better assessment of physiological

responses and most analyses are typically carried out with

plants that are grown individually in pots, either in a

growth room with small plants such as Arabidopsis, or in

the glasshouse with larger, but agriculturally more relevant

species such as Triticum or Zea. Small pot sizes ensure

that there is enough space for many replicates as well as

easy handling in automated phenotyping stations, but may

also limit plant growth (Poorter et al., 2012a). Environmen-

tal conditions are generally under tight control in growth

rooms and, to a lesser extent, in glasshouses. Neverthe-

less, both growth room and glasshouse environments are

significantly more stable than the fluctuating environmen-

tal conditions that plants experience when subjected to

field conditions. Consequently, genotypes that perform

well in controlled environments may not necessarily be the

ones that perform best in the field. Care has therefore to

be taken when choosing and testing relevant conditions,

i.e. light and temperature (Poorter et al., 2016). This is

especially true when plants are tested under suboptimal

conditions, such as a low nutrient or water supply (Inges-

tad, 1987). Limiting pot size, or improper timing of induced

stresses could make the entire phenotypic analysis irrele-

vant (Passioura, 2012). Finally, when plant performance in

the field is the ultimate aim, one has to keep in mind that

a genotype that thrives well when grown individually in a

pot may not necessarily be the genotype that will per-

form best under conditions in which plants are grown at

high densities, such as in agriculture (Tollenaar and Wu,

1999).

Given the important role that the environment plays in

plant growth and development, a comprehensive report of

environmental conditions during experiments is of para-

mount importance, both for experiments carried out under

controlled conditions as well as in the field (Poorter et al.,

2012b). This enables the comparison of outputs of various

experiments and to develop the ideotypes for different

environmental scenarios (Chenu et al., 2011). Additionally,

improved data sharing and standardization in reporting,

particularly with regard to phenotype responses, is espe-

cially important in the agricultural sciences (Zamir, 2013).

Making historic phenotypic data publicly available would

allow plant researchers to share results, compare pheno-

types, and analyze data that has been deposited in the past

in order to identify new, and sometimes rare, alleles that

improve productivity. Finally, the low-barrier accessibility

of data would invite computer scientists and computa-

tional biologists to develop or improve current algorithms

for phenotypic data analysis (Minervini et al., 2016) and

support the integration of scientific fields.

Although this is not always easy given the wide array of

plant traits that are measured and the specific develop-

mental time points during which those data are collected,

efforts on data standardization are rapidly improving (Fig-

ure 1) (Krajewski et al., 2015; �Cwiek-Kupczy�nska et al.,

2016). This will undoubtedly facilitate broader application

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 182–198

190 Anthony M. Bolger et al.



of techniques such as genome-wide association studies

(GWAS; Millet et al., 2016) using high-throughput field

phenotyping (Pauli et al., 2016) (Figure 3). However, it is

also important to keep in mind that there is not only a

need for advancing phenotypic analysis and data integra-

tion, but also for better insights into the application of

knowledge obtained under controlled conditions for the

improvement of plant performance in the field (Junker

et al., 2014; Poorter et al., 2016).

Phenotypic data storage

One key challenge in the plant sciences is the definition of

appropriate data management procedures and infrastruc-

tures to preserve research data as a valuable scientific

asset. This task has been centralized for genomic and

expression data for all fields of the life sciences with the

Short Read Archive (in the USA) and European Nucleotide

Archive (in Europe). Phenotypic data, due to its high diver-

gence, cannot easily be tackled by a highly streamlined

and generalized platform. However, in line with the value

of original data, funding agencies (Mons et al., 2017) and

scientific journals are increasingly requesting scientists to

publish research data under the FAIR (findable, accessible,

interoperable, and reusable) data principles (Wilkinson

et al., 2016). To make data reusable and interoperable in

the plant phenotyping community, MIAPPE recommenda-

tions (i.e. required Minimal Information about Plant Pheno-

typing Experiments) are being developed to ensure a

proper description of all necessary metadata, including the

environment (Krajewski et al., 2015; �Cwiek-Kupczy�nska

et al., 2016).

Nonetheless, complex, heterogeneous, or unstructured

research data frequently remain publicly unavailable, often

due to the lack of infrastructure needed to handle these

data. In other cases, the data are published but remain

obscured within the supplementary materials. While such

data are human interpretable, the lack of standardized for-

matting and data semantics makes automated approaches

difficult and error prone.

To provide a generalized resource with an emphasis on

phenotypic data, the FAIR-aware e!DAL software library

was developed. Its aim was to lower the technical barriers

and minimize the effort of researchers to make data pub-

licly available (Arend et al., 2014). By contrast with popular

data publication platforms such as Figshare (Singh, 2011)

or DRYAD (White et al., 2008), e!DAL enables access to

large volume research data stored in-house by assigning

Digital Object Identifiers (DOIs). While Figshare and DRYAD

offer a comprehensive functionality, they are only free up

to a relatively low data volume. This makes them an ideal

solution for sharing condensed tables or reduced figures

but these resources quickly become expensive and time

consuming for larger phenotypic datasets. While there are

other generic data repository infrastructure libraries

available, for example Fedora (Lagoze et al., 2006), they do

not provide a ready-to-use implementation as within e!
DAL. Based on e!DAL, the Leibniz Institute of Plant Genet-

ics and Crop Plant Research (IPK) Gatersleben and the Ger-

man Plant Phenotyping Network jointly initiated the Plant

Genomics and Phenomics Research Data Repository (PGP)

(Arend et al., 2016a), which provides amongst others the

first full MIAPPE compliant (�Cwiek-Kupczy�nska et al., 2016)

phenotypic datasets (Arend et al., 2016b; Chen et al.,

2018). The PGP repository currently provides 150 data

records linked by DOIs and annotated by technical meta-

data. This comprises more than 1.2 million files with a vol-

ume of over two terabytes and is coupled to the ELIXIR

European bioinformatics infrastructure, which allows a sin-

gle sign-on service. Furthermore, another unique feature of

e!DAL-PGP is the integrated peer-review process, which

guarantees a certain data quality for every released data-

set. The intuitive submission process supports researchers

in describing and sharing their phenotypic data to exploit

the full scientific potential of their data.

The MIAPPE compliant form of data storage promises

to overcome standardization issues especially for experi-

mental factors, as discussed in the previous section.

Therefore, these datasets will be immediately useful for

experimental reproduction or offer a secondary use. Once

enough data have accumulated they can be mined from

different databases or e!DAL installations using for exam-

ple DOIs and potentially identify relevant datasets by

MIAPPE tags, offering a true multi-player international

data structure. This allows large-scale data producers to

share their data without a centralized resource by relying

on existing infrastructure. Afterwards, the collective data-

set might be subjected to machine-learning approaches,

discussed below.

However, to profit from existing phenotypic data

straight away, it is potentially useful to simplify the envi-

ronment to a single factor, such as water availability (see

above and Poorter et al., 2012b) and the unit of measure-

ment to a simple (ontological) term (e.g. ‘days to flower-

ing’). A similar approach focusing on phenotypes is

chosen by the AraPheno database, which collects several

hundred phenotypes for the model plant Arabidopsis

(Seren et al., 2017), many of which are derived from one

large-scale study by a multiauthor group (Atwell et al.,

2010).

Due to the knowledge about the underlying populations,

the data can be transmitted into a standardized GWAS

pipeline in AraGWAS, which relies on standardized statis-

tics and will therefore offer more comparable results

(Togninalli et al., 2018).

Finally, it can be useful to store and summarize data

even more simply, i.e. to only keep data relating to QTL for

a specific species (Nijveen et al., 2017) or a group of spe-

cies (Ni et al., 2009), as this provides, at the very least, a
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way to compare between different analyses and means to

confirm results when a plant researcher or breeder con-

ducts a similar analysis.

Bridging genotypes and phenotypes

Associating genotypes and phenotypes has become much

more simple, as statistics have matured and state-of-the-

art tools that can be used on a user’s desktop to associate

data, for example in GWAS-type settings (Figure 3), have

been developed. These tools range from the efficient

mixed model (EMMA) type family, through FAST-LMM

(Lippert et al., 2011) to TASSEL (Bradbury et al., 2007), to

name but a few that are reviewed in this issue.

Additionally, user-friendly online tools such easyGWAS

(Grimm et al., 2017) or GWAPP (Seren et al., 2012) exist.

These tools only require phenotypic data if using Ara-

bidopsis. This is because these tools analyze the pheno-

typic data against an internally stored set of genomic data

from a reference panel.

However, high-throughput phenotyping of multiple traits

allows not only association of traits with genotypes, but

also association of traits with each other (e.g. Poorter

et al., 2014, Figure 3). Once again, this works best within

the same experimental setting, as under these conditions

the environment and management is by definition ‘identi-

cal’. However, it is clear that novel insights would require

pooling of multiple datasets or very large datasets that

comprise many different phenotypic values; this has been

done in AraPheno/AraGWAS (see above).

Another large advantage of an approach that relates

phenotypes to phenotypes is that comparatively few vari-

ables are concerned, making statistical overfitting a minor

problem. This advantage is because phenotypic data (on

large populations) does not suffer from ‘p≫n’, i.e. the num-

ber of variables (phenotypes, p) is usually not larger than

the number of samples (n). As an example, the Atwell

study (2010) recorded 107 diverse phenotypic values in

between 90 and 180 accessions or more. Therefore, many

techniques from the extensively studied field of gene net-

work reconstruction (reviewed by Emamjomeh et al., 2017)

work well if not better when applied to phenotypes, given

a large enough population. Indeed, for plant gene network

analyses, gene expression data are often simply correlated,

without putting too much detail into environmental or per-

turbation conditions. The only consideration is that expres-

sion data sets should represent a range of different

conditions and not favor certain perturbations over others.

This could be done either by hand, for example in

CSBDB.DB (Steinhauser et al., 2004), or automatically, for

example in ATTED-II (Obayashi et al., 2018).

However, while a simple correlation analysis between

phenotypes is a good start for an analysis and therefore

supported in AraGWAS (Togninalli et al., 2018) and Phe-

nome-networks, more sophisticated approaches can be

used. Indeed multiple different statistical and machine-

learning approaches are already being used currently.

Firstly, as a way to bridge for example well refined

molecular measurements such as metabolic profiles to

physiological parameters, one can use partial least square

(PLS). This technique allows the determination of relation-

ships between outcome variables and predictor variables.

Gago et al. (2017) used this approach to relate canopy and

stomatal conductance from a vineyard to a metabolite

matrix. Typically, PLS results are then analyzed using vari-

able importance prediction to determine important predic-

tors (i.e. metabolites in this case). Gago et al. (2017) found

for example phenylpropanoids and myo-inositol to be pre-

dictive for both conductance values.

Alternatively, machine learning can be employed to pre-

dict important factors such as biomass. As an example,

Maddison et al. (2017) used classical machine-learning

techniques (feature selection coupled to support vector

regression) to predict biomass outcomes from non-struc-

tural carbohydrates in Miscanthus, extending earlier obser-

vations by Sulpice and colleagues in Arabidopsis (2013).

However, these approaches implied that certain vari-

ables are considered a priori as more important than

others. While this is clearly the case for Miscanthus bio-

mass, deep phenotypic data allow the uncovering of novel

associations not observed previously between the individ-

ual variables.

The QTL + phenotype supervised orientation (QPSO)

approach, developed in the van Eeuwijk laboratory (Wang

and van Eeuwijk, 2014; Wang et al., 2015), aims to gener-

ate directed networks between phenotypic traits by using

known sparse QTL to orient the network, extending earlier

work on gene network reconstruction and cleverly combin-

ing different data domains.

However, when only phenotypes are concerned, one can

consider (full) partial correlation analysis that removes the

influence of other variables on a variable pair or Bayesian

network reconstruction. Common to all these methods is

that they try to find relationships between two entities that

are not dependent on the other variables. As an example,

consider abscisic acid (ABA) that influences both stomatal

conductance (Wilkinson and Davies, 2002) and primary

root growth (Rowe et al., 2016) in response to drought

stress. Assuming an overly simplified model in which

stomatal conductance and primary root growth were only

dependent on the ABA concentration, all three items would

be correlated. However, controlling statistically for ABA

would reveal that stomatal conductance and primary root

growth were unrelated.

In any case, none of these takes hidden (not measured)

but potentially important and causal variables into

account. In addition, while these methods do not link traits

or physiological variables with the underlying genomic

basis (except for QPSO), they do provide structural insights
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about trait interrelationships. This understanding can be

used to modify a target trait by genetically modifying

another trait whose genetic basis is already understood.

However, it has to be noted that all modelling insights are

restricted to the data at hand, meaning many missing vari-

ables will make this more difficult.

Phenotypic prediction using phenotype ontologies

Another valid abstraction approach is to couple pheno-

types to genes or genomic regions, leveraging a meaning-

ful phenotypic ontology (Zamir, 2013, Hoehndorf et al.,

2015; Deans et al., 2015; Coppens et al., 2017, Figure 3 top

left). This strategy has been employed for many years for

animals and humans, reaching from phenotypically

described and formalized mouse data to integrated envi-

ronments and reasoning, bridging data from different spe-

cies (Robinson and Webber, 2014; Mungall et al., 2017;

Rodr�ıguez-Garc�ıa et al., 2017). These data being ani-

mal�human centric are centered around disease associa-

tions, however the plant community has (at least for

Arabidopsis) a massive resource for single knockouts using

T-DNA lines (O’Malley and Ecker, 2010; Kleinboelting et al.,

2017). As a result, many ontologically defined phenotypic

annotations are already available for knockouts and other

transgenics in The Arabidopsis Information Resource

(TAIR) and other databases (Lloyd and Meinke, 2012;

Akiyama et al., 2014).

Therefore, data on phenotypes resulting from knockouts

could be integrated with GWAS studies using the pheno-

type ontology data integration framework developed by

the animal community (Hoehndorf et al., 2015). Therefore,

typical candidate approaches, in which genes underlying a

QTL region are investigated manually, could be extended

by selecting candidate genes, based on their phenotypes

and/or based on where in a phenotype network they

reside. Indeed, the Planteome project tries to assess and

integrate some of these data already with clever use of

biomedical ontologies (Cooper et al., 2018).

The blessings and curses of machine learning

Over the past few years ‘deep’ machine-learning methods,

and particularly artificial neural network-based approaches,

have led to revolutionary results, particularly in image

analysis. For example, this has greatly spurred the identifi-

cation of plant features such as root tips and their localiza-

tion in an image (Pound et al., 2017) to count leaves

(Ubbens et al., 2018) or to derive vegetation indices from

RGB images (Khan et al., 2018). In addition, this has led to

the development of methods to detect plant diseases

(Mahlein, 2016; Mohanty et al., 2016; Fuentes et al., 2017)

and plant stress phenotyping (Ghosal et al., 2018). The lat-

ter application of deep learning to plant abiotic and biotic

stress phenotyping has recently been reviewed by Singh

et al. (2018).

The underlying frameworks are constantly driven for-

ward by Google, Facebook, and other companies offer-

ing readily usable frameworks such as Tensorflow

(https://www.tensorflow.org/) or Caffe2 (https://caffe2.ai/).

In addition these big data centered companies develop

dedicated hardware that promises to greatly accelerate

training and analysis tasks. Therefore it is not surprising

that plant image data is analyzed using a plethora of

machine-learning approaches (Pound et al., 2014; Tsaf-

taris et al., 2016). However convolutional neural networks

have the potential to greatly advance the field of plant

image analysis (Pound et al., 2017; Ubbens and Stav-

ness, 2017; Figure 1).

One challenge with image analysis is that large-scale

datasets with data and ground truth outcomes are

required. The former can be made readily available

through plant phenotyping platforms, but finding the

ground truth for a limited number of training datasets cur-

rently relies mostly on human experts. However, as this is

costly and time consuming, smart solutions, such as those

relying on citizen science (Giuffrida et al., 2018) are

needed. A recent clever proof-of-concept study, which

used the Amazon ‘mechanical turk platform’ (anonymous

users are paid for small tasks), performed better than for-

credit students (Zhou et al., 2018). Without such data, algo-

rithms can be compared based on standard datasets, such

as those supplied by the International Plant Phenotypic

Network (Minervini et al., 2014). This dataset is suitable for

tasks such as plant detection and localization in images, as

well as leaf detection, localization, and counting in images.

This reliance on training datasets is necessary because

there is, as of yet, no application of unsupervised rein-

forcement learning methods for image analysis purposes.

Other applications of machine learning, such as predic-

tion of plant performance or the integration of heteroge-

neous datasets, are even less developed as researchers are

currently embracing more traditional and/or data science

driven methods for these applications. As an example,

Chen et al. (2018) used regression and random forests, but

not deep learning to predict plant biomass from plant

images, whereas Coppens et al. (2017) reviews data

integration.

Plant phenotypic data promise to be interesting vistas

for machine-learning approaches (Figure 3 top). Indeed,

early studies have suggested that machine-learning

approaches for phenotype predictions stemming from a

sufficiently genotyped population could be meaningful,

especially in the p≫n setting in which more predictors

from genomics data than plant samples are available

(Crossa et al., 2017). As an example, Grinberg et al. (2018)

tried to predict phenotypes using classical genomic Best

Linear Unbiased Prediction (BLUP) as well as several

machine-learning techniques. The latter clearly outper-

formed BLUP for yeast with very controlled environments,
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whereas for wheat and rice, BLUP performed particularly

well when there was population structure (Grinberg et al.,

2018).

The non-model/minor crop plant perspective

As has been shown above, both genomic and phenomic

datasets are becoming more and more mature and cost

efficient. At this time, it is the model plant Arabidopsis,

rather than crop plants, that contains the most extensive

datasets and that may enable ontology-driven phenotype

prediction. This is largely due to a number of points: (i) the

availability of the machine-readable ontology term-

enriched phenotypic datasets for well defined genes; (ii)

the largest wealth of functional data for gene annotation,

which is related to the former point; (iii) the use of stan-

dardized populations from the 1001 genome consortium,

facilitating abstraction at the phenotypic level; and (iv) stan-

dardization, driven for example by TAIR. Also, for genetic

and genomic studies, it is necessary to note the importance

of accurate phenotyping. The most advanced (in terms of

crop plants) is most likely maize that, despite its tremen-

dous genetic variety, is tackled in a well planned and stan-

dardized way, driven both (pan)genomically (Gore et al.,

2009; Hirsch et al., 2016) and phenomically (see e.g. AlKhal-

ifah et al., 2018; for a well described dataset) and supported

by user friendly tools, providing access to these resources

such as TASSEL (Bradbury et al., 2007). However, while

standardization is gaining traction and big datasets are

becoming more available for major crops, minor crops

remain less supported. Additionally, when studying this

genotype�phenotype interaction, it is important to have

access to detailed phenotypic data. In many cases, the

selection and evaluation of phenotypes have been poorly

developed in the experimental design of genetic and geno-

mics studies (Houle et al., 2010). Therefore, efforts to iden-

tify gold standard experimental procedures and scoring

protocols may contribute to the harmonization of pheno-

typic data and therefore to the improvement of data acces-

sibility (Shrestha et al., 2012). In addition, the existence of

biases is another new, important challenge in attaining

knowledge from new high-throughput techniques.

That said, for non-model species general ‘cyberinfras-

tructures’ can also be used (Merchant et al., 2016) and

specialized information systems, such as those for grape-

vine (Adam-Blondon et al., 2016) or the Rosaceae commu-

nity (Jung et al., 2017) have been developed. Indeed,

while necessarily less data are available for non-model

(minor) crop plant communities (e.g. an apple researcher);

they can learn from the lessons and mistakes made with

big crops and within the International Plant Phenotyping

Consortium.

Finally, it can be expected that even data from the model

plant Arabidopsis will be transferable to dicots (and thus

many horticultural minor crops) or at least related crops

(i.e. Brassicaceae) on a large-scale basis going beyond sim-

ple gene annotation.

CONCLUSIONS

The impact that the genomics revolution has made on

plant science is undeniable and innovative pangenomic

approaches that allow the integration of data of related

species are beginning to take hold in the plant field. We

are therefore in the middle of a genomics data explosion.

We are also at an exciting time point, witnessing the next

revolution in phenomics (Tardieu et al., 2017), and we

begin to see how machine learning- and data science-dri-

ven approaches are trickling into the area of bridging

genomics and phenomics data. These developments are

making plant science a truly modern science, inspired by

artificial intelligence, robotics systems, and classical plant

physiology. A whole new ‘breed’ of quantitative and com-

puter science-oriented plant scientists (Friesner et al.,

2017) is therefore required to truly modernize the disci-

pline.
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BOX 1 Summary

� Plant genome sequencing has evolved to soon

become a commodity approach for small genomes.
� Phenotypic data standardization recommendations

are provided by MIAPPE.
� Many tools and databases facilitate bridging geno-

types and phenotypes.

BOX 2 Open questions

� Algorithms working on multiple genomes of a spe-

cies are still in development.
� It is still an open question how to best combine

short and long reads into assemblies.

� More rigorous phenotype ontologies and machine-

learning approaches are likely to improve our

understanding of plants.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 182–198

194 Anthony M. Bolger et al.



CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Adam-Blondon, A.F., Alaux, M., Pommier, C. et al. (2016) Towards an open

grapevine information system. Hortic. Res. 3, 16056.

Akiyama, K., Kurotani, A., Lida, K., Kuromori, T., Shinozaki, K. and Saku-

rai, T. (2014) RARGE II: an integrated phenotype database of Arabidop-

sis mutant traits using a controlled vocabulary. Plant Cell Physiol. 55

(1), e4.

Aleny�a, G., Dellen, B., Foix, S. and Torras, C. (2012) Leaf segmentation from

ToF data for robotized plant probing. IEEE Robot. Autom. Mag. 20,

50–59.
AlKhalifah, N., Campbell, D.A., Falcon, C.M. et al. (2018) Maize genomes to

fields: 2014 and 2015 field season genotype, phenotype, environment,

and inbred ear image datasets. BMC Res. Notes, 11(1), 452.

Arend, D., Lange, M., Chen, J., Colmsee, C., Flemming, S., Hecht, D. and

Scholz, U. (2014) e!DAL–a framework to store, share and publish

research data. BMC Bioinformatics, 15, 214.

Arend, D., Junker, A., Scholz, U., Schuler, D., Wylie, J. and Lange, M.

(2016a) PGP repository: a plant phenomics and genomics data publica-

tion infrastructure. Database, 2016, baw033.

Arend, D., Lange, M., Pape, J.-M., Weigelt-Fischer, K., Arana-Ceballos, F.,

M€ucke, I., Klukas, C., Altmann, T., Scholz, U. and Junker, A. (2016b)

Quantitative monitoring of Arabidopsis thaliana growth and develop-

ment using high-throughput plant phenotyping. Sci. Data, 3, 160055.

Atanbori, J., Chen, F., French, A.P. and Pridmore, T. (2018) Towards low-

cost image-based plant phenotyping using reduced-parameter CNN. In:

CVPPP 2018: Workshop on Computer Vision Problems in Plant Phenotyp-

ing. Newcastle upon Tyne, UK. http://eprints.nottingham.ac.uk/cgi/

export/eprint/54696/Refer/nott-eprint-54696.refer [accessed on 28 Decem-

ber 2018]

Atwell, S., Huang, Y.S., Vilhj�almsson, B.J. et al. (2010) Genome-wide asso-

ciation study of 107 phenotypes in Arabidopsis thaliana inbred lines.

Nature, 465(7298), 627–631.
Au, K.F., Underwood, J.G., Lee, J.G. and Wong, W.H. (2012) Improving Pac-

Bio long read accuracy by short read alignment. PLoS ONE, 7, e46679.

Avni, R., Nave, M., Barad, O. et al. (2017) Wild emmer genome architecture

and diversity elucidate wheat evolution and domestication. Science, 357

(6346), 93–97.
Baird, N.A., Etter, P.D., Atwood, T.S., Currey, M.C., Shiver, A.L., Lewis, Z.A.,

Selker, E.U., Cresko, W.A. and Johnson, E.A. (2008) Rapid SNP discovery

and genetic mapping using sequenced RAD markers. PLoS ONE, 3(10),

e3376.

Bao, E. and Lan, L. (2017) HALC: high throughput algorithm for long read

error correction. BMC Bioinformatics, 18, 204.

Bao, W., Kojima, K.K. and Kohany, O. (2015) Repbase Update, a database of

repetitive elements in eukaryotic genomes. Mob. DNA, 6, 11.

Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M. and Phillippy,

A.M. (2015) Assembling large genomes with single-molecule sequencing

and locality-sensitive hashing. Nat. Biotechnol. 33(6), 623–630.
Bhat, J.A., Ali, S., Salgotra, R.K. et al. (2016) Genomic selection in the era of

next generation sequencing for complex traits in plant breeding. Front.

Genet. 7, 221.

Bolger, A., Scossa, F., Bolger, M.E. et al. (2014a) The genome of the stress-tol-

erant wild tomato species Solanum pennellii. Nat. Genet. 46, 1034–1038.
Bolger, A.M., Lohse, M. and Usadel, B. (2014b) Trimmomatic: a flexible trim-

mer for Illumina sequence data. Bioinformatics, 30, 2114–2120.
Bolger, M.E., Weisshaar, B., Scholz, U., Stein, N., Usadel, B. and Mayer, K.F.

(2014c) Plant genome sequencing - applications for crop improvement.

Curr. Opin. Biotechnol. 26, 31–37.
Bolger, M.E., Arsova, B. and Usadel, B. (2017a) Plant genome and transcrip-

tome annotations: from misconceptions to simple solutions. Brief. Bioin-

form. 19(3), 437–449.
Bolger, A.M., Denton, A.K., Bolger, M.E. and Usadel, B. (2017b) LOGAN: a

framework for LOssless Graph-based ANalysis of high throughput

sequence data. BioRxiv, 175976. https://doi.org/10.1101/175976

Bolger, M., Schwacke, R., Gundlach, H. et al. (2017c) From plant genomes

to phenotypes. J. Biotechnol. 261, 46–52.

Bombarely, A., Moser, M., Amrad, A. et al. (2016) Insight into the evolution

of the Solanaceae from the parental genomes of Petunia hybrida. Nat.

Plants, 2(6), 16074.

Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and

Buckler, E.S. (2007) TASSEL: software for association mapping of com-

plex traits in diverse samples. Bioinformatics, 23, 2633–2635.
Bukowski, R., Guo, X., Lu, Y. et al. (2018) Construction of the third-genera-

tion Zea mays haplotype map. Gigascience, 7(4), 1–12.
Butelli, E., Licciardello, C., Zhang, Y., Liu, J., Mackay, S., Bailey, P., Refor-

giato-Recupero, G. and Martin, C. (2012) Retrotransposons control fruit-

specific, cold-dependent accumulation of anthocyanins in blood oranges.

Plant Cell, 24, 1242–1255.
Campbell, M.S., Law, M., Holt, C. et al. (2014) MAKER-P: a tool kit for the

rapid creation, management, and quality control of plant genome anno-

tations. Plant Physiol. 164, 513–524.
Chalhoub, B., Denoeud, F., Liu, S. et al. (2014) Early allopolyploid evolution in

the post-Neolithic Brassica napus oilseed genome. Science, 345, 950–953.
Chen, D., Shi, R., Pape, J.M. et al. (2018) Predicting plant biomass

accumulation from image-derived parameters. Gigascience, 7(2),

https://doi.org/10.1093/gigascience/giy001

Chenu, K., Cooper, M., Hammer, G.L., Mathews, K.L., Dreccer, M.F. and

Chapman, S.C. (2011) Environment characterization as an aid to wheat

improvement: interpreting genotype–environment interactions by mod-

elling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 62(6),

1743–1755.
Chuong, E.B., Elde, N.C. and Feschotte, C. (2017) Regulatory activities of

transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18(2),

71–86.
Claros, M.G., Bautista, R., Guerrero-Fernandez, D., Benzerki, H., Seoane, P.

and Fernandez-Pozo, N. (2012) Why assembling plant genome

sequences is so challenging. Biology, 1, 439–459.
Cobb, J.N., Declerck, G., Greenberg, A., Clark, R. and McCouch, S. (2013)

Next-generation phenotyping: requirements and strategies for enhancing

our understanding of genotype-phenotype relationships and its rele-

vance to crop improvement. Theor. Appl. Genet. 126, 867–887.
Conesa, A. and Gotz, S. (2008) Blast2GO: a comprehensive suite for

functional analysis in plant genomics. Int. J. Plant Genomics, 2008,

619832.

Cooper, L., Meier, A., Laporte, M.A. et al. (2018) The Planteome database:

an integrated resource for reference ontologies, plant genomics and phe-

nomics. Nucleic Acids Res. 46(D1), D1168–D1180.
Coppens, F., Wujts, N., Inze, D. and Dhont, S. (2017) Unlocking the potential

of plant phenotyping data through integration and data-driven

approaches. Curr. Opin. Syst. Biol. 4, 58–63.
Crossa, J., P�erez-Rodr�ıguez, P., Cuevas, J. et al. (2017) Genomic selection in

plant breeding: methods, models, and perspectives. Trends Plant Sci. 22

(11), 961–975.
�Cwiek-Kupczy�nska, H., Altmann, T., Arend, D. et al. (2016) Measures for

interoperability of phenotypic data: minimum information requirements

and formatting. Plant Methods, 12, 44.

Deans, A.R., Lewis, S.E., Huala, E. et al. (2015) Finding our way through

phenotypes. PLoS Biol. 13(1), e1002033.

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S.

and Mitchell, S.E. (2011) A robust, simple genotyping-by-sequencing

(GBS) approach for high diversity species. PLoS ONE, 6(5), e19379.

Emamjomeh, A., Saboori Robat, E., Zahiri, J., Solouki, M. and Khosrav, P.

(2017) Plant Biotechnol. Rep. 11, 71.

Ezer, D., Jung, J.H., Lan, H. et al. (2017) The evening complex coordinates

environmental and endogenous signals in Arabidopsis. Nat. Plants, 3,

17087.

Fahlgren, N., Gehan, M.A. and Baxter, I. (2015) Lights, camera, action: high-

throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant

Biol. 24, 93–99.
Fiorani, F. and Schurr, U. (2013) Future scenarios for plant phenotyping.

Annu. Rev. Plant Biol. 64, 267–291.
Flutre, T., Duprat, E., Feuillet, C. and Quesneville, H. (2011) Considering

transposable element diversification in de novo annotation approaches.

PLoS One, 6, e16526.

Friesner, J., Assmann, S.M., Bastow, R. et al. (2017) The next generation of

training for Arabidopsis researchers: bioinformatics and quantitative

biology. Plant Physiol. 175(4), 1499–1509.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2019), 97, 182–198

From genome to phenome 195

http://eprints.nottingham.ac.uk/cgi/export/eprint/54696/Refer/nott-eprint-54696.refer
http://eprints.nottingham.ac.uk/cgi/export/eprint/54696/Refer/nott-eprint-54696.refer
https://doi.org/10.1101/175976
https://doi.org/10.1093/gigascience/giy001


Fuentes, A., Yoon, S., Kim, S.C. and Park, D.S. (2017) A robust deep-learn-

ing-based detector for real-time tomato plant diseases and pests recogni-

tion. Sensors (Basel), 17(9), E2022. https://doi.org/10.3390/s17092022

Fujii, S., Kubo, K. and Takayama, S. (2016) Non-self- and self-recognition

models in plant self-incompatibility. Nat. Plants, 2, 16130.

Furbank, R.T. and Tester, M. (2011) Phenomics–technologies to relieve the

phenotyping bottleneck. Trends Plant Sci. 16(12), 635–644.
Gago, J., Fernie, A.R., Nikoloski, Z. et al. (2017) Integrative field scale phe-

notyping for investigating metabolic components of water stress within

a vineyard. Plant Methods, 13, 90.

Ghosal, S., Blystone, D., Singh, A.K., Ganapathysubramanian, B., Singh, A.

and Sarkar, S. (2018) An explainable deep machine vision framework for

plant stress phenotyping. Proc. Natl Acad. Sci. USA, 115(18), 4613–4618.
Gibon, Y. and Rolin, D. (2012) Aspects of experimental design for plant

metabolomics experiments and guidelines for growth of plant material.

Methods Mol. Biol. 860, 13–30.
Giuffrida, M.V., Chen, F., Scharr, H. and Tsaftaris, S.A. (2018) Citizen crowds

and experts: observer variability in image-based plant phenotyping.

Plant Methods, 14, 12.

Golicz, A.A., Bayer, P.E., Barker, G.C. et al. (2016) The pangenome of an

agronomically important crop plant Brassica oleracea. Nat. Commun. 7,

13390.

Gordon, S.P., Contreras-Moreira, B., Woods, D.P. et al. (2017) Extensive

gene content variation in the Brachypodium distachyon pan-genome cor-

relates with population structure. Nat. Commun., 8, 2184.

Gore, M.A., Chia, J.M., Elshire, R.J. et al. (2009) A first-generation haplotype

map of maize. Science, 326(5956), 1115–1117.
Grimm, D.G., Roqueiro, D., Salom�e, P.A. et al. (2017) easyGWAS: a cloud-

based platform for comparing the results of genome-wide association

studies. Plant Cell, 29, 5–19.
Grinberg, N.F., Orhobor, O.I. and King, R.D. (2018) An evaluation of

machine-learning for predicting phenotype: studies in yeast, rice and

wheat. BioRxiv. https://doi.org/10.1101/105528.

Hackl, T., Hedrich, R., Schultz, J. and F€orster, F. (2014) Proovread: large-

scale high-accuracy PacBio correction through iterative short read con-

sensus. Bioinformatics, 30, 3004–3011.
He, J., Zhao, X., Laroche, A., Lu, Z.X., Liu, H. and Li, Z. (2014) Genotyping-

by-sequencing (GBS), an ultimate marker-assisted selection (MAS) tool

to accelerate plant breeding. Front. Plant Sci. 5, 484.

Hirsch, C.N., Hirsch, C.D., Brohammer, A.B. et al. (2016) Draft assembly of

elite inbred line PH207 provides insights into genomic and transcriptome

diversity in maize. Plant Cell, 28, 2700–2714.
Hoehndorf, R., Schofield, P.N. and Gkoutos, G.V. (2015) The role of ontolo-

gies in biological and biomedical research: a functional perspective.

Brief. Bioinform. 16(6), 1069–1080.
Hoff, K.J., Lange, S., Lomsadze, A., Borodovsky, M. and Stanke, M. (2016)

BRAKER1: unsupervised RNA-seq-based genome annotation with Gene-

Mark-ET and AUGUSTUS. Bioinformatics, 32, 767–769.
Houle, D., Goviandaraju, D.R. and Omholt, S. (2010) Phenomics: the next

challenge. Nat. Rev. Genet. 11, 855–866.
Huang, L., Popic, V. and Batzoglou, S. (2013) Short read alignment with

populations of genomes. Bioinformatics, 29, i361–i370.
Ingestad, T. (1987) New concepts on soil fertility and plant nutrition as illus-

trated by research on forest trees and stands.Geoderma, 40(3–4), 237–252.
International Wheat Genome Sequencing Consortium. (2014) A chromo-

some-based draft sequence of the hexaploid bread wheat (Triticum aes-

tivum) genome. Science, 345, 1251788.

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P. and McVean, G. (2012) De novo

assembly and genotyping of variants using colored de Bruijn graphs.

Nat. Genet., 44, 226–232.
Jain, M., Olsen, H.E., Paten, B. and Akeson, M. (2016) The Oxford Nanopore

MinION: delivery of nanopore sequencing to the genomics community.

Genome Biol. 17, 239.

Jaiswal, P. and Usadel, B. (2016) Plant pathway databases. Methods Mol.

Biol. 1374, 71–87.
James, G.V., Patel, V., Nordstr€om, K.J., Klasen, J.R., Salom�e, P.A., Weigel,

D. and Schneeberger, K. (2013) User guide for mapping-by-sequencing

in Arabidopsis. Genome Biol. 14(6), R61.

Jiao, W.B. and Schneeberger, K. (2017) The impact of third generation

genomic technologies on plant genome assembly. Curr. Opin. Plant Biol.

36, 64–70.

Jung, S., Lee, T., Cheng, CH., Humann, J., Yu, J., Ficklin, S.P. and Main, D.

(2017) Extension modules for storage, visualization and querying of

genomic, genetic and breeding data in Tripal databases. Database,

bax092. https://doi.org/10.1093/database/bax092

Junker, A., Muraya, M.M., Weigelt-Fischer, K. et al. (2014) Optimizing

experimental procedures for quantitative evaluation of crop plant per-

formance in high throughput phenotyping systems. Front. Plant Sci. 5,

770.

Khan, Z., Rahimi-Eichi, V., Haefele, S., Garnett, T. and Miklavcic, S.J. (2018)

Estimation of vegetation indices for high-throughput phenotyping of

wheat using aerial imaging. Plant Methods, 14, 20.

Klap, C., Yeshayahou, E., Bolger, A.M., Arazi, T., Gupta, S.K., Shabtai, S.,

Usadel, B., Salts, Y. and Barg, R. (2017) Tomato facultative partheno-

carpy results from SlAGAMOUS-LIKE 6 loss of function. Plant Biotech-

nol. J. 15(5), 634–647.
Kleinboelting, N., Huep, G. and Weisshaar, B. (2017) Enhancing the GABI-

Kat Arabidopsis thaliana T-DNA insertion mutant database by incorporat-

ing Araport11 annotation. Plant Cell Physiol. 58(1), e7.

Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H. and Phillippy,

A.M. (2017) Canu: scalable and accurate long-read assembly via

adaptive k-mer weighting and repeat separation. Genome Res. 27,

722–736.
Krajewski, P., Chen, D., Cwiek, H. et al. (2015) Towards recommendations

for metadata and data handling in plant phenotyping. J. Exp. Bot. 66,

5417–5427.
Lagoze, C., Payette, S., Shin, E. and Wilper, C. (2006) Fedora: an architecture

for complex objects and their relationships. Int. J. Digit. Libr. 6(2), 124–
138.

Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with

Bowtie 2. Nat. Methods, 9, 357–U354.

Lerat, E. (2010) Identifying repeats and transposable elements in sequenced

genomes: how to find your way through the dense forest of programs.

Heredity (Edinb), 104, 520–533.
Li, H. (2016) Minimap and Miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32(14), 2103–2110.
Li, H. and Durbin, R. (2009) Fast and accurate short read alignment with Bur-

rows-Wheeler transform. Bioinformatics, 25, 1754–1760.
Lin, T., Zhu, G., Zhang, J. et al. (2014) Genomic analyses provide insights

into the history of tomato breeding. Nat. Genet. 46, 1220–12266.
Lippert, C., Listgarten, J., Liu, Y., Kadie, C.M., Davidson, R.I. and Hecker-

man, D. (2011) FaST linear mixed models for genome-wide association

studies. Nat. Methods, 8, 833–835.
Lloyd, J. and Meinke, D. (2012) A comprehensive dataset of genes with a

loss-of-function mutant phenotype in Arabidopsis. Plant Physiol. 158(3),

1115–1129.
Lohse, M., Nagel, A., Herter, T. et al. (2014) Mercator: a fast and simple web

server for genome scale functional annotation of plant sequence data.

Plant, Cell Environ., 37, 1250–1258.
Luo, R., Liu, B., Xie, Y. et al. (2012) SOAPdenovo2: an empirically improved

memory-efficient short-read de novo assembler. Gigascience, 1, 18.

Luo, M.C., Gu, Y.Q., Puiu, D. et al. (2017) Genome sequence of the progeni-

tor of the wheat D genome Aegilops tauschii. Nature, 551, 498–502.
Lutz, U., Pose, D., Pfeifer, M., Hagmann, J., Wang, C., Weigel, D., Mayer,

K.F., Schmid, M. and Schwechheimer, C. (2015) Modulation of ambient

temperature-dependent flowering in Arabidopsis thaliana by natural vari-

ation of FLOWERING LOCUS M. PLoS Genet. 11, e1005588.

Maddison, A.L., Camargo-Rodriguez, A., Scott, I.M. et al. (2017) Predict-

ing future biomass yield in Miscanthus using the carbohydrate meta-

bolic profile as a biomarker. Glob. Change Biol. Bioenergy, 9(7), 1264–
1278.

Mahlein, A.K. (2016) Plant disease detection by imaging sensors–parallels
and specific demands for precision agriculture and plant phenotyping.

Plant Dis. 100(2), 241–251.
Mahmoud, M., Zywicki, M., Twardowski, T. and Karlowski, W.M. (2017) Effi-

ciency of PacBio long read correction by 2nd generation Illumina

sequencing. Genomics. pii: S0888-7543(17)30166-0. https://doi.org/

10.1016/j.ygeno.2017.12.011

Makarevitch, I., Waters, A.J., West, P.T., Stitzer, M., Hirsch, C.N., Ross-

Ibarra, J. and Springer, N.M. (2015) Transposable elements contribute to

activation of maize genes in response to abiotic stress. PLoS Genet. 11

(1), e1004915.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 182–198

196 Anthony M. Bolger et al.

https://doi.org/10.3390/s17092022
https://doi.org/10.1101/105528
https://doi.org/10.1093/database/bax092
https://doi.org/10.1016/j.ygeno.2017.12.011
https://doi.org/10.1016/j.ygeno.2017.12.011


Mascher, M., Gundlach, H., Himmelbach, A. et al. (2017) A chromosome

conformation capture ordered sequence of the barley genome. Nature,

544, 427–433.
Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D. and

Antin, P. (2016) The iPlant collaborative: cyberinfrastructure for enabling

data to discovery for the life sciences. PLoS Biol. 14, e1002342.

Michael, T.P., Jupe, F., Bemm, F. et al. (2018) High contiguity Arabidopsis

thaliana genome assembly with a single Nanopore flow cell. Nat. Com-

mun. 9(1), 541.

Millet, E.J., Welcker, C., Kruijer, W. et al. (2016) Genome-wide analysis of

yield in Europe: allelic effects vary with drought and heat scenarios.

Plant Physiol. 172, 749–764.
Minervini, M., Abdelsamea, M.M. and Tsaftaris, S.A. (2014) Image-based

plant phenotyping with incremental learning and active contours. Ecol.

Inform. 23, 35–48.
Minervini, M., Fischbach, A., Scharr, H. and Tsaftaris, S.A. (2016) Finely-

grained annotated datasets for image-based plant phenotyping. Pattern

Recogn. Lett. 81, 80–89. https://doi.org/10.1016/j.patrec.2015.10.013
Mohanty, S.P., Hughes, D.P. and Salath�e, M. (2016) Using deep learning for

image-based plant disease detection. Front. Plant Sci. 7, 1419.

Mons, B., Neylon, C., Velterop, J., Dumontier, M., da Silva Santos, L.O.B.

and Wilkinson, M.D. (2017) Cloudy, increasingly FAIR; revisiting the FAIR

data guiding principles for the European open science cloud. Information

Services and Use, 37(1), 49–56.
Montenegro, J.D., Golicz, A.A., Bayer, P.E. et al. (2017) The pangenome of

hexaploid bread wheat. Plant J, 90, 1007–1013.
Moriya, Y., Itoh, M., Okuda, S., Yoshizawa, A.C. and Kanehisa, M. (2007)

KAAS: an automatic genome annotation and pathway reconstruction ser-

ver. Nucleic Acids Res. 35, W182–W185.

Muggli, M.D., Bowe, A., Noyes, N.R., Morley, P.S., Belk, K.E., Raymond, R.,

Gagie, T., Puglisi, S.J. and Boucher, C. (2017) Succinct colored de Bruijn

graphs. Bioinformatics, 33, 3181–3187.
Mungall, C.J., McMurry, J.A., K€ohler, S. et al. (2017) The Monarch Initiative:

an integrative data and analytic platform connecting phenotypes to

genotypes across species. Nucleic Acids Res. 45(D1), D712–D722.
Ni, J., Pujar, A., Youens-Clark, K. et al. (2009) Gramene QTL database:

development, content and applications. Database, 2009, bap005.

Nijveen, H., Ligterink, W., Keurentjes, J.J. et al. (2017) AraQTL - workbench

and archive for systems genetics in Arabidopsis thaliana. Plant J. 89,

1225–1235.
Obayashi, T., Aoki, Y., Tadaka, S., Kagaya, Y. and Kinoshita, K. (2018)

ATTED-II in 2018: a plant coexpression database based on investigation

of the statistical property of the mutual rank index. Plant Cell Physiol. 59

(2), 440.

O’Malley, R.C. and Ecker, J.R. (2010) Linking genotype to phenotype using

the Arabidopsis unimutant collection. Plant J. 61(6), 928–940.
Parent, B. and Tardieu, F. (2014) Can current crop models be used in the

phenotyping era for predicting the genetic variability of yield of plants

subjected to drought or high temperature? J. Exp. Bot. 65(21), 6179–
6189.

Passioura, J.B. (2012) Phenotyping for drought tolerance in grain crops:

when is it useful to breeders? Funct. Plant Biol. 39(11), 851–859.
Pauli, D., Chapman, S.C., Bart, R., Topp, C.N., Lawrence-Dill, C.J., Poland, J.

and Gore, M.A. (2016) The quest for understanding phenotypic variation

via integrated approaches in the field environment. Plant Physiol. 172(2),

622–634.
Paulus, S., Behmann, J., Mahlein, A.K., Pl€umer, L. and Kuhlmann, H. (2014)

Low-cost 3D systems: suitable tools for plant phenotyping. Sensors

(Basel), 14(2), 3001–3018.
Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T. and

Salzberg, S.L. (2015) StringTie enables improved reconstruction of a

transcriptome from RNA-seq reads. Nat. Biotechnol., 33, 290–295.
Piepho, H.P., M€ohring, J., Melchinger, A.E. and B€uchse, A. (2008) BLUP for

phenotypic selection in plant breeding and variety testing. Euphytica,

161, 229–228.
Poorter, H., B€uhler, J., van Dusschoten, D., Climent, J. and Postma, J.A.

(2012a) Pot size matters: a meta-analysis of the effects of rooting volume

on plant growth. Funct. Plant Biol. 39(11), 839–850.
Poorter, H., Fiorani, F., Stitt, M. et al. (2012b) The art of growing plants for

experimental purposes: a practical guide for the plant biologist. Funct.

Plant Biol. 39(11), 821–838.

Poorter, H., Lambers, H. and Evans, J.R. (2014) Trait correlation networks: a

whole plant perspective on the recently criticized leaf economic spec-

trum. New Phytol. 201, 378–382.
Poorter, H., Fiorani, F., Pieruschka, R., Wojciechowski, T., van der Put-

ten, W.H., Kleyer, M., Schurr, U. and Postma, J. (2016) Pampered

inside, pestered outside? Differences and similarities between plants

growing in controlled conditions and in the field. New Phytol. 212,

838–855.
Potato Genome Sequencing Consortium. (2011) Genome sequence and

analysis of the tuber crop potato. Nature, 475(7355), 189–195.
Pound, M.P., French, A.P., Murchie, E.H. and Pridmore, T.P. (2014) Auto-

mated recovery of three-dimensional models of plant shoots from multi-

ple color images. Plant Physiol. 166, 1688–1698.
Pound, M.P., Atkinson, J.A., Townsend, A.J. et al. (2017) Deep machine

learning provides state-of-the-art performance in image-based plant phe-

notyping. Gigascience, 6(10), 1–10.
Rang, F.J., Kloosterman, W.P. and de Ridder, J. (2018) From squiggle to

basepair: computational approaches for improving Nanopore sequenc-

ing read accuracy. Genome Biol. 19(1), 90.

Robinson, P.N. and Webber, C. (2014) Phenotype ontologies and cross-spe-

cies analysis for translational research. PLoS Genet. 10(4), e1004268.

Rodr�ıguez-Garc�ıa, M.�A., Gkoutos, G.V., Schofield, P.N. and Hoehndorf, R.

(2017) Integrating phenotype ontologies with PhenomeNET. J. Biomed.

Semantics, 8(1), 58.

Rowe, J.H., Topping, J.F., Liu, J.L. and Lindsey, K. (2016) Abscisic acid regu-

lates root growth under osmotic stress conditions via an interacting hor-

monal network with cytokinin, ethylene and auxin. New Phytol. 211(1),

225–239.
Salmela, L. and Rivals, E. (2014) LoRDEC: accurate and efficient long read

error correction. Bioinformatics, 30, 3506–3514.
Scheben, A. and Edwards, D. (2018) Towards a more predictable plant

breeding pipeline with CRISPR/Cas-induced allelic series to optimize

quantitative and qualitative traits. Curr. Opin. Plant Biol. 45, 218–225. in
press. S1369-5266(18)30023-2. https://doi.org/10.1016/j.pbi.2018.04.013

Scheben, A., Batley, J. and Edwards, D. (2017) Genotyping-by-sequencing

approaches to characterize crop genomes: choosing the right tool for the

right application. Plant Biotechnol. J. 15(2), 149–161.
Schmidt, M.H., Vogel, A., Denton, A.K. et al. (2017) De Novo Assembly of a

New Solanum pennellii Accession Using Nanopore Sequencing. Plant

Cell, 29, 2336–2348.
Schneeberger, K., Ossowski, S., Ott, F. et al. (2011) Reference-guided

assembly of four diverse Arabidopsis thaliana genomes. Proc Natl Acad

Sci U S A, 108, 10249–10254.
Seren, €U., Vilhj�almsson, B.J., Horton, M.W., Meng, D., Forai, P., Huang,

Y.S., Long, Q., Segura, V. and Nordborg, M. (2012) GWAPP: a web appli-

cation for genome-wide association mapping in Arabidopsis. Plant Cell,

24, 4793–4805.
Seren, U., Grimm, D., Fitz, J., Weigel, D., Nordborg, M., Borgwardt, K. and

Korte, A. (2017) AraPheno: a public database for Arabidopsis thaliana

phenotypes. Nucleic Acids Res. 45, D1054–D1059.
Shakoor, N., Lee, S. and Mockler, T.C. (2017) High throughput phenotyping

to accelerate crop breeding and monitoring of diseases in the field. Curr.

Opin. Plant Biol., 38, 184–192.
Shrestha, R., Matteis, L., Skofic, M., Portugal, A., McLaren, G., Hyman, G.

and Arnaud, E. (2012) Bridging the phenotypic and genetic data useful

for integrated breeding through a data annotation using the Crop Ontol-

ogy developed by the crop communities of practice. Front. Physiol. 3,

326.

Shulaev, V., Sargent, D.J., Crowhurst, R.N. et al. (2011) The genome of

woodland strawberry (Fragaria vesca). Nat. Genet. 43, 109–116.
Sierro, N., Battey, J.N., Ouadi, S., Bakaher, N., Bovet, L., Willig, A., Goep-

fert, S., Peitsch, M.C. and Ivanov, N.V. (2014) The tobacco genome

sequence and its comparison with those of tomato and potato. Nat.

Commun. 5, 3833.

Simpson, J.T., Wong, K., Jackman, S.D., Schein, J.E., Jones, S.J. and Birol,

I. (2009) ABySS: a parallel assembler for short read sequence data. Gen-

ome Res. 19, 1117–1123.
Singh, J. (2011) FigShare. J. Pharmacol. Pharmacother. 2(2), 138–139.
Singh, A.K., Ganapathysubramanian, B., Sarkar, S. and Singh, A. (2018)

Deep learning for plant stress phenotyping: trends and future perspec-

tives. Trends Plant Sci. 23(10), 883–898.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,
The Plant Journal, (2019), 97, 182–198

From genome to phenome 197

https://doi.org/10.1016/j.patrec.2015.10.013
https://doi.org/10.1016/j.pbi.2018.04.013


Smit, A.F.A, Hubley, R. and Green, P. (2016) RepeatMasker Open-4.0. 2013–
2015. http://www.repeatmasker.org.

Spannagl, M., Nussbaumer, T., Bader, K., Gundlach, H. and Mayer, K.F.

(2017) PGSB/MIPS PlantsDB database framework for the integration

and analysis of plant genome data. Methods Mol. Biol. 1533,

33–44.
Steinhauser, D., Usadel, B., Luedemann, A., Thimm, O. and Kopka, J. (2004)

CSB.DB: a comprehensive systems-biology database. Bioinformatics, 20,

3647–3651.
Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron, M.J.,

Iyer, R., Schatz, M.C., Sinha, S. and Robinson, G.E. (2015) Big data: astro-

nomical or genomical? PLoS Biol. 13(7), e1002195.

Sulpice, R., Nikoloski, Z., Tschoep, H. et al. (2013) Impact of the carbon and

nitrogen supply on relationships and connectivity between metabolism

and biomass in a broad panel of Arabidopsis accessions. Plant Physiol.

162(1), 347–363.
Tardieu, F., Cabrera-Bosquet, L., Pridmore, T. and Bennett, M. (2017)

Plant phenomics, from sensors to knowledge. Curr. Biol. 27(15), R770–
R783.

Thoen, M.P., Davila Olivas, N.H., Kloth, K.J. et al. (2017) Genetic architec-

ture of plant stress resistance: multi-trait genome-wide association map-

ping. New Phytol. 213(3), 1346–1362.
Togninalli, M., Seren, €U., Meng, D., Fitz, J., Nordborg, M., Weigel, D., Borg-

wardt, K., Korte, A. and Grimm, D.G. (2018) The AraGWAS Catalog: a

curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic

Acids Res. 46(D1), D1150–D1156.
Tollenaar, M. and Wu, J. (1999) Yield improvement in temperate maize is

attributable to greater stress tolerance. Crop Sci. 39, 1597–1604.
Tsaftaris, S.A., Minervini, M. and Scharr, H. (2016) Machine learning for

plant phenotyping needs image processing. Trends Plant Sci. 21(12),

989–991.
Ubbens, J.R. and Stavness, I. (2017) Deep plant phenomics: a deep learn-

ing platform for complex plant phenotyping tasks. Front. Plant Sci. 8,

1190.

Ubbens, J., Cieslak, M., Prusinkiewicz, P. and Stavness, I. (2018) The use of

plant models in deep learning: an application to leaf counting in rosette

plants. Plant Methods, 18(14), 6.

Van Bel, M., Proost, S., Van Neste, C., Deforce, D., Van de Peer, Y. and Van-

depoele, K. (2013) TRAPID: an efficient online tool for the functional and

comparative analysis of de novo RNA-Seq transcriptomes. Genome Biol.

14, R134.

Van Buren, R., Bryant, D., Edger, P.P. et al. (2015) Single-molecule sequenc-

ing of the desiccation-tolerant grass Oropetium thomaeum. Nature, 527

(7579), 508–511.
Van Buren, R., Wai, C.M., Colle, M. et al. (2018) A near complete, chromo-

some-scale assembly of the black raspberry (Rubus occidentalis) gen-

ome. Gigascience, 7(8). https://doi.org/10.1093/gigascience/giy094.

Van Tassell, C.P., Smith, T.P., Matukumalli, L.K., Taylor, J.F., Schnabel,

R.D., Lawley, C.T., Haudenschild, C.D., Moore, S.S., Warren, W.C. and

Sonstegard, T.S. (2008) SNP discovery and allele frequency estimation

by deep sequencing of reduced representation libraries. Nat. Methods, 5

(3), 247–252.
Variant Graph Team. (2018) Tools for working with genome variation

graphs. https://github.com/vgteam/vg

Varshney, R.K., Nayak, S.N., May, G.D. and Jackson, S.A. (2009) Next-gen-

eration sequencing technologies and their implications for crop genetics

and breeding. Trends Biotechnol. 27, 522–530.
Vogel, A., Schwacke, R., Denton, A.K. et al. (2018) Footprints of parasitism

in the genome of the parasitic flowering plant Cuscuta campestris. Nat.

Commun., 9, 2515.

Voiniciuc, C., Zimmermann, E., Schmidt, M.H., G€unl, M., Fu, L., North, H.M.

and Usadel, B. (2016) Extensive natural variation in Arabidopsis seed

mucilage structure. Front. Plant Sci. 7, 803.

Wang, H. and van Eeuwijk, F.A. (2014) A new method to infer causal pheno-

type networks using QTL and phenotypic information. PLoS ONE, 9(8),

e103997.

Wang, H., Paulo, J., Kruijer, W., Boer, M., Jansen, H., Tikunov, Y., Usadel,

B., van Heusden, S., Bovy, A. and van Eeuwijk, F. (2015) Genotype-phe-

notype modeling considering intermediate level of biological variation: a

case study involving sensory traits, metabolites and QTLs in ripe toma-

toes. Mol. BioSyst. 11(11), 3101–3110.
Watson, M. (2018) Mind the gaps – ignoring errors in long read assemblies

critically affects protein prediction. BioRxiv. https://doi.org/10.1101/285049.

Weisenfeld, N.I., Yin, S., Sharpe, T. et al. (2014) Comprehensive variation

discovery in single human genomes. Nat. Genet. 46, 1350–1355.
White, H., Carrier, S., Thompson, A., Greenberg, J. and Scherle, R. (2008)

The Dryad Data Repository: A Singapore Framework Metadata Architec-

ture in a DSpace Environment. Dublin Core Conference. http://dcpapers.d

ublincore.org/pubs/article/view/928

Wick, R., Judd, L.M. and Holt, K.E. (2018) Comparison of Oxford Nanopore

basecalling tools. https://zenodo.org/record/1188469

Wilkinson, S. and Davies, W.J. (2002) ABA-based chemical signalling: the

co-ordination of responses to stress in plants. Plant, Cell Environ. 25(2),

195–210.
Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J. et al. (2016) The FAIR

guiding principles for scientific data management and stewardship. Sci.

Data, 3, 160018.

Zamir, D. (2013) Where have all the crop phenotypes gone? PLoS Biol. 11,

e1001595.

Zerbino, D.R. and Birney, E. (2008) Velvet: algorithms for de novo short read

assembly using de Bruijn graphs. Genome Res. 18, 821–829.
Zhang, R., Calixto, C.P.G., Marquez, Y. et al. (2017) A high quality Arabidop-

sis transcriptome for accurate transcript-level analysis of alternative

splicing. Nucleic Acids Res. 45(9), 5061–5073.
Zhao, Q., Feng, Q., Lu, H. et al. (2018) Pan-genome analysis highlights the

extent of genomic variation in cultivated and wild rice. Nat. Genet. 50,

278–284.
Zhong, S., Fei, Z., Chen, Y.R. et al. (2013) Single-base resolution methy-

lomes of tomato fruit development reveal epigenome modifications

associated with ripening. Nat. Biotechnol. 31, 154–159.
Zhou, N., Siegel, Z.D., Zarecor, S. et al. (2018) Crowdsourcing image analy-

sis. BioRxiv. https://doi.org/10.1101/265918

Zimin, A.V., Marc�ais, G., Puiu, D., Roberts, M., Salzberg, S.L. and Yorke,

J.A. (2013) The MaSuRCA genome assembler. Bioinformatics, 29, 2669–
2677.

Zimin, A.V., Puiu, D., Hall, R., Kingan, S., Clavijo, B.J. and Salzberg, S.L.

(2017) The first near-complete assembly of the hexaploid bread wheat

genome, Triticum aestivum. Gigascience, 6, 1–7.

© 2018 The Authors
The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.,

The Plant Journal, (2019), 97, 182–198

198 Anthony M. Bolger et al.

http://www.repeatmasker.org
https://doi.org/10.1093/gigascience/giy094
https://github.com/vgteam/vg
https://doi.org/10.1101/285049
http://dcpapers.dublincore.org/pubs/article/view/928
http://dcpapers.dublincore.org/pubs/article/view/928
https://zenodo.org/record/1188469
https://doi.org/10.1101/265918

