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Spatial patterns are ubiquitous on the subcellular, cellular and tissue level,

and can be studied using imaging techniques such as light and fluorescence

microscopy. Imaging data provide quantitative information about biological

systems; however, mechanisms causing spatial patterning often remain elu-

sive. In recent years, spatio-temporal mathematical modelling has helped to

overcome this problem. Yet, outliers and structured noise limit modelling of

whole imaging data, and models often consider spatial summary statistics.

Here, we introduce an integrated data-driven modelling approach that can

cope with measurement artefacts and whole imaging data. Our approach

combines mechanistic models of the biological processes with robust statisti-

cal models of the measurement process. The parameters of the integrated

model are calibrated using a maximum-likelihood approach. We used this

integrated modelling approach to study in vivo gradients of the chemokine

(C-C motif ) ligand 21 (CCL21). CCL21 gradients guide dendritic cells and

are important in the adaptive immune response. Using artificial data, we ver-

ified that the integrated modelling approach provides reliable parameter

estimates in the presence of measurement noise and that bias and variance

of these estimates are reduced compared to conventional approaches. The

application to experimental data allowed the parametrization and subsequent

refinement of the model using additional mechanisms. Among other results,

model-based hypothesis testing predicted lymphatic vessel-dependent con-

centration of heparan sulfate, the binding partner of CCL21. The selected

model provided an accurate description of the experimental data and was par-

tially validated using published data. Our findings demonstrate that

integrated statistical modelling of whole imaging data is computationally

feasible and can provide novel biological insights.
1. Introduction
In the past decades, our understanding of biological processes has been revolu-

tionized by imaging technologies. Nowadays, super-resolved fluorescence

microscopy [1], light sheet fluorescence microscopy [2], cryo-electron

microscopy [3] and other technologies provide information about cell and

tissue structures over a broad range of scales. Multiplexed information about

intracellular processes is, for instance, provided by matrix-assisted laser

desorption/ionization imaging mass spectrometry [4] and mass cytometry [5].

These imaging data are analysed using tailored image processing pipelines to

quantify properties of interest (see [6] and references therein). This provides

detailed information about the imaged system, e.g. biological tissues. Yet,

mechanisms often remain elusive; for instance, it is usually not evident from
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Figure 1. Illustration of data-driven modelling in image-based systems biology. (a) Sequential analysis relying on image processing and extracted features. (b)
Integrated modelling approach combining image processing, information retrieval and modelling in a single step. (Online version in colour.)
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imaging data how the observed spatial patterns are established

and controlled. However, such insights are necessary to improve

the understanding of complex biological systems [7,8].

Model-based approaches have been introduced to unravel

the mechanisms underlying the spatio-temporal organization

of tissues [9,10]. Partial differential equation (PDE) models

and agent-based models which capture static and dynamic

properties of tissue-scale images have been developed

[10–13]. These models can describe the underlying biological

mechanism and allow for the evaluation of competing

biological hypotheses.

Modelling and hypothesis testing, however, mostly

employ qualitative information [10] or summary statistics

[12–15]. Qualitative information is used due to limited

image quality caused, among other factors, by limitations

of labelling methods. Summary statistics are considered as

they are easy to assess using available processing pipelines.

Although qualitative abstractions and summary statistics pro-

vide only a fraction of the information encoded in the images,

they are widely used. A key reason is the use of sequential

analysis approaches (figure 1a) which exploit established

image processing pipelines.

In this paper, we propose an integrated modelling

approach for imaging data (figure 1b). The proposed frame-

work combines image processing with the mechanistic

description of the biochemical process using PDE models,

instead of performing these steps sequentially. To account

for outliers and structured measurement noise, e.g. signals

generated by biological processes not considered in the

model, we employ concepts from robust regression [16,17].

The integrated modelling approach facilitates the simultaneous

assessment of the quality of the imaging data, the filtering of

outliers and artefacts, and the mechanistic modelling of the

biological process. As this integrated framework circumvents

preprocessing and the extraction of summary statistics, it

avoids a potential information loss and provides a tailored,

unbiased filtering. By avoiding the tuning of parameters in

the preprocessing, the approach furthermore simplifies the

workflow and promises an improved reproducibility of

analysis results.
We implemented the integrated modelling approach and

assessed it by studying artificial and experimental data for

the formation of gradients of the chemokine (C-C motif )

ligand 21 (CCL21), a process relevant in the immune

response. Using this process, we demonstrate the loss of

information associated with the use of summary statistics as

well as the influence of structured noise on estimation results.

Subsequently, we demonstrate how the integrated modelling

framework facilitates the direct use of noise-corrupted whole

imaging data. We exploit the integrated framework to gener-

ate novel hypotheses regarding the underlying biochemistry,

which are partially validated using data from the literature.
2. Methods
In this paper, we present an integrated modelling approach for

tissue-scale imaging data. In the following, we outline the con-

sidered modelling approaches, data types, and inference methods.

2.1. Mechanistic model of spatio-temporal biological
processes

We consider spatio-temporal biological processes described by

reaction–diffusion equations—a class of PDE models. Reaction–

diffusion equations are widely used in systems and computational

biology, for instance, to capture the dynamics of intra- and extra-

cellular substances [18].

The state variable u(x, t) [ Rn of the PDE model is the abun-

dance of n chemical substances (e.g. their concentrations) at time

t and spatial location x [ V. The state is defined on the modelled

spatial domain V and changes due to diffusion and biochemical

reactions. The Laplace operator is denoted by 4, the matrix of

diffusion coefficients by D(u) and the reaction term by f (u(x, t),
x, u). The unknown parameters in the matrix of diffusion coeffi-

cients and the reaction term are denoted by u. This yields the

PDE model

@tu(x, t)�D(u)4u(x, t) ¼ f (u(x, t), x, u), (2:1)

with initial condition u(x, 0) ¼ u0(x, u) and boundary conditions

defined on the boundary @V of the spatial domain V, e.g.
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Dirichlet or Neumann boundary conditions. The initial condition

and boundary conditions can also depend on the unknown par-

ameters u. Unknown parameters are, for instance, binding

affinities and degradation rates.
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2.2. Statistical modelling of imaging data
We consider standard image acquisition technologies which pro-

vide intensity averages over pixels (or voxels). The spatial

domain of the jth pixel is denoted by Vj, j ¼ 1, . . ., np. This

yields the observation model

yij(t) ¼
ð
Vj

hi(u(x, t), x, u) dx, i ¼ 1, . . . , ny, j ¼ 1, . . . , np,

(2:2)

in which yij(t) denotes the average intensity of the ith observa-

ble, i ¼ 1, . . ., ny, in pixel j at time point t. The function hi

describes the dependence of the ith observable, e.g. the inten-

sity of a fluorescence probe, on the state variables. As multiple

labellings can be combined, e.g. fluorescence probes with

different frequency spectra, the number of observables per

pixel, ny, can be larger than one. For biological systems

which equilibrate fast, only the stationary distribution might

be observed (t!1). A typical observation in imaging is the

measurement of the relative abundance of a biochemical

species, yielding hi(u(x, t), x, u) ¼ s(ul(x, t) þ b) with scaling

factor s, background b and concentration ul(x, t) of the lth
biochemical species. Saturation effects, unequal elimination,

cross-reactivity of antibodies and many other effects can be

modelled using the function h.

The intensity values of individual pixels, yij(tk), are corrupted

by experimental noise, providing the measured pixel intensities

ym
ijk . In many applications, the measurement noise is assumed

to be independent and identically distributed, e.g. multiplicative

log-normally distributed measurement noise,

ym
ijk ¼ yij(tk) � eijk with eijk � logN (0, s2

ijk), (2:3)

with time points tk, k ¼ 1, . . ., nk. However, the assumption of

independent and identically distributed measurement noise is

often violated as additional structure is present [19,20]. Label-

ling artefacts or other biological processes which alter the

measured intensities result in spatially structured noise. Adja-

cent pixels exhibit often similar noise levels and regions of

high noise might also possess particular shapes. While this is

known, a noise model capturing these effects is currently not

available. In the following sections, we propose methods to

address such structured noise.

The collection of all imaging data is in the remainder denoted

by D. Furthermore, the unknown observation parameters, i.e.

scaling and background, and noise levels are included in the

parameter vector u.
2.3. Reconstruction of biological processes from
imaging data

To achieve a mechanistic understanding of spatio-temporal bio-

logical processes, we want (i) to infer the parameters of model

(2.1) and (ii) to perform model selection to compare competing

hypotheses. To address these problems, we consider three

alternative statistical approaches:

— Direct approach: The presence of outliers is disregarded and the

model is fitted to the data using standard noise models (2.3).

— Filtering approach: The measurement data are preprocessed

to detect and remove outliers. The model is fitted to the

remaining data using standard noise models (2.3).
— Integrated modelling approach: A statistical model for the outlier

distribution is formulated. From outlier and noise distribution

a likelihood function is derived and used to simultaneously fit

the model and quantify the noise level.

In the following, these approaches are described in further detail.
2.3.1. Direct approach
The likelihood of observing the imaging data D given the par-

ameter vector u is

p(Dju) ¼
Yny

i¼1

Ynk

k¼1

Ynp

j¼1

pn(ym
ijkjyij(tk)), (2:4)

in which pn(ym
ijkjyij(tk)) denotes the noise model for an individual

pixel and yij(tk) denotes the parameter-dependent solution of the

model (2.1) and (2.2) [21]. For multiplicative log-normally

distributed measurement noise (2.3), we obtain

pn(ym
ijkjyij(tk)) ¼ 1ffiffiffiffiffiffi

2p
p

sijkym
ijk

exp � 1

2

log ym
ijk � log yij(tk)

sijk

 !2
8<
:

9=
;:
(2:5)

The likelihood function (2.4) is formulated using the measured

intensity values of individual pixels, ym
ijk , as data points. Alter-

natively, summary statistics of the pixel intensities can be

considered. In the application of gradient formation discussed

later, the average intensity as a function of the distance from

the nearest vessel is used [22].
2.3.2. Filtering approach
To reduce the impact of outliers and structured noise on the esti-

mation results, image data are preprocessed. We consider

filtering methods which provide an index set of filtered pixels,

F ik , {1, . . . , np}, for the individual observables yi and time

points tk. These index sets are masks for regions to be excluded

from the objective function. Accordingly, the likelihood is only

evaluated for the unfiltered pixels, meaning that for the index j
in (2.4) only the set j [ {1, . . . , np} n F ik is considered. Appro-

priate filtering should render parameter estimation more robust

against outliers and structured noise.

Filtering can be performed using a variety of algorithms,

most of which possess several tuning parameters which have to

be chosen manually or in a semi-automated fashion. The choice

of algorithm and tuning parameters depends on the type

of structured noise. To remove bright spots from the image,

maximally stable extremal region (MSER) filtering [23] can be

employed. MSER filtering is based on a water shedding mechan-

ism and has been used successfully in a series of studies (e.g.

work by Buggenthin et al. [24]).
2.3.3. Integrated modelling approach
We propose to circumvent the selection of filtering algorithms

and the manual tuning of filtering parameters by integrating fil-

tering and parameter estimation. Our integrated modelling

approach requires a sufficiently flexible statistical model, ideally

accounting for standard measurement noise, structured noise

and outliers as well as spatial correlation structure (see §2.2).

In this study, we follow ideas from robust regression, i.e. e-con-

tamination models [25], to address these needs. We assume that

the intensity measurement for each pixel is with probability wo

an outlier/artefact generated by structured noise and with prob-

ability 1 2 wo no outlier. The outliers are assumed to be

distributed according to the density function po while the

remaining points are distributed according to the standard
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noise model (2.3). This yields the likelihood function

p(Dju) ¼
Ynk

k¼1

Yny

i¼1

Ynp

j¼1

((1� wo)pn(ym
ijkjyij(tk))þ wopo(ym

ijkjyij(tk))):

(2:6)

Different outlier distributions can be used given the biological

application and the imaging technique. Here, we consider the

outliers to be log-normally distributed with location parameter

log po(ym
ijkjyij(tk)þ mo and scale parameter so,

po(ym
ijk jyij(tk))¼ 1ffiffiffiffiffiffi

2p
p

soym
ijk

exp �1

2

logym
ijk� ( logyij(tk)þmo)

so

 !2
8<
:

9=
;:

(2:7)

The parameters wo, mo and so ensure the flexibility of the statisti-

cal model. This can reduce the bias introduced by measurement

artefacts compared to using only the standard noise models

(wo ¼ 0). The inclusion of these additional parameters in the par-

ameter vector u allows for the simultaneous calibration of the

models for the biological and the measurement processes.

Conceptually, integrated statistical modelling weights the

impact of a data point on the model fit, while the standard filter-

ing approach employs a hard cut-off. The weighting depends

on the model–data agreement in different regions of the

image, providing a context-dependent filter.
2.4. Parameter estimation and model selection
The analysis of measurement data D using the different statistical

approaches requires the estimation of the parameters

u [ Q # Rnu . For this, we use maximum-likelihood (ML) esti-

mation. The ML estimate of the parameter vector, û , is the

solution of the PDE-constrained optimization problem

maximize
u[Q

log p(Dju)

subject to ð2:1Þ and ð2:2Þ

9=
; (2:8)

with log-likelihood function log p(Dju). The log-likelihood

function varies between approaches while the models of the

biological process (2.1) and the measured intensities (2.2)

remain the same.

Optimization problem (2.8) is usually nonlinear and can pos-

sess multiple local optima. To determine the global optimum, we

employ a multi-start local optimization method. The starting

points are sampled from Q using latin hypercube sampling. For

local optimization, an interior point algorithm is used, which is

supplied with gradients computed using forward sensitivity

equations. This multi-start approach is computationally efficient

and reliable for a broad range of applications [26,27]. Instead of

multi-start local optimization, also evolutionary and genetic algor-

ithms [28], particle swarm optimizers [29] or hybrid optimizers

[30] could be employed. For a comprehensive survey and evalu-

ations, we refer to the work of Moles et al. [31] and Raue et al. [26].

The parameter estimates are usually subject to uncertainty

due to limited and noise-corrupted data. We determine the

uncertainty of the estimated parameters using structural and

practical identifiability analysis. For practical identifiability, pro-

file likelihoods are computed [32,33], which provide parameter

confidence intervals to particular confidence levels. For profile

likelihood calculation, we use the methods recently described

for parameter estimation problems with PDE constraints [34].

Biological processes are still poorly understood and there are

usually competing hypotheses giving rise to different model

structures. To assess the plausibility of hypotheses, we use the

Bayesian information criterion (BIC) [35]. The BIC accounts for

model–data mismatch and the complexity of the model, mea-

sured by the negative log-likelihood and number of parameters
nu, respectively. It is defined as

BIC ¼ �2 log p(Dju)þ nu log (nD), (2:9)

with number of data points nD ¼ nk � ny � np. Models with lower

BIC values are preferable and a difference of greater than or equal

to 10 is considered as substantial [36]. Model comparison using

BIC and other statistical approaches assumes that all models con-

sider the same dataset. As the filtering approach excludes data

points, a comparison between approaches using model selection

is not possible. We use model selection merely to compare model

alternatives fitted using the same statistical approach.

2.5. Implementation
All methods are implemented in Matlab and available as elec-

tronic supplementary material, Code S1. The simulation of the

PDE model is implemented using the Partial Differential

Equation Toolbox of Matlab. The multi-start local optimization

exploits the Matlab routine fmincon.m. Parameter estimation

and uncertainty analysis are performed using the Parameter ESti-

mation TOolbox (PESTO) available on GitHub (https://github.

com/ICB-DCM/PESTO) [37].
3. Results
In the following, we will illustrate the reliability achieved

using whole imaging data and spatial summary statistics,

and compare direct, filtering and integrated modelling

approaches for statistical inference from imaging data. For

this purpose, we studied artificial imaging data, for which

the ground truth is known, as well as experimental imaging

data, from which new biological insights are gained.

3.1. Biological process
We studied the distribution of CCL21 in dermal interstitium

(figure 2a). CCL21 gradients facilitate the delivery of antigens

to the lymph nodes by guiding mature dendritic cells (figure

2b) [38]. Inside the lymph nodes, mature dendritic cells pre-

sent the antigens to T-cells, initiating the adaptive immune

response.

The formation of the CCL21 gradients and their biological

functions are relatively well understood and experimentally ver-

ified [22]. It is known that soluble chemokine CCL21 is secreted

at the lymphatic vessels, and it is assumed that from there it dif-

fuses into the dermal interstitium. Furthermore, it has been

established that CCL21 binds to heparan sulfate proteoglycan,

resulting in immobilized CCL21 which guides the migratory

dendritic cells. However, the quantitative properties of the indi-

vidual processes and the detailed mechanisms remain to be

analysed. In addition, the available imaging data (figure 2c)

are corrupted by structured noise (see discussion below), ren-

dering the analysis challenging and the process well suited for

the evaluation of the proposed approaches.

3.2. Mathematical model and experimental data
We modelled the dynamics of the concentrations of soluble

CCL21 u1(x, t), of heparan sulfate u2(x, t) and of heparan

sulfate–CCL21 dimers u3(x, t) by a system of PDEs [21]

with the two-dimensional (2D) spatial coordinate

x [ V , R2. The PDE model accounted for

— the secretion of soluble CCL21 with rate a from L lym-

phatic vessels,

https://github.com/ICB-DCM/PESTO
https://github.com/ICB-DCM/PESTO
https://github.com/ICB-DCM/PESTO
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— the diffusion of soluble CCL21 with diffusion coefficient

D,

— the degradation of soluble CCL21 with rate constant g,

— the binding of soluble CCL21 to heparan sulfate with rate

constant k1, and

— the unbinding of CCL21 from heparan sulfate with rate

constant k21,

and we assumed no flux conditions at the boundaries. The

spatial location of the lth lymphatic vessel is marked by the

indicator function ql(x), which is zero outside and one inside

the lymphatic vessel. This yields the spatial domains covered

by lymphatic vessels, Vl ¼ fx [ V j ql(x) ¼ 1g, l ¼ 1, . . ., L,

which we refer to as lymphatic vessel masks. Mathematically,

we obtained the evolution equation
@u1(x, t)
@t

�D4u1(x, t)

¼ a
X

l

ql(x)� k1u1(x, t)u2(x, t)þ k�1u3(x, t)� gu1(x, t)

@u2(x, t)
@t

¼�k1u1(x, t)u2(x, t)þ k�1u3(x, t)

@u3(x, t)
@t

¼ k1u1(x, t)u2(x, t)� k�1u3(x, t)

9>>>>>>>>>>>>=
>>>>>>>>>>>>;
(3:1)
on x [ V with initial conditions

8x [ V: u1(x, 0) ¼ 0, u2(x, 0) ¼ s0(x) and u3(x, 0) ¼ 0, (3:2)

and boundary conditions

8x [ @V:
@u1

@n
¼ 0: (3:3)

@V denotes the boundary of V and n denotes its normal vector.

As heparan sulfate u2(x, t) and heparan sulfate–CCL21 dimers

u3(x, t) are not subject to spatial transport, there are no respect-

ive boundary conditions. The heparan sulfate concentration

was assumed to be homogenous, s0(x) ¼ S0, unless mentioned

otherwise. Furthermore, s0(x) denotes the overall concen-

tration of heparan sulfate, including heparan sulfate

proteoglycan.

Weber et al. [22] succeeded in measuring the in vivo gradi-

ents of immobilized CCL21 u3(x, t) in mouse ear sheets by

immunostraining. Therefore, mouse ear sheets were incu-

bated with CCL21 antibody and imaged using confocal

microscopy. This yielded the 2D images depicted in figure

2c. As the experiments were performed in unperturbed

tissue, the images provide the equilibrium distributions.

Accordingly, the experimental readout is

y j ¼
ð
Vj

h(u(x), x, u) dx, (3:4)
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with pixel index j, observation function h(u(x), x, u) ¼

s(u3(x) þ b), and u(x) solving (3.1) with @ui/@t ¼ 0, i ¼ 1,

. . ., 3. The background b models the spatially homogeneous

unspecific binding of the CCL21 antibody. The measured

pixel intensities are semi-quantitative, requiring the intro-

duction of the scaling constant s. Scaling constant and

background were estimated along with the kinetic par-

ameters. In addition to immobilized CCL21, Weber et al.
[22] assessed the lymphatic vessel masks Vl, l ¼ 1, . . ., L, in

the same mouse ear sheets by straining the lymphatic

vessel endothelial hyaluronan receptor 1, providing the

basis for the simulation of realistic tissue structures. We

assumed that the scaling s and the lymphatic vessel masks

Vl, l ¼ 1, . . ., L, differ between images whereas background

b and mechanistic parameters remain identical. For details

on the experimental set-up, we refer to the Material and

Methods section of [22].

As the absolute concentration of CCL21 was unknown

and merely the equilibrium distribution of immobilized

CCL21 was measured, the parameters (a, D, g, k1, k21, S0,

s, b)T were structurally non-identifiable (see [39] for defi-

nition). To circumvent this, we reformulated the model in

terms of the parameters (D/g, (ak1)/(gk21), s S0, b)T. For

details on the reparametrization, we refer to electronic

supplementary material, text S2.

The visual inspection of the imaging data revealed a high

level of immobilized CCL21 associated with the lymphatic

vessel, which was in agreement with the model. However,

there were also high intensity spots outside the lymphatic

vessels (figure 2c), which were not explained by the aforemen-

tioned processes. As in fixed tissues the immunostaining

performed by Weber et al. [22] labels intracellular and extra-

cellular CCL21 [40], these spots are most probably caused

by previously reported CCL21 expressing cells [41]. As intra-

cellular CCL21 does not contribute to the extracellular

distribution of CCL21 described by model (3.1), the spots

should be considered as structured noise and disregarded in

the parameter estimation. This rendered the modelling pro-

blem appropriate for the evaluation of the integrated

modelling approach.

3.3. Integrative modelling approach outperforms
conventional methods on artificial experimental
data

In this section, we assess the properties of different image-

based modelling using artificial imaging data. This allows

us to evaluate the accuracy with which the true parameter

vector is recovered using (i) whole imaging data versus a

summary statistic and (ii) direct approach versus filtering

approach versus integrated modelling approach.

3.3.1. Generation of artificial data
We derived artificial imaging data closely resembling the

experimentally observed images to ensure a realistic test scen-

ario. The spatial structure of the images was conserved by

using the measured lymphatic vessel masks and selecting

model parameters which roughly reproduced the experimen-

tally observed CCL21 distributions. The employed

parameters are provided in electronic supplementary

material, text S2 and table S1. The structured measurement

noise was captured by extracting relevant features of the
high-intensity spots. Firstly, the high-intensity spots were

detected using MSER filtering [23] using an implementation

by Nistér & Stewenius [42]. Secondly, the identified spots

were analysed to obtain the distributions of spot shape par-

ameters and sizes (figure 3a). Given these distributions, the

artificial data were obtained by simulating the model for

the selected parameters and adding a varying number of

spots with properties sampled from the measured distri-

bution. For simplicity, the spots were assumed to be

ellipsoidal. A representative artificial image is depicted in

figure 3c. While the artificial data do not capture the full com-

plexity of experimental data, they facilitate the evaluation of

the approaches.

In addition to the artificial imaging data, we generated

artificial summary statistics. Here, we considered the

distance-dependent average intensity of immobilized CCL21.

To calculate this summary statistic for the artificial data, the

minimal distance to the next lymphatic vessel is computed

for each pixel. Subsequently, the intensity values of all pixels

with the same distance are averaged. The particular summary

statistic was chosen because (1) it was used in the paper by

Weber et al. [22] to analyse the considered dataset and (2)

it is similar to spatial summary statistics used in other

image-based modelling projects [12,14,43,44].

3.3.2. Detailed spatial information improves estimation accuracy
Given the artificial datasets, we first asked how much infor-

mation the raw imaging data contain in comparison to the

summary statistic computed from them. To study this, we

employed the 2D model (3.1), as well as a one-dimensional

(1D) model approximating the distance-dependent average

CCL21. The 1D model was included as the use of summary

statistics and simplified process description often goes hand

in hand [12–14]. Overall, we considered three set-ups:

(i) Fitting of the distance-dependent average CCL21 intensity

using the 1D model.

(ii) Fitting of the distance-dependent average CCL21 using

the 2D model accounting for the measured vessel

topology.

(iii) Fitting of the CCL21 imaging data using the 2D model

accounting for the measured vessel topology.

The 1D model employed in set-up (i) is a simplified version

of model (3.1) with x [ [0, L] denoting the distance from

the lymphatic vessel. The secretion at the lymphatic vessel

(at x ¼ 0) is modelled via the boundary condition @u1/

@xjx¼0 ¼ a. The diffusion and reaction dynamics stay the

same. For details on the 1D model, we refer to the electronic

supplementary material, text S2. Set-ups (ii) and (iii)

employed model (3.1) with the measured lymphatic vessel

mask. To study the relevance of detailed spatial information,

we considered artificial data without outliers and structured

noise but with independent and identically distributed

measurement noise, i.e. multiplicative log-normally distribu-

ted measurement noise. The signal-to-noise ratio, which is the

mean signal intensity divided by the standard deviation of

the noise, was approximately 6.

As the considered artificial data contain neither outliers

nor structured noise, we employed the direct approach for

statistical modelling. Parameter optimization and uncertainty

analysis for set-ups (i)–(iii) were performed using multi-start

local optimization and profile likelihood methods,
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respectively. All parameters were constrained to a regime

spanning at least four orders of magnitude (see electronic

supplementary material, text S2, table S1).

The analysis of a representative artificial dataset revealed

that for set-ups (i) and (ii) a good agreement with the sum-

mary statistic was achieved (figure 4a,b), while for set-up

(iii) a good agreement with the imaging data was obtained

(figure 4c). Indeed, although the artificial data were gener-

ated using a 2D model with a (non-trivial) experimentally

observed lymphatic vessel geometry, the 1D model provides

an accurate fit of the summary statistics for all but small dis-

tances from the vessel. The estimated parameters in set-up (i)

were however far from the true parameters. This was among

other reasons due to practical non-identifiabilities of the par-

ameters (ak1)/(gk21) and S0 (figure 4d ). While the individual

parameters are non-identifiable, their product is practically

identifiable. The same phenomenon was observed for set-

up (ii) (figure 4d,e), implying that modelling the underlying

spatial structure did not improve the information extraction

substantially. By contrast, for set-up (iii), all parameter esti-

mates were close to the true parameter and practically

identifiable (figure 4d ). Thus, not the summary statistic but

the whole imaging data should be used as they allow for

more accurate parameter estimation. While the use of more

informative summary statistics might resolve the problems,

it is not clear whether such summary statistics exist and

how they can be constructed a priori.

3.3.3. Integrated modelling approach yields more accurate and
robust results than conventional methods

As whole imaging data are strongly influenced by outliers

and structured noise, we compared the accuracy of parameter

estimates obtained using the direct approach, the filtering

approach and the integrated statistical approach. We con-

sidered artificial imaging data with 0 to 620 bright spots

and evaluated 30 datasets to obtain robust statistics.

Our analysis revealed that for artificial datasets with a large

number of spots, fits obtained using the direct approach over-

estimated the concentration of immobilized CCL21 outside the
spots while filtering and the integrated approach provided

consistent results (figure 5a). Apparently, the direct approach

could not explain the structured noise and the bimodal distri-

bution of the residual r ¼ ( log ym � log y(û ))=s (figure 5b). The

filtering of points and the integrated modelling resulted in a

more consistent statistical description.

The analysis of the estimation indicated that for low num-

bers of spots, the filtering approach and the integrated

modelling approach yielded almost the same results as without

spots while the direct approach already possessed a bias and a

large variance (figure 5c). For medium and high numbers of

spots, the integrated modelling yielded the smallest estimation

error. The improvement of the integrated modelling approach

over the alternative approaches was statistically significant

( p-value , 0.01; Welch’s paired-sample one-sided t-test) for

(ak1)/(gk21), S0 and s2 for numbers of spots greater than or

equal to 160. This was the case although (a) the filter approach

employed the same MSER filter settings used to obtain the spot

statistics—this parameter setting appeared to be ideal—and (b)

the integrated modelling approach did not account for the

spatial structure of measurement noise. Indeed, the integrated

modelling approach yielded almost unbiased results. Thus,

integrated noise modelling provided robust parameter esti-

mates from imaging data corrupted with the considered type

of structured noise.

In conclusion, our analysis of artificial data suggests that

mechanistic modelling of spatial processes should be based

on detailed imaging data rather than some spatial summary

statistic with unknown information content. Additionally, fil-

tering but even more so the proposed integrated modelling

approach can provide robust estimates in the presence of

structured noise and outliers.
3.4. Integrative modelling approach predicts lymphatic
vessel-dependent heparan sulfate concentration

Given the positive results for artificial data, we used the inte-

grated modelling approach on whole imaging data to analyse

experimental data for CCL21 gradient formation. Among
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other things, we asked whether the current assumption of

uniform heparan sulfate concentration is appropriate or

alternative mechanisms need to be considered.

3.4.1. Model-based image analysis reveals limitation of a
literature-based model

We employed model (3.1) with uniform heparan sulfate concen-

tration, s0(x) ¼ S0, to describe the imaging data collected by

Weber et al. [22]. This model was based on available information

in the literature (e.g. [22]) and suggested by experts in the field.

As the no-flux boundary conditions (3.3) are presumably not

precisely met in the biological system, we disregarded pixels

which are within 40 mm of the boundary for the calculation of

the objective function (2.6). This depth was chosen based on pre-

liminary estimates for the diffusion length from the summary

statistic (electronic supplementary material, text S2, figure S1)

and retrospectively validated given the fitting results.

The fitting results for the model with uniform heparan

sulfate concentration for a representative image with multiple

lymphatic vessels are depicted in figure 6. For this image, the

comparison of experimental data and the fitting results

(figure 6b,c) revealed that—as expected—bright spots outside

lymphatic vessels are not captured. However, there were also

larger regions in the image with substantial disagreement. In

particular, in lymphatic vessels 1 and 2, the concentration of

immobilized CCL21 was overestimated. Accordingly, the
residuals were not uncorrelated but show a clear spatial struc-

ture (figure 6d ), resulting in a pronounced tail in the residual

distribution (figure 6e). This indicated that the model with

uniform heparan sulfate concentration might be too simple.
3.4.2. Mathematical modelling supports hypothesis of vessel-
dependent heparan sulfate concentration

As the detailed analysis of the whole imaging data revealed

limitations of the literature-based model, we evaluated poss-

ible model refinements. In addition to the hypothesis

underlying the model presented in the previous section:

(1) uniform heparan sulfate concentration, s0(x) ¼ S0,

we considered two alternative hypotheses:

(2) Different heparan sulfate concentrations in lymphatic

vessels and the tissue, s0(x) ¼ ST þ (SL � ST)
P

l ql(x).

(3) Different heparan sulfate concentrations in individual

lymphatic vessels and the tissue, s0(x) ¼ ST þ
P

l
(SL,l � ST)ql(x).

These hypotheses yield models 1–3 which are illustrated in

figure 7a. We employed the integrated modelling approach

to train the models 1–3 on all 9 images recorded by Weber

et al. [22], namely image 1 to image 4 and image 12 to



distance to nearest

lymphoid vessel (mm)

0.010

0.015

0.020

0.025

0.030

data
model 1
model 2
model 3

0

0

20

2010

0 20 30 40 5010

40 60 80 100
sorted optimizer runs

0

1

2

3

4

lo
g-

lik
el

ih
oo

d
(×

10
6 )

3.40

3.41

3.42

3.43

3.44
3.45

×106

global optima

local
optima

zoom
in

cr
ea

si
ng

 g
oo

dn
es

s 
of

 f
it

1256.50

 776.53

 463.99

  –3.46

1099.80

 344.57

1006.16

 339.11

3656.58

4331.78

 image 1

 image 2

 image 3

 image 4

 image 12

image 13

image 14

image 15

image 16

all

model 1 model 2
select

 2741.07

14911.97

 2124.50

10593.81

 1179.67

 1798.52

 2370.13

  556.01

 3741.26

52383.67

model 1 model 3
select

 1484.57

14135.43

 1660.51

10597.27

79.87

 1453.95

 1363.97

216.90

84.68

48051.89

model 2 model 3
select

experimental data simulation of model 3

model 1
with unifrom heparan
sulfate concentrations 

S0

model 2
with different heparan 

sulfate concentrations in 
lymphoid vessels and

tissue 

model 3
with different heparan 

sulfate concentrations in
individual vessel and tissue 

SL,1 SL,2 SL,3

<10–2

>10–1

fl
uo

re
sc

en
ce

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

fl
uo

re
sc

en
ce

 in
te

ns
ity

 (
ar

b.
 u

ni
ts

)

bright spots

intensity difference intensity difference

difference due to spot
filtering by integrated
modelling approach 

no bright spots
(as captured by error model)

SL

ST
ST

(e)

(b)

(a)

(c)

(d )

Figure 7. Comparison of three different hypotheses for the CCL21 distributions. (a) Schematics of models 1 – 3. (b) Multi-start optimization results for the model
alternatives, indicating a unique global optimum for each model. (c) Results of model comparison using BIC for each image and the overall fit. The differences of BIC
values for different models are colour-coded, with each model being assigned one colour (model 1, purple; model 2, cyan; and model 3, red). (d) Experimental data
for the spatial distribution of immobilized CCL21 and simulation results for model 3. (e) Experimental data for the distance-dependent intensity of immobilized
CCL21 and simulation results for models 1 – 3.

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180600

10
image 16. The optimization converged robustly (figure 7b)

and the fitting results for different images are provided in

electronic supplementary material, text S2, table S2–2.

For the individual images as well as for the overall data-

set, model 3 was substantially better than models 1 and 2

(figure 7c). Model 3 provided a good agreement with the

imaging data (figure 7d ). Furthermore, the prediction of

differences in the heparan sulfate concentrations between

individual lymphatic vessels is consistent with experimental

data indicating different levels of extracellular CCL21 in col-

lecting and initial lymphatics [40]. Thus, our model-based

analysis provided a mechanistic hypothesis which we were

able to partially validate using published results.

To conclude, in this section, we verified the applicability of

the integrated modelling approach to experimental imaging
data including structured noise. We employed the statistical

approach for model-based data analysis and hypothesis testing,

thereby providing new insights into the CCL21 gradient for-

mation and dendritic cell guidance. Notably, all models

achieved an equally good fit for the summary statistic (figure

7e). This implies that the information content of the considered

summarystatistic is too limited for model selection and confirms

that models should be rather based on the whole imaging data.

4. Discussion
Imaging data are widely used to assess biological processes. In

many studies, the richness of imaging data is, however, disre-

garded and they are merely used to derive and evaluate

simple summary statistics. We illustrated that this can result in
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a considerable loss of information. While summary statistics are

often sufficient to draw qualitative conclusions, our analyses

suggest that quantitative mechanistic models should be trained

using whole imaging data—wherever possible—to exploit their

richness. Accordingly, quantitative mechanistic models of

spatio-temporal processes should be used instead of simplified

models, e.g. 1D models, describing summary statistics. This

avoids a loss of information and can improve identifiability.

The model-based analysis of imaging data facilitates the

unravelling of novel mechanisms and the comparison of com-

peting hypotheses [9,10,13]. However, this is often demanding

and error-prone if structured noise and outliers are present. To

address this problem, we introduced an integrated approach

for the statistical and mechanistic modelling of imaging data.

The integrated modelling approach employs a flexible statisti-

cal model with additional parameters. This enables it to cope

with intensity distributions arising in the presence of struc-

tured noise and outliers. Conceptually, the integrated

modelling approach can be interpreted as a direct approach

with a more suited model of the measurement noise. For the

considered problems, the integrated modelling approach

yields similar or better results than conventional sequential

methods. Even without knowledge of the precise structure of

the noise, the method was able to reduce estimation bias and

variance compared to direct and filtering approaches, provid-

ing more reliable parameter estimates. The finding that the

integrated modelling approach outperforms the filtering

approach, which uses information about spot properties, is

very promising and hints towards its true potential.

To evaluate the properties of the integrated modelling

approach, we studied CCL21 gradient formation. We estab-

lished the first quantitative mathematical model of CCL21

gradients measured in tissue. Using experimental data, we

quantified the estimation error of different models and per-

formed model selection. Among other results, we found

indications that the heparan sulfate concentration is vessel

dependent. This finding relies on the mechanistic description

of the imaging data we proposed. Simple statistical models

are not sufficient as the heparan sulfate concentration is not

observed directly. The vessel-dependence can influence the

gradient formation and cell guidance and might be relevant

in some disease conditions [45]. Furthermore, it demonstrates

that integrated modelling approaches might reveal novel infor-

mation from available data and can help to unravel causal

factors. While CCL21 gradient formation is a specific example,

the principle of sugar-mediated immobilization in gradient

formation is observed for many (extracellular) signalling mol-

ecules, including growth factors, cytokines and selected

hormones. This renders the proposed model and analysis

approach interesting for a large number of research projects.

In this study, we proposed a simple statistical model for out-

liers and structured noise, and used it for the inference of PDE

models. In principle, the statistical model could be used in com-

bination with other types of mechanistic spatio-temporal
models, including agent-based models and hybrid discrete–

continuum models [13]. A further improvement of the inte-

grated modelling approach could be achieved by considering

more tailored statistical models. The correlation of noise in

neighbouring pixels could be considered and even sophisticated

segmentation methods, e.g. graph-based segmentation

approaches [46], might be incorporated in a likelihood frame-

work. Extension in this direction and towards image

regression could improve robustness and applicability further.

In addition, the use of time series data—which is supported

by the approach—will facilitate the extraction of dynamic

features and improve structural and practical identifiability.

As an alternative to the proposed frequentists method,

Bayesian methods could be used to incorporate prior knowl-

edge on the model parameters. In recent years, approximate

Bayesian computation (ABC) methods [47,48] became popu-

lar and were also used to model spatial processes [13,49].

However, ABC methods employ summary statistics and we

are not aware of a study using whole imaging data, which

proved necessary in our analysis. Furthermore, ABC methods

require accurate noise models [50], such as a simple statis-

tical model for outliers and structured noise, and are often

computationally demanding.

In conclusion, mechanistic understanding and rigorous

hypothesis testing in biology require the formulation of math-

ematical and computational models. For cellular processes, this

led to the development of modelling and estimation toolboxes,

e.g. Data2Dynamics [51], which support the simultaneous

inference of kinetic parameters and measurement noise. We

illustrated that such a simultaneous inference is also feasible

for the case of spatial models, which are usually more challen-

ging. We illustrated parameter optimization, uncertainty

analysis and model selection for PDE models of noise-cor-

rupted imaging data. We expect that the proposed concept

and algorithms are well suited for a broad range of appli-

cations, including scenarios with time-resolved

measurements and time-dependent domains [10]. This is also

facilitated by the availability of the Matlab code, simplifying

reuse and extensions of the methods. Accordingly, this study

will contribute to the mechanistic description of spatial

processes.
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