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Abstract 

Background— Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for 

normal heart function. Genome-wide association studies (GWAS) have identified more than a dozen 

common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-

frequency variants also contribute to PR interval heritability.  

Methods and Results—We performed large-scale meta-analysis of the PR interval that included 83,367 

participants of European ancestry and 9,436 of African ancestry. The Illumina HumanExome BeadChip 

examined both common and rare variants.  We identified 31 genetic loci that were significantly 

associated with PR interval after Bonferroni correction (P<1.2x10-6), including 11 novel loci that have not 

been reported previously. Many of these loci are involved in heart morphogenesis. In gene-based 

analysis, we found that multiple rare variants at MYH6 (P = 5.9x10-11) and SCN5A (P=1.1x10-7) were 

associated with PR interval. SCN5A locus also was implicated in the common variant analysis, whereas 

MYH6 was a novel locus. 

Conclusion—We identified common variants at 11 novel loci and rare variants within two gene regions 

that were significantly associated with PR interval. Our findings provide novel insights to the current 

understanding of atrioventricular conduction, which is critical for cardiac activity and an important 

determinant of health.  

 

Key Words: Electrocardiogram  PR interval  genetics  exome chip  epidemiology 
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Introduction 

Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart 

function. Abnormalities of atrioventricular conduction can cause significant morbidity, and have been 

associated with atrial fibrillation (AF),1,2 need for pacemaker implantation,2 cardiac malformations, and 

sudden death.3,4 Conduction from the sinus node through the atria, atrioventricular node, and His-

Purkinje fibers is readily evaluated from surface electrocardiogram (ECG), by measurement of the 

duration of PR interval. Despite the critical role that the cardiac conduction system plays in cardiac 

physiology and disease, the formation and regulation of the conduction system remains incompletely 

understood.  

Recent data indicate that cardiac conduction measurements are heritable5-7 and have a genetic 

basis.8-11 To date, genetic studies of PR interval have been relatively modest-sized largely European-

ancestry samples, and have implicated cardiac expressed ion channels, cardiac developmental 

transcription factors, signaling molecules, as well as novel pathways not previously known to be involved 

in cardiac conduction processes. Nevertheless, existing studies have focused on the role of common and 

predominantly noncoding genetic variants, which account for only a modest proportion of trait 

heritability.6  

To better understand the biological and potential clinical implications of genetic variation underlying 

cardiac conduction, there is a need to examine both common and rare variation underlying 

atrioventricular conduction in large, well-powered, multiethnic studies. Moreover, assessment of 

genetic variation that alters protein coding has the potential to more directly implicate genes involved in 

processes critical to cardiac conduction. We therefore sought to examine PR interval duration in relation 

to predominantly coding genetic variants, in large, multi-ethnic analyses using the exome chip. 

Methods 
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The data, analytic methods, and study materials will be made available to other researchers for 

purposes of reproducing the results, subject to Data Use/Sharing Agreements adopted by individual 

participating cohorts. The summary results from the current manuscript are available at the Broad 

Cardiovascular Disease Knowledge Portal (www.broadcvdi.org). 

 

Study participants 

The current project included participants of European ancestry (EA) from 22 studies: Age, 

Gene/Environment Susceptibility Study (AGES); Atherosclerosis Risk in Communities study (ARIC); British 

Genetics of Hypertension (BRIGHT); Massachusetts General Hospital Cardiology and Metabolic Patient 

cohort (CAMP); Cardiovascular Health Study (CHS); Erasmus Rucphen Family Study (ERF); Framingham 

Heart Study (FHS); Genes for Cerebral Hemorrhage on Anticoagulation (GOCHA); Genetic Regulation of 

Arterial Pressure In Humans in the Community (GRAPHIC); INTER99; Cooperative Health Research in the 

Region Augsburg (KORA); CROATIA-Korcula (KORCULA); LifeLines Cohort Study (LifeLines); Multi-Ethnic 

Study of Atherosclerosis (MESA); The Netherlands Epidemiology of Obesity (NEO); Rotterdam Study (RS); 

Generation Scotland: Scottish Family Health Study (GS:SFHS); Study of Health in Pomerania (SHIP); 

TwinsUK; Utrecht Health Project (UHP); Women's Health Initiative (WHI); and Young Finns Study (YFS).  

In addition, we included participants of African ancestry (AA) from five studies. These studies 

included ARIC, CHS, Jackson Heart Study (JHS), MESA and WHI.  

Institutional Review Boards or Ethics Committees approved study procedures at each contributing 

site. All participants provided written informed consent to participate in genetic research.  

 

Measurement of PR interval  

PR interval duration, in milliseconds, was measured from the onset of the P wave to the onset of the 

QRS interval for each cohort. The following exclusions were applied: extreme PR values (≤ 80 ms or ≥ 

http://www.broadcvdi.org/
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320 ms); second or third degree heart block; atrial fibrillation on baseline ECG; history of myocardial 

infarction, heart failure, or Wolff–Parkinson–White syndrome; pacemaker placement; use of class I or III 

blocking medications (ATC code prefix C01B); digoxin use (ATC code C01AA05) or pregnancy.  

 

Genotyping  

Genotyping was performed independently in each study using the Illumina Human Exome BeadChip 

(v1.0, 1.1, or 1.2). Data were called and cleaned according to CHARGE ExomeChip best practices.12 

Detailed information for each study regarding genotyping platforms, variant calling, and quality control 

metrics is shown in Supplementary Table 1. All studies used the same set of reference alleles to recode 

variants to ensure consistency.  

 

Statistical analyses  

Prior to association analysis, PR interval was first adjusted for covariates by taking residuals from a linear 

regression of PR on age, sex, height, body mass index, and RR interval. Each cohort additionally adjusted 

as necessary for cohort-specific variables, such as clinic sites, family structure, and population structure. 

To reduce sensitivity to extreme PR values, the residuals were inverse-normal transformed and used as 

the outcome for association testing.  

Because single-marker based analyses typically have low power to identify associations between 

rare variants and traits, we separated the analysis for common and rare variants based on minor allele 

frequency (MAF). Common variants were defined as those with MAF≥1%, and the remaining variants 

were defined as rare variants (MAF<1%). For each of the common variants, we evaluated its association 

with the transformed PR interval, and accounted for multiple testing by Bonferroni correction (P < 

0.05/42075=1.2x10-6). For the rare variants, we restricted analyses to nonsynonymous or splicing 

variants with MAF <1%, because such variants are more likely to be functional than synonymous or 
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more common variants. As we expect some rare variants may act in the same or opposite directions 

even in the same gene region,13 we used a modified version of the Sequence Kernel Association Test 

(SKAT),14 which avoids problems of signals cancelling out each other in burden test results. Many gene 

regions had few or no rare nonsynonymous or splicing variants. Monomorphic variants from each study 

also were reported in the cohort level results as they were used for the cumulative MAF computations in 

gene-based tests. Gene regions with a cumulative MAF of rare variants <1% were excluded, resulting in 

5,761 gene regions that were tested (see results below). Therefore, Bonferroni-corrected significance 

threshold for our gene-based tests was P<0.05/5,761=8.7x10-6. In secondary analyses, we limited the 

analysis to damaging variants, defined as nonsense variants or variants predicted to be damaging by 

PolyPhen-2 15 or SIFT.16 

Analyses were performed using the “prepScores” function of the “seqMeta” R package. Family-

based studies implemented the “kins” option in “prepScores” to specify kinship matrices. Each study 

provided single variant z-statistics from score tests, as well as genotype covariance matrices, which were 

then combined by fixed effects meta-analysis. The heterogeneity across studies was assessed by the 

Cochran’s Q, which is a non-parametric statistical test defined as the weighted sum of squared 

differences between individual study effects and the pooled effect. We performed both race stratified 

and race combined meta-analyses, and the race combined results were used for the remaining sections 

unless stated otherwise.  

 

Comparison with genetic loci associated with AF and P-wave indices (PWI)  

We also compared genetic loci associated with PR interval with those associated with AF and PWI to see 

if there are any shared genetic mechanisms. “AF loci” were identified by a recent exome chip analysis 

that included 22,806 AF cases and 132,612 referents.17 “PWI loci” were identified from a meta-analysis 
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of P-wave duration and P-wave terminal force that included 44,456 participants.18 In addition, for each 

of the top variants associated with PR, we also examined its association with AF and PWI. 

 

Examine potential function of PR-related variants for gene expression, regulation and biological 

pathways 

Pathway analysis was performed by MAGENTA19 with default settings. The summary result for the 

common variants was used as the input, and significant pathways were defined as those with a false 

discovery rate (FDR)20  <0.05. The implication of genetic variants on cardiac gene expression (eQTL 

analysis) was performed by querying the GTEx database.21 At each PR-related locus, we identified the 

top variant and its neighboring variants that were within 500kb and in linkage disequilibrium with the 

top variant (r2 ≥ 0.5). Four heart and vascular tissues were queried, including artery aorta, artery 

coronary, atrial appendage and heart left ventricle. Significant eQTLs were defined as those with 

FDR<0.05. Regulatory regions were downloaded from the ENCODE Project22 and the NIH Roadmap 

Epigenomics Program.23 Four tracks were created: 1) included all 98 cell types from Roadmap 

epigenomics H3K27ac sites; 2) included only four heart tissues (aorta, right atrium, left ventricle, right 

ventricle) from Roadmap epigenomics H3K27ac sites; 3) included all 125 cell lines from ENCODE 

DNaseHS sites; 4) included only three heart-derived cell lines (cardiac fibroblasts, atrial fibroblasts, 

cardiac myocytes).  The enrichment of PR-related loci in regulatory regions was examined by the “VSE” R 

package.24 For comparison, we randomly created 1,000 variant sets with MAF values and LD structures 

similar to those seen for PR-related loci.  
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Results 

The current analyses included a total of 92,803 individuals from 27 cohorts, with 83,367 individuals from 

22 studies of European ancestry and 9,436 individuals from 5 studies of African ancestry. Clinical 

characteristics of the study participants are in Table 1.  

 

Identification of 31 loci associated with PR interval 

A total of 42,075 common variants were analyzed (MAF ≥ 1%). As shown in Figure 1 and Table 2, 31 loci 

were significantly associated with PR interval after Bonferroni correction (P < 1.2x10-6), including 22 loci 

that reached the conventional genome-wide significance threshold (P < 5x10-8). The results of the 

random effects meta-analysis were similar to those of the fixed effects analysis (Supplementary Table 2). 

The most significant locus was tagged by rs6795970 (P= 4.0x10-240), a missense variant in SCN10A, which 

encodes a sodium channel that has been associated previously with the PR interval (r2=0.97 with the top 

SNP rs6599250 reported previously).8 Highly associated variants clustered in the linker region between 

the second and third domains of SCN10A (Figure 2). The top variants at 12 loci are missense variants. In 

addition, the top variants at 4 loci (including 3 novel loci) are low-frequency variants (1% < MAF < 5%), 

illustrating the power of exome chip analyses to identify low-frequency coding associations. Detailed 

information of the nearest gene to each genome wide significant locus is given in Supplementary Table 

3. 

We then examined the associations between these top PR variants with AF and electrocardiographic 

PWI. Eight out of 31 PR loci identified in our analysis were associated with AF after Bonferroni correction 

(P<0.05/31=1.6x10-3), consistent with some shared mechanisms between the regulation of PR interval 

and AF. Variants in SCN10A most significantly associated with PR interval were also significantly 

associated with AF (Supplementary Table 4). Among PR-related SNPs, rs60632610 at the SYNPO2L locus 
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was most significantly associated with AF (Odds ratio: 1.90 (0.87-0.93), P=1.5x10-10). Supplementary 

Figure 1 shows the overlap among loci associated with PR interval, AF, and PWI. 

We also performed a sensitivity analysis that separated samples of European and African ancestry. 

As shown in Supplementary Table 5 and Supplementary Figure 2, all of the 31 loci except rs17391905 at 

the 1p32.3 locus (P = 2.6x10-6) were also significant in the analysis of European-only samples. 

Supplementary Table 6 and Supplementary Figure 3 show the result for the analysis of African ancestry-

only samples. Three loci were significant: SCN5A (rs3922844), SCN10A (rs6795970), and TBX5 (rs883079) 

after Bonferroni correction; P < 1.3 x 10-6. All three loci were also significant in the analysis of European-

only samples. The result from each individual study is shown in Supplementary Table 7. 

  

Rare variations in MYH6 and SCN5A are associated with PR interval  

We next examined the association between PR interval and rare variants (MAF<1%) in gene regions. 

Variation in two gene regions, MYH6 (P = 5.9x10-11) and SCN5A (P = 1.1x10-7), was associated with PR 

interval (Table 3). Supplementary Tables 8 and 9 show the association of each rare variant within MYH6 

and SCN5A with PR interval, respectively. MYH6 encodes a cardiac myosin heavy chain subunit, and 

SCN5A encodes the major cardiac sodium channel and was previously found to be associated with PR 

interval.8 MYH6 was also recently found to associate with PWI.18 We also performed an ancestry-

stratified analysis in the same way as the combined analysis. The same two gene regions were significant 

using data from European samples alone (P = 4.1x10-12 and 8.3x10-7 for MYH6 and SCN5A, respectively). 

These two genes did not reach the significance cutoff in African samples (P = 0.03 and 0.01 for MYH6 

and SCN5A, respectively). Two other genes, HEATR2 (P = 2.2x10-6) and THRAP3 (P = 4.2x10-6), were 

significantly associated in African samples alone. However, in the combined analysis, these two genes 

were not significant (P=0.02 and 0.06 for HEATR2 and THRAP3, respectively), probably due to a low 

cumulative allele frequency.   
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In our secondary analysis of pooled samples, we analyzed only damaging variants, defined as 

nonsense mutations or alternations predicted to be damaging by PolyPhen-215 or SIFT.16 Three genes 

reached the signifiance cutoff (P<0.05/2030=2.5x10-5), including GORASP1 (P=1.1x10-5), NEBL (P=1.9x10-

5), and SCN5A (P=2.2x10-5) (Supplementary Table 10).  

 

Expression quantitative trait loci (eQTL) analysis  

We also performed eQTL analysis to determine if any of the novel PR-related variants were associated 

with cardiac gene expression using data from GTEx.21 Eight loci were associated with expression of at 

least one gene in the atrial appendage, left ventricle, coronary artery, or aorta, suggesting the 

importance of these loci in the regulation of gene expression in heart or vascular tissues 

(Supplementary Table 11).   

 

Enrichment of PR-related variants in regulatory regions 

We examined involvement of PR-related variants in regulatory function. As shown in Supplementary 

Figure 4, PR-related variants were significantly enriched in regulatory regions in both primary heart 

tissues (Padj=3.7x10-9) and heart-derived cell lines (Padj=0.002), but not in all tissues (Padj>0.05). The 

observed enrichment suggested involvement of these loci in tissue-specific regulatory functions. In 

addition, the variants also tended to locate within evolutionarily conserved regions (Padj=2.8x10-5 for 

primates and 6.4x10-5 for mammals). 

 

Enrichment of PR-related variants in biological pathways   

We examined the enrichment of PR-related variants in biological pathways by MAGENTA.19 

Supplementary Table 12 shows the top pathways identified. The most significant pathway was heart 

morphogenesis (P=3.6x10-5, FDR=0.049), suggesting that many PR-related genes might be involved in 
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cardiac development. The pathway was only the significant pathway after correction for multiple testing 

(FDR<0.05). 

 

Discussion 

We conducted a large-scale analysis of the genetic determinants of atrioventricular conduction in 92 803 

individuals by studying the electrocardiographic PR interval. In total, we observed 31 genetic loci that 

were associated with atrioventricular conduction, 11 of which are novel. In aggregate, the results 

implicate loci containing genes encoding ion channels in the heart, sarcomeric proteins, cardiac 

transcription factors, and other proteins with unknown cardiac function. Our findings provide new 

insights to the current understanding of atrioventricular conduction, which is critical for cardiac function.  

Interestingly, rare variants in SCN5A and MYH6 were associated with PR interval. A missense 

mutation (D1275N) in SCN5A has previously been reported in a large family with multiple members 

affected by dilated cardiomyopathy, conduction disorder, and arrhythmia.25 The mutation, together 

several other mutations within the same gene, has also been associated with dilated cardiomyopathy,26 

atrial fibrillation,27 and long-QT syndrome.28-31 Rare mutations within MYH6 were associated with sick 

sinus syndrome,28 congenital heart defects,32 and atrial septal defects.33 

Our observations support and extend prior analyses of cardiac conduction. Most previous genome-

wide association studies involved the study of common genetic variation in smaller samples of up to 

28,517 individuals.8,10,11 In keeping with those prior studies, we again observed that SCN10A is the most 

prominent gene involved in atrioventricular conduction. Our recent GWAS based on 105K samples 

corroborates many of our current findings.34  However, our current study had greater power than those 

earlier analyses for assessment of rare coding variation.  

Our study has two major implications. First, our results underscore the utility of assessing coding 

variation as an efficient way to identify functional molecular domains. In particular, our findings provide 
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insights into the functional topology of SCN10A. The SCN10A sodium channel gene is widely expressed in 

the nervous system and heart,21 but it has only recently been implicated in cardiac conduction8,34-36 and 

arrhythmias such as AF35 and Brugada syndrome.37 SCN10A encodes an alpha subunit (with six 

transmembrane spanning regions), which forms tetrameric, voltage gated sodium channels responsible 

for the Nav 1.8 late sodium channel current.38,39 We found a collection of amino acid substitutions in the 

linker region between the second and third domains of SCN10A that were associated with PR duration 

(Figure 2). Variants in this linker region that were associated with the PR interval also were associated 

with AF, suggesting that function of this domain may have important clinical implications. 

Prior work on the homologous SCN5A cardiac sodium channel gene -- which is also a cardiac 

conduction locus -- indicates that this linker region is critical for sodium channel inactivation. Sodium 

influx is predominantly responsible for cardiomyocyte depolarization. Moreover, channel inactivation is 

essential for restoration of the hyperpolarized state needed for cyclic cardiomyocyte depolarization and 

contraction. Therefore, variations in this linker region might be involved in Nav 1.8 inactivation. Other 

data are necessary to identify relationships among variation in the linker region, the late sodium channel 

current, and channel inactivation in both healthy and diseased states.  

Together with previously discovered susceptibility genes, our findings implicate genes in different 

functional classes that regulate atrioventricular conduction such as ion channels and cardiac 

transcription factors. In many cases, anomalies in these genes have been found to cause human cardiac 

diseases, such as congenital heart defects, primary cardiac conduction abnormalities, and syndromes 

predisposing to sudden cardiac death (Supplementary Table 3). Interestingly, some of the genes are not 

expressed (in high abundance) in the right atrial appendage or the left ventricle, according to existing 

data sets -- although most are active in the heart (Supplementary Table 13). Atrioventricular nodal 

conduction also can be influenced by external tone from the autonomic nervous system. Therefore, 
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further work is necessary to determine the mechanisms by which identified genes that are not 

expressed in the heart influence the PR interval.  

We acknowledge several limitations of our study. Because PR interval was measured across many 

cohorts, it is possible that there is some heterogeneity that would diminish our power to detect modest 

associations. We excluded individuals with extreme values of PR interval, which might have been 

gleaned from large variations in cardiac conduction. We also performed inverse normal transformation 

on the raw PR interval to reduce the heterogeneity, which on the other hand might reduce the 

interpretability. Although we performed single-variant and gene-based tests, we did not examine the 

association of haplotype patterns with PR interval, so it is unclear if there are any haplotypes that might 

be associated with PR interval. Most of the genetic variants analyzed were in exons. Therefore the 

effects of variants within regulatory regions were not investigated. We note that the variants identified 

may not be causally related to the studied phenotypes (PR interval, AF, and PWI), but may be in LD with 

causal variants. We anticipate that future increases in sample size with additional replications and more 

comprehensive genotyping platforms, such as denser SNP arrays or genome sequencing, will help 

address these limitations.  

In conclusion, we studied genetic variants associated with PR interval duration and identified 31 

common loci -- including 11 that were novel -- and two rare variant regions. Our findings greatly expand 

our knowledge of the genes that underlie atrioventricular conduction in the heart.  

 

  



 

Page 19 of 29 

Sources of Funding 

This work was partly supported by grants from the National Institutes of Health to Drs. Ellinor, 

Benjamin, and Lunetta (2RO1HL092577), Ellinor and Benjamin (R01HL128914), Ellinor (K24HL105780), 

and Arking and Sotoodehnia (R01HL116747). Dr. Ellinor is also supported by an Established Investigator 

Award from the American Heart Association (13EIA14220013) and by the Fondation Leducq (14CVD01). 

Dr. Lin was partly supported by Boston University Digital Health Initiative, and the National Center for 

Advancing Translational Sciences, National Institutes of Health, through BU-CTSI Grant Number 

1UL1TR001430. Niek Verweij is supported by ICIN-NHI and Marie Sklodowska-Curie GF (call: H2020-

MSCA-IF-2014, Project ID: 661395). Dr. Lubitz is supported by NIH grants K23HL114724 and a Doris Duke 

Charitable Foundation Clinical Scientist Development Award 2014105. Dr. Sotoodehnia is supported by 

NIH grants HL116747 and HL111089. Folkert W. Asselbergs is supported by a Dekker scholarship-Junior 

Staff Member 2014T001 – Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research 

Centre.  

The views expressed in this manuscript are those of the authors and do not necessarily represent 

the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. 

Department of Health and Human Services. 

 

Disclosures 

Dr. Patrick Ellinor is PI of a grant from Bayer HealthCare to the Broad Institute focused on the genetics 

and therapeutics of AF. Dr. Bruce Psaty serves on the DSMB of a clinical trial funded by the 

manufacturer (Zoll LifeCor) and on the Steering Committee of the Yale Open Data Access Project funded 

by Johnson & Johnson. Dr. Lubitz receives sponsored research support from Bayer HealthCare, Biotronik, 

and Boehringer Ingelheim, and has consulted for St. Jude Medical and Quest Diagnostics.  



 

Page 20 of 29 

References 

1. Soliman EZ,Prineas RJ,Case LD,Zhang ZM,Goff DC, Jr. Ethnic distribution of ecg 

predictors of atrial fibrillation and its impact on understanding the ethnic distribution 

of ischemic stroke in the atherosclerosis risk in communities (aric) study. Stroke; a 

journal of cerebral circulation. 2009;40:1204-1211. 

2. Cheng S,Keyes MJ,Larson MG,McCabe EL,Newton-Cheh C,Levy D, et al. Long-term 

outcomes in individuals with prolonged pr interval or first-degree atrioventricular 

block. JAMA. 2009;301:2571-2577. 

3. Xiao HB,Roy C,Fujimoto S,Gibson DG. Natural history of abnormal conduction and its 

relation to prognosis in patients with dilated cardiomyopathy. Int J Cardiol. 

1996;53:163-170. 

4. Thiene G,Pennelli N,Rossi L. Cardiac conduction system abnormalities as a possible 

cause of sudden death in young athletes. Human pathology. 1983;14:704-709. 

5. Pilia G,Chen WM,Scuteri A,Orru M,Albai G,Dei M, et al. Heritability of cardiovascular 

and personality traits in 6,148 sardinians. PLoS Genet. 2006;2:e132. 

6. Silva CT,Kors JA,Amin N,Dehghan A,Witteman JC,Willemsen R, et al. Heritabilities, 

proportions of heritabilities explained by gwas findings, and implications of cross-

phenotype effects on pr interval. Hum Genet. 2015;134:1211-1219. 

7. Newton-Cheh C,Guo CY,Wang TJ,O'Donnell C J,Levy D,Larson MG. Genome-wide 

association study of electrocardiographic and heart rate variability traits: The 

framingham heart study. BMC Med Genet. 2007;8 Suppl 1:S7. 



 

Page 21 of 29 

8. Pfeufer A,van Noord C,Marciante KD,Arking DE,Larson MG,Smith AV, et al. Genome-

wide association study of pr interval. Nat Genet. 2010;42:153-159. 

9. Holm H,Gudbjartsson DF,Arnar DO,Thorleifsson G,Thorgeirsson G,Stefansdottir H, et al. 

Several common variants modulate heart rate, pr interval and qrs duration. Nat Genet. 

2010;42:117-122. 

10. Butler AM,Yin X,Evans DS,Nalls MA,Smith EN,Tanaka T, et al. Novel loci associated 

with pr interval in a genome-wide association study of 10 african american cohorts. 

Circ Cardiovasc Genet. 2012;5:639-646. 

11. Smith JG,Magnani JW,Palmer C,Meng YA,Soliman EZ,Musani SK, et al. Genome-wide 

association studies of the pr interval in african americans. PLoS Genet. 

2011;7:e1001304. 

12. Grove ML,Yu B,Cochran BJ,Haritunians T,Bis JC,Taylor KD, et al. Best practices and 

joint calling of the humanexome beadchip: The charge consortium. PLoS ONE. 

2013;8:e68095. 

13. Lee S,Emond MJ,Bamshad MJ,Barnes KC,Rieder MJ,Nickerson DA, et al. Optimal 

unified approach for rare-variant association testing with application to small-sample 

case-control whole-exome sequencing studies. American journal of human genetics. 

2012;91:224-237. 

14. Wu MC,Lee S,Cai T,Li Y,Boehnke M,Lin X. Rare-variant association testing for 

sequencing data with the sequence kernel association test. American journal of 

human genetics. 2011;89:82-93. 



 

Page 22 of 29 

15. Adzhubei I,Jordan DM,Sunyaev SR. Predicting functional effect of human missense 

mutations using polyphen-2. Current protocols in human genetics / editorial board, 

Jonathan L. Haines ... [et al.]. 2013;Chapter 7:Unit7 20. 

16. Kumar P,Henikoff S,Ng PC. Predicting the effects of coding non-synonymous variants 

on protein function using the sift algorithm. Nature protocols. 2009;4:1073-1081. 

17. Christophersen IE,Rienstra M,Roselli C,Yin X,Geelhoed B,Barnard J, et al. Large-scale 

analyses of common and rare variants identify 12 new loci associated with atrial 

fibrillation. Nat Genet. 2017;49:946-952. 

18. Christophersen IE,Magnani JW,Yin X,Barnard J,Weng LC,Arking DE, et al. Fifteen 

genetic loci associated with the electrocardiographic p wave. Circ Cardiovasc Genet. 

2017;10 

19. Segre AV,Consortium D,investigators M,Groop L,Mootha VK,Daly MJ, et al. Common 

inherited variation in mitochondrial genes is not enriched for associations with type 2 

diabetes or related glycemic traits. PLoS Genet. 2010;6 

20. Benjamini Y,Hochberg Y. Controlling the false discovery rate: A practical and powerful 

approach to multiple testing. Journal of the Royal Statistical Society, Series B 

(Methodological). 1995;57:289-300. 

21. Consortium GT. Human genomics. The genotype-tissue expression (gtex) pilot analysis: 

Multitissue gene regulation in humans. Science. 2015;348:648-660. 

22. ENCODE Project Consortium,Dunham I,Kundaje A,Aldred SF,Collins PJ,Davis CA, et al. 

An integrated encyclopedia of DNA elements in the human genome. Nature. 

2012;489:57-74. 



 

Page 23 of 29 

23. Chadwick LH. The nih roadmap epigenomics program data resource. Epigenomics. 

2012;4:317-324. 

24. Ahmed M,Sallari RC,Guo H,Moore JH,He HH,Lupien M. Variant set enrichment: An r 

package to identify disease-associated functional genomic regions. BioData mining. 

2017;10:9. 

25. McNair WP,Ku L,Taylor MR,Fain PR,Dao D,Wolfel E, et al. Scn5a mutation associated 

with dilated cardiomyopathy, conduction disorder, and arrhythmia. Circulation. 

2004;110:2163-2167. 

26. Olson TM,Michels VV,Ballew JD,Reyna SP,Karst ML,Herron KJ, et al. Sodium channel 

mutations and susceptibility to heart failure and atrial fibrillation. JAMA. 

2005;293:447-454. 

27. Chen L,Zhang W,Fang C,Jiang S,Shu C,Cheng H, et al. Polymorphism h558r in the 

human cardiac sodium channel scn5a gene is associated with atrial fibrillation. The 

Journal of international medical research. 2011;39:1908-1916. 

28. Qureshi SF,Ali A,John P,Jadhav AP,Venkateshwari A,Rao H, et al. Mutational analysis 

of scn5a gene in long qt syndrome. Meta gene. 2015;6:26-35. 

29. Iwasa H,Itoh T,Nagai R,Nakamura Y,Tanaka T. Twenty single nucleotide 

polymorphisms (snps) and their allelic frequencies in four genes that are responsible 

for familial long qt syndrome in the japanese population. Journal of human genetics. 

2000;45:182-183. 

30. Modell SM,Lehmann MH. The long qt syndrome family of cardiac ion channelopathies: 

A huge review. Genet Med. 2006;8:143-155. 



 

Page 24 of 29 

31. Ter Bekke RMA,Isaacs A,Barysenka A,Hoos MB,Jongbloed JDH,Hoorntje JCA, et al. 

Heritability in a scn5a-mutation founder population with increased female 

susceptibility to non-nocturnal ventricular tachyarrhythmia and sudden cardiac death. 

Heart Rhythm. 2017;14:1873-1881. 

32. Granados-Riveron JT,Ghosh TK,Pope M,Bu'Lock F,Thornborough C,Eason J, et al. 

Alpha-cardiac myosin heavy chain (myh6) mutations affecting myofibril formation are 

associated with congenital heart defects. Hum Mol Genet. 2010;19:4007-4016. 

33. Posch MG,Waldmuller S,Muller M,Scheffold T,Fournier D,Andrade-Navarro MA, et al. 

Cardiac alpha-myosin (myh6) is the predominant sarcomeric disease gene for familial 

atrial septal defects. PLoS ONE. 2011;6:e28872. 

34. van Setten J,Brody JA,Jamshidi Y,Swenson BR,Butler AM,Campbell H, et al. Genome-

wide association meta-analysis of pr interval identifies 47 novel loci associated with 

atrial and atrioventricular electrical activity. bioRxiv.DOI: 

https://doi.org/10.1101/241489 

35. Chambers JC,Zhao J,Terracciano CM,Bezzina CR,Zhang W,Kaba R, et al. Genetic 

variation in scn10a influences cardiac conduction. Nat Genet. 2010;42:149-152. 

36. Sotoodehnia N,Isaacs A,de Bakker PI,Dorr M,Newton-Cheh C,Nolte IM, et al. Common 

variants in 22 loci are associated with qrs duration and cardiac ventricular conduction. 

Nat Genet. 2010;42:1068-1076. 

37. Bezzina CR,Barc J,Mizusawa Y,Remme CA,Gourraud JB,Simonet F, et al. Common 

variants at scn5a-scn10a and hey2 are associated with brugada syndrome, a rare 

disease with high risk of sudden cardiac death. Nat Genet. 2013;45:1044-1049. 



 

Page 25 of 29 

38. Yang T,Atack TC,Stroud DM,Zhang W,Hall L,Roden DM. Blocking scn10a channels in 

heart reduces late sodium current and is antiarrhythmic. Circ Res. 2012;111:322-332. 

39. Verkerk AO,Remme CA,Schumacher CA,Scicluna BP,Wolswinkel R,de Jonge B, et al. 

Functional nav1.8 channels in intracardiac neurons: The link between scn10a and 

cardiac electrophysiology. Circ Res. 2012;111:333-343. 

 



 

Page 26 of 29 

Table 1. Clinical characteristics of the participating studies  

Ancestry Study Total N Men, N (%) Age, yrs, 
mean 

PR interval, 
ms, mean± 

SD 

RR interval, 
ms, mean± 

SD 

BMI, 
kg/m2, 

mean ± SD 

Height, 
cm, mean 

± SD 

SBP, 
mmHg, 

mean ± SD 

Beta 
blockers (%) 

Diuretics 
(%) 

Calcium 
antagonists* 

(%) 

European 
ancestry 

AGES 2052 742 (36.2) 75.9±5.4 170.5±26.8 895±129 27.0±4.4 166±9 143±20 635 (31.0) ND 108 (5.3) 
ARIC 9828 4528 (46.1) 54.1±5.7 160.3±23.3 928±136 26.9±4.7 169±9 118±17 789 (8.0) 1085 (11.0) 176 (1.8) 

BRIGHT 841 324 (38.9) 57.6±10.7 161.1±19.9 960±169 27.5±3.8 166±9 153±24 248 (29.5) 260 (30.9) 18 (2.1) 
CAMP 2493 1394 (55.9) 60.7±11.6 163.0±26.8 926±166 28.5±5.8 171±10 ND Excluded ND Excluded 
CHS 3247 1313 (40.4) 72.4±5.4 167.8±28.2 956±151 26.4± 4.4 165±9 136±21 366  (11.3 ) 750 (23.1) 206 (6.3 ) 
ERF 982 447 (45.5) 48.2±14.3 152.9±23.2 982±159 26.9±4.6 168±10 140±20 3 (0.3) 133 (13.5) 25 (2.5) 
FHS 7580 3428 (45.2) 39.3±9.8 152.0±22.1 910±175 26.0±5.0 169±10 119±15 Excluded ND Excluded 

GOCHA 355 161 (45.4) 73.2±8.2 167.6±27.7 913±173 26.1±4.6 169±10 N/A Excluded ND ND 
GRAPHIC 1755 893 (50.9)  39.1±14.5 153.0±24.0 934±145 26.1±4.6 171±9 128±19 39 (2.2) ND ND 
INTER99 5836 2843 (48.7) 46.1±7.9 158.2±22.4 921±150 26.3±4.6 172±9 130±18 ND ND ND 

KORA 2617 1247 (47.6) 48.3±13.0 162.1±22.2 944±149 26.9±4.4 168±9 127±19 199 (7.6) 152 (5.8) 13 (0.5) 
KORCULA 293 106 (36.2) 55.0±13.4 159.8± 24.0 929±127 28.0± 4.3 168± 9 139± 14 8 (2.7) 3 (1.0)  6 (2.0) 
LifeLines 1934 781 (40.3) 45.2±13.1 156.7±24.7 896±145 25.9±4.5 175±9 122±16 64 (3.3) 39 (2.0) 23 (1.2) 

MESA 2455 1171 (47.7) 62.8±10.2 164.7±25.2 1047±158 27.8±5.1 169±10 123±21 Excluded ND Excluded 
NEO 5782 2717 (47.0) 55.9±5.9 164.5±23.4 940±151 30.0±4.8 174±10 133±17 Excluded ND ND 
RS 2358 1086 (46.1) 68.6±8.1 168.2±24.7 871±144 26.3±3.6 168± 9 ND 293 (12.4) ND ND 

GS:SFHS 9168 3786 (41.3) 52.0±13.6 164.1± 24.9 886±146 26.9± 5.1 168± 10 134± 18 192 (2.1) ND ND 
SHIP 6493 2608 (40.2) 49.2±15.3 158.5±23.3 897±146 27.5±5.0 170±9 131±20 ND ND ND 

TwinsUK 465 32 (6.9) 52.3±11.7 159.6±22.6 923±148 26.8±5.4 163±7 119±16 ND ND ND 
UHP 1735 779 (44.9) 39.1±13.0 155.9±22.5 950±151 24.9±3.9 175±10 125±17 69 (4.6) 32 (1.8) 18 (1.0) 
WHI 13252 0 (0) 66.0±6.5 161.4±24.0 921±138 28.7±5.6 162±6 130±18 735 (5.5) 1715 (13.3) 1230 (9.3) 
YFS 1846 824 (44.6) 41.9±5.0 156.2±22.6 1028±165 26.4±4.9 172±9 119±14 38 (2.1) 24 (1.3) 1 (0.1) 

African 
ancestry 

ARIC 3366 1291 (38.4) 53.3±5.8 171.2±26.8 929±151 29.4±6.1 168±9 128±22 315 (9.4) 717 (21.3) 222 (6.6) 
CHS 627 232  (37.0 ) 72.4±5.5 170.2±28.1 918±161 28.4± 5.5 165±9 142± 22 54 (8.6) 217 (34.6) 60 (9.6 ) 
JHS 2220 833 (37.5) 52.7±12.5 172.7±27.3 956±150 31.4±6.4 169±9 126±18 Excluded ND Excluded 

MESA 1565 718 (45.9) 62.3±10.0 170.9±26.3 1050±172 30.2±5.9 168±10 132±21 Excluded ND Excluded 
WHI 1658 0 (0) 64.6±6.4 167.1± 24.8 921±148 31.1±5.8 162±7 134±17 87 (5.2) 393 (23.7) 341 (20.6) 

Exclusion criteria are given in Supplementary Table 1. SBP, systolic blood pressure; BMI, body mass index; ND, not determined; SD, standard deviation; *Non-
dihydropyridine calcium antagonists. 
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Table 2. Common variants significantly associated with PR interval from meta-analysis of all studies 

SNP Locus Closest 
gene Function Coding 

allele CAF* Beta SE P value 
Number 

of 
studies‡ 

Prolong 
or 

shorten 
PR 

interval  

Novel 
locus 

rs6795970 3p22.2 SCN10A Missense A 0.37 0.1705 0.0052 4.0x10-240 27 Prolong  
rs3922844 3p22.2 SCN5A Intronic A 0.34 -0.1069 0.0053 9.3x10-90 26 Shorten  
rs3807989 7q31.2 CAV1 Intronic A 0.43 0.0908 0.0050 3.0x10-74 27 Prolong  
rs7660702 4q21.23 ARHGAP24 Intronic C 0.33 -0.0921 0.0053 1.2x10-68 27 Shorten  
rs17287293 12p12.1 LINC00477 Intergenic G 0.14 -0.1084 0.0071 1.9x10-52 27 Shorten  
rs11897119 2p14 MEIS1 Intronic C 0.39 0.0566 0.0055 4.2x10-25 25 Prolong  
rs1896312 12q24.21 TBX3 Intergenic G 0.28 0.0564 0.0055 8.7x10-25 26 Prolong  

rs883079 12q24.21 TBX5 3'UTR G 0.29 0.0550 0.0054 4.5x10-24 26 Prolong  

rs116202356 3p22.2 DLEC1 Missense A 0.02 -0.1953 0.0199 1.0x10-22 27 Shorten  
rs251253 5q35.1 CREBRF Intergenic G 0.42 -0.0439 0.0051 4.7x10-18 26 Shorten  
rs11153730 6q22.31 SLC35F1 Intergenic C 0.47 -0.0420 0.0049 9.5x10-18 27 Shorten Novel 
rs35658696 5q21.1 PAM Missense G 0.04 0.0956 0.0119 8.5x10-16 27 Prolong  
rs2070492 3p22.2 SLC22A14 Missense T 0.10 0.0624 0.0083 4.0x10-14 27 Prolong Novel 
rs2585897 13q12.11 XPO4 Intronic A 0.17 0.0471 0.0064 2.8x10-13 27 Prolong  
rs2042995 2q31.2 TTN Missense C 0.26 0.0375 0.0057 4.3x10-11 27 Prolong  
rs4399693 2p25.1 ID2 Intergenic A 0.34 0.0374 0.0058 9.1x10-11 25 Prolong  
rs41306688 13q34 ADPRHL1 Missense C 0.03 0.1002 0.0173 7.4x10-9 22 Prolong Novel 
rs4745 1q22 EFNA1 Missense T 0.49 0.0299 0.0053 1.2x10-8 26 Prolong  
rs11078078 17p12 LINC00670 Intronic A 0.40 0.0281 0.0050 2.2x10-8 27 Prolong  
rs60632610 10q22.2 SYNPO2L Missense T 0.15 -0.0371 0.0068 4.5x10-8 27 Shorten Novel 
rs11848785 14q24.2 SIPA1L1 Intronic G 0.24 0.0317 0.0058 4.6x10-8 27 Prolong  
rs3733414 4q35.2 FAT1 Missense A 0.38 0.0280 0.0051 4.8x10-8 27 Prolong  
rs17362588 2q31.2 CCDC141 Missense A 0.08 -0.0491 0.0090 5.5x10-8 27 Shorten Novel 
rs2296172 1p34.3 MACF1 Missense G 0.20 0.0326 0.0061 1.1x10-7 27 Prolong Novel 
rs9398652 6q22.31 GJA1 Intergenic A 0.14 0.0390 0.0074 1.3x10-7 26 Prolong Novel 
rs442177 4q22.1 AFF1 Intronic C 0.42 -0.0262 0.0050 1.8x10-7 26 Shorten Novel 
rs7002002 8q24.3 PLEC Missense A 0.38 -0.0272 0.0052 2.1x10-7 25 Shorten Novel 
rs1768208 3p22.1 MOBP Intron T 0.25 0.0288 0.0057 3.6x10-7 27 Prolong Novel 
rs2119788 4q34.1 HAND2 Intergenic C 0.52 -0.0246 0.0049 5.6x10-7 27 Shorten Novel 
rs17391905† 1p32.3 C1orf185 Intergenic G 0.03 -0.0694 0.0142 9.6x10-7 27 Shorten  
rs524295 10q24.1 ALDH18A1 Intergenic A 0.40 -0.0261 0.0053 9.7x10-7 26 Shorten  

*Coding allele frequency 
†SNP was not significant if African participants were excluded.  
‡Some variants did not reach pass the quality filtering in respective studies and thus were excluded.  
  



 

Page 28 of 29 

Table 3. Top 10 gene regions associated with PR interval by the SKAT test* 

Gene P value Qmeta† CMAF‡ #Variants 

Number of 
studies with at 
leat one rare 

variant 

Average 
number of 
variants in 
each study 

MYH6 5.9x10-11 23537340 0.0215 32 27 12 
SCN5A 1.1x10-7 16604843 0.0289 35 27 13 
GORASP1 1.3x10-5 14361252 0.0308 16 27 6 
NEBL 1.9x10-5 11787699 0.0309 36 27 11 
TRIML2 1.2x10-4 10173978 0.0223 23 27 10 
SLC22A11 1.5x10-4 6539656 0.0136 11 27 6 
MTRF1 2.8x10-4 9073098 0.0235 10 26 3 
CD36 3.5x10-4 8001777 0.0156 28 27 9 
CAPRIN2 3.7x10-4 6886375 0.0169 15 27 7 
PIK3R6 6.0x10-4 9763336 0.0316 23 26 8 

*The analysis included only nonsynonymous and splice site rare variants (MAF<1%) within the gene regions  
†Qmeta: The SKAT Q-statistic, defined as ∑ 𝑤𝑗𝑆𝑗𝑛

𝑗=1 , where 𝑤𝑗 is the weight, and 𝑆𝑗  is the squared score.  
‡CMAF: Cumulative minor allele frequency; SKAT: Sequence Kernel Association Test 
The significance level for gene-based tests after Bonferroni correction was P<0.05/5759=8.7x10-6; the two genes 
that reached this significant cutoff are highlighted in bold font.  
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Figure Legends 
 
Figure 1. Manhattan plot showing the association between common variants and PR interval from 
combined ancestry analysis. The x-axis represents the chromosomal position for each SNP, and the y-
axis represents the –log10(p-value) of the association with PR interval. The dashed line represents the 
genome-wide significance cutoff of 5x10-8, and the blue line represents the Bonferroni P-value cutoff of 
1.3x10-6. Black color represents known loci, whereas red color represents novel loci. 
 
 
Figure 2. Diagram of sodium voltage-gated channel alpha subunit 10 (SCN10A). Each yellow circle 
represents a genetic variant with a P-value less than the significance cutoff (1.2 x 10-6). Each red circle 
represents a genetic variant with a P-value greater than the significance cutoff, but less than 0.05.  
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