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Genome-wide association analyses of >200,000 individuals identify 58 genetic loci for chronic 1 

inflammation and highlights pathways that link inflammation and complex disorders 2 
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Abstract 1 

C-reactive protein (CRP) is a sensitive biomarker of chronic low-grade inflammation that is associated 2 

with multiple complex diseases. The genetic determinants of chronic inflammation remain largely 3 

unknown, and the causal role of CRP in several clinical outcomes is debated. We performed two genome-4 

wide association studies (GWAS), HapMap and 1000Genomes imputed, of circulating CRP levels using 5 

data from 88 studies comprising 204,402 European individuals. Additionally, we performed in silico 6 

functional analyses and Mendelian randomization analyses with several clinical outcomes. The GWAS 7 

meta-analyses of CRP revealed 58 distinct genetic loci (P<5×10-8). After adjustment for body mass index 8 

in the regression analysis, the associations at all except three loci remained. The lead variants at the 9 

distinct loci explained up to 7.0% of the variance in circulating CRP levels. We identified 66 gene sets 10 

that were organized in two substantially correlated clusters, one mainly comprised of immune pathways, 11 

and the other characterized by metabolic pathways in the liver. Mendelian randomization analyses 12 

revealed a causal protective effect of CRP on schizophrenia and a risk increasing effect on bipolar 13 

disorder. Our findings provide further insights in the biology of inflammation that may lead to 14 

interventions to treat inflammation and its clinical consequences.   15 
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Introduction 1 

Inflammation plays a key role in the development of complex diseases such as cardiovascular disease1, 2 

type 2 diabetes2, Alzheimer’s disease3, and schizophrenia4. C-reactive protein (CRP) is a sensitive marker 3 

of chronic low-grade inflammation5, and elevated serum levels of CRP have been associated with a wide 4 

range of diseases6-8. Unraveling the genetics of inflammation may provide further insights into the 5 

underlying biology of inflammation, and may identify therapeutic targets to attenuate inflammation.  6 

 The genetic determinants of CRP have only been partly characterized. In 2011, our group 7 

published a HapMap-based meta-analysis of genome-wide association studies (GWAS) including a 8 

discovery panel of up to 65,000 individuals and found 18 loci that were associated with CRP levels9. 9 

Increasing study sample size in GWAS and denser mapping of the genome with further advanced 10 

imputation panels may help to identify further genes associated with the phenotypes of interest10; 11. 11 

Furthermore, by using genetic instrumental variables (i.e., a genetic score), Mendelian randomization 12 

(MR) allows investigation of the potential causal effect of an exposure on clinical outcomes, and may help 13 

to understand the causal pathways that link the exposure with the outcome12. The causal role of CRP in the 14 

development of diseases is still controversial13, and the causal pathways that link inflammation to complex 15 

disorders are only partly understood. 16 

 We applied two large-scale GWAS on circulatory levels of CRP using HapMap and 17 

1000Genomes (1KG) imputed data to identify genetic determinants of chronic inflammation. Because 18 

body mass index (BMI) is a major determinant of CRP levels, we additionally conducted GWAS adjusted 19 

for BMI to identify associated loci independent of BMI. To identify any sex differences in genetic 20 

determinants of chronic inflammation, we further conducted GWAS in men and women separately. We 21 

applied in silico functional analyses on the identified loci to obtain better insights into the biological 22 

processes potentially regulating chronic inflammation. Finally, we conducted MR analyses to provide an 23 

improved understanding of the causal relation between CRP and several related clinical outcomes. 24 
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Material and methods 1 

GWAS for circulating CRP levels 2 

We conducted a meta-analysis of GWAS including individuals of European ancestry within the Cohorts 3 

for Heart and Aging Research in Genomic Epidemiology consortium Inflammation Working Group of the 4 

(CIWG)14. The CIWG invited cohorts for participation in the HapMap GWAS meta-analysis of CRP 5 

levels in 2012. In 2014 and in light of our assessment which showed complementary value of HapMap 6 

and 1KG imputed GWAS10, we invited studies to participate in the 1KG GWAS meta-analysis. The 1KG 7 

GWAS may help to identify loci that were not covered in the HapMap GWAS and fine map loci found in 8 

the HapMap GWAS. Cohorts were allowed to participate in either the HapMap or 1KG GWAS, or both. 9 

Here we present both a HapMap (204,402 individuals from 78 studies) and 1KG (148,164 individuals 10 

from 49 studies) imputed genotypes GWAS meta-analysis. All participating cohorts implemented a pre-11 

specified study plan comprising study design, data quality check, data analysis, and data sharing. We 12 

measured serum CRP in mg/L using standard laboratory techniques (Supplemental Methods), and natural 13 

log-transformed the values. Individuals with auto-immune diseases, individuals taking immune-14 

modulating agents (if this information was available), and individuals with CRP levels 4SD or more away 15 

from the mean were excluded from all analyses. The characteristics of the participants are presented in 16 

Table S1. We filtered individuals and genetic variants based on study-specific quality control criteria 17 

(Table S2). At each individual study site, we tested genetic variants for association with CRP levels using 18 

an additive linear regression model adjusted for age, sex, and population substructure, and accounting for 19 

relatedness, if relevant. Before meta-analysis, we filtered variants based on imputation quality at R2 index 20 

of >0.4. To avoid type-I error inflation, we corrected study-specific GWAS for genomic inflation. For the 21 

HapMap study, we conducted fixed effect meta-analyses for each genetic variant, using the inverse 22 

variance-weighted method implemented in GWAMA15, and performed a second genomic control on the 23 

meta-analysis level. For the 1KG imputed GWAS, we used METAL16 to perform a fixed effect meta-24 

analysis. We removed variants that were only available in <50% of the samples. The HapMap meta-25 

analysis included 2,254,727 variants, and the 1KG GWAS included 10,019,203 variants. We considered 26 
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associations with P<5×10-8 genome-wide significant. We used a stringent distance criterion, 500kb 1 

minimum between two significant variants, to identify distinct loci. In each locus, the variant with the 2 

smallest p-value was called the “lead variant”. Additionally, we performed sex-stratified analyses among 3 

HapMap imputed studies, and we tested for heterogeneity between sex-specific effect estimates as 4 

described previously17, using the false-discovery rate of Benjamini-Hochberg to assess significance of the 5 

P for sex difference (<0.05). We conducted BMI adjusted analyses in the 1KG meta-analysis to determine 6 

the role of BMI in mediating the genetic associations with CRP, and to increase power to detect 7 

associations not mediated by BMI.  8 

 9 

LD Score regression 10 

Because population stratification is a major concern in GWAS and may lead to false-positive associations, 11 

we applied Linkage Disequilibrium Score regression (LDSC) to distinguish whether the inflation of test 12 

statistics observed in the CRP GWAS is due to the polygenic architecture of CRP or reflects confounding 13 

bias due to cryptic relatedness or population stratification. The LD Score measures collective genetic 14 

variation acquired from all genetic variants in LD with the index tagging (causal) variant18. A higher LD 15 

score of an index variant implicates more nearby genetic variants in high LD with the index variant, which 16 

makes it more likely that the index variant tags causal variant(s). More genetic variants in LD with the 17 

index genetic variant (i.e., a higher LD score due to polygenicity) may yield higher (i.e., inflated) test 18 

statistics. In contrast, higher test statistics caused by cryptic population stratification will not be related to 19 

LD score. LD Score regression analysis performs regression of the summary statistics from the GWAS 20 

meta-analysis (χ2 statistics from the GWAS) on the LD scores across the genome. An intercept of the LD 21 

Score regression that equals one suggests no confounding bias, whereas an inflated intercept (larger than 22 

one) suggests contribution of confounding due to relatedness to the test statistics. We used the LDHub 23 

web interface to perform LD Score regression19. We filtered variants to the subset of HapMap 3 variants, 24 

and excluded variants with duplicated rs numbers, ambiguous variants, minor allele frequency 25 
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(MAF)<0.01, and reported sample size <66.7% of total sample size. We used the default European LD 1 

Score file based on the European 1KG reference panel. 2 

Furthermore, we applied cross-trait LD score regression to estimate genetic correlation of chronic 3 

inflammation (using the HapMap GWAS meta-analysis) with other phenotypes using published GWAS 4 

summary statistics20. In brief, the cross-product of two GWAS test statistics is calculated at each genetic 5 

variant, and this cross-product is regressed on the LD Score. The slope of the regression is used to 6 

estimate the genetic covariance between two phenotypes.  7 

 8 

Identification of additional distinct variants in associated loci 9 

To identify additional distinct variants in the associated loci, we performed joint approximate conditional 10 

analysis using the 1KG meta-analysis summary statistics and the linkage disequilibrium (LD) matrix 11 

derived from the first cohort of the Rotterdam study (RS-I) (n=5,974). We used the Genome-wide 12 

Complex Trait Analysis (GCTA) tool, which performs a genome-wide step-wise procedure to identify 13 

variants according to their distinct association with CRP (i.e., conditional P)21; 22. We only used variants 14 

with an imputation quality of R2>0.8 in the reference set (RS-I). This approximate conditional analysis 15 

may reveal different lead signals in a locus where multiple associated variants are in the final joint 16 

association model. We tested the distinct variants identified in the CRP gene jointly for an association 17 

with CRP using individual level data from the second and third cohort of the Rotterdam Study (RS-II and 18 

RS-III, totaling 5,024 subjects), and the Women’s Genome Health Study (WGHS) of 16,299 individuals. 19 

 20 

Proportion of CRP variance explained 21 

We estimated the variance explained in serum CRP levels using the formula (2*MAF(1-22 

MAF)beta2)/var(CRP), where beta is the estimated effect of the individual variants on CRP23 and 23 

var(CRP) is the variance in natural log-transformed CRP estimated in the RS-I cohort. We calculated the 24 

variance explained for four combinations of associated variants: 1. the lead variant at just the CRP locus; 25 

2. the distinct variants at the CRP locus derived from the 1KG joint conditional analysis; 3. all lead 26 
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variants in the distinct loci; 4. all lead variants in the distinct loci and, when applicable, the distinct 1 

variants at associated loci derived from the approximate joint conditional analysis. 2 

 3 

Pathway analysis and gene expression 4 

We used Data-Driven Expression-Prioritized Integration for Complex Traits24 (DEPICT v.1 rel173 beta) 5 

to systematically prioritize the most likely causal genes, highlight the pathways that are enriched by the 6 

likely causal genes and identify tissues and cell types in which genes from associated loci are highly 7 

expressed. DEPICT requires summary statistics from the GWAS meta-analysis. First, we filtered genome-8 

wide associated variants from both GWAS meta-analyses by MAF>0.01, and selected variants with low 9 

correlation with other variants by PLINK (version 1.90) using a clumping distance of 500 kb apart and/or 10 

index of LD r2 threshold <0.1. The settings for the analysis involved the usage of 1KG pilot phase data25 11 

(phase 1 integrated release, version 3, CEU, GBR, TSI unrelated individuals; 2010.11.23) with r2>0.5 LD 12 

threshold for locus definition, 10,000 permutations for bias correction, and 500 repetitions for FDR 13 

calculation. To summarize and visualize the results, we calculated pairwise Pearson correlation 14 

coefficients between all gene-specific Z-scores for every pair of reconstituted DEPICT gene sets. We used 15 

Affinity Propagation Clustering (apcluster command; APCluster R package26) to identify clusters and 16 

representative examples of the clusters, and Cytoscape v3.2.1 for visualization of the results. The DEPICT 17 

results of the pathway and gene prioritization are summarized as a heatmap (R. v2.3.3, pheatmap v1.0.8 18 

package27). The gene-specific Z-score describes the likelihood that a given gene is part of the 19 

corresponding GO term, KEGG pathway, REACTOME pathway, Mouse Phenotype, or protein-protein 20 

interaction network.  21 

Also, we performed Multi-marker Analysis of GenoMic Annotation (MAGMA)28. MAGMA 22 

performs gene and gene-set analysis and requires the association results of all variants, therefore we chose 23 

the larger HapMap GWAS for MAGMA. We used the Functional Mapping and Annotation (FUMA)29 24 

tool to perform MAGMA, and applied standard settings for running MAGMA. 25 
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To prioritize the most likely trait-relevant gene for each GWAS locus, we run colocalization 1 

analysis using the “coloc” R package v3.130 separately for the HapMap and 1KG GWAS. We used 2 

publicly available genome-wide eQTL data from 5,311 whole blood samples31, and from the Genome 3 

Tissue Expression (GTEx) V6p portal incorporating eQTL data from 44 post-mortem tissues32. “Coloc” 4 

uses approximate Bayes factors to estimate the posterior probability that GWAS and eQTL effects share a 5 

single causal variant. All significant cis-eGenes or cis-eProbes (q<0.05 in GTEx; lowest cis-eQTL 6 

FDR<0.05 in Westra et al.31) were extracted ±1Mb from the lead SNP of each locus. The HapMap SNP 7 

positions were converted to hg19 with the liftOver command from the rtracklayer v1.38.3 package. We 8 

used the SNPs present in both the GWAS and eQTL datasets. For the HapMap GWAS, the 1KG GWAS 9 

and the GTEx eQTL datasets, we performed the test using association beta, standard error of beta, and 10 

minor allele frequency (MAF). For the data from Westra et al.31, we used association P-value, MAF, and 11 

sample size, and included only the subset of cis-eQTLs which are publicly available (up to significance 12 

FDR<0.5). We used default priors supplied by the coloc package (P1=1e-4, P2=1e-4, P12=1e-5; prior 13 

probabilities for association in GWAS, eQTL, and both datasets). Full MAF data were not available for 14 

the eQTL datasets, therefore we used the GIANT 1KG p1v3 EUR reference panel instead. We visualized 15 

the results as a heatmap using the pheatmap v1.0.8 R package.27.  16 

 17 

Mendelian randomization 18 

To assess the effect of CRP on complex disorders, we performed a two-sample Mendelian randomization 19 

(MR) study on nine clinical outcomes (Alzheimer’s disease (AD), bipolar disorder (BD), coronary artery 20 

disease (CAD), Crohn’s disease (CD), inflammatory bowel disease (IBD), rheumatoid arthritis (RA), 21 

schizophrenia, and diastolic (DBP) and systolic blood pressure (SBP)) to which CRP showed a potentially 22 

causal association at a P<0.1 in a previous MR study13. We used the effect estimates of the 48 lead SNPs 23 

found to be associated with CRP in the HapMap GWAS, and the effect estimates of the four SNPs that 24 

were additionally found to be associated with CRP in the 1KG GWAS in a multiple instrument approach 25 

for the MR analyses (n=52 SNPs). Additionally, we separately studied the effect of rs2794520 at the CRP 26 
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locus to minimize the probability of horizontal pleiotropy that may be introduced in a multiple instrument 1 

approach. We tested the statistical significance of the association between the instrument and CRP using 2 

the formula:  3 

 4 

R2 is the variance explained of CRP by the genetic instrument (0.014 for the rs2794520 SNP and 0.065 for 5 

the 52-SNP score), n is the number of individuals included in the CRP GWAS, and k the number of 6 

variants included in the genetic score. The F statistic for the 52-SNP score was 273, and for the rs2794520 7 

SNP 2,902, indicating that both instruments were strong. 8 

For the clinical outcomes, we used summary statistics from the most recent meta-analysis of 9 

GWA studies. For diastolic and systolic blood pressure, we used data from the UK Biobank. The details of 10 

the outcome studies are summarized in Table S12. We implemented four different methods of MR 11 

analyses: Inverse-variance weighted method (IVW), MR-Egger, Weighted median (WM), and Penalized 12 

weighted median (PWM). We used the “TwoSampleMR” package in R for the MR analyses33. Further, we 13 

applied the Bonferroni method to correct for multiple testing (0.05/9 phenotypes = 5.6×10-3). When the Q-14 

statistic of the IVW analyses provided evidence for heterogeneity, the weighted median estimates were 15 

used for significance. The MR methods are described briefly below. 16 

Inverse-variance weighted (IVW): The causal estimate is obtained by regressing the SNP 17 

associations with the outcome on the SNP associations with the risk factor, with the intercept set to zero 18 

and weights being the inverse-variances of the SNP associations with the outcome. With a single genetic 19 

variant, the estimate is the ratio of coefficients betaY/betaX and the standard error is the first term of the 20 

delta method approximation betaYse/betaX. When all CRP-SNPs are valid IVs, the IVW estimates 21 

converge to the true causal effect. When one or more invalids IVs are present, (ie. one SNP has effect on 22 

outcome through a different pathway than CRP), the IVW estimate deviates from the true causal effect.  23 

MR-Egger: We used MR-Egger to account for potential unbalanced pleiotropy in the multiple 24 

variant instrument34. When unbalanced pleiotropy is present, an alternative effect (positive or negative) is 25 
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present between the SNP and the outcome that may bias the estimate of the causal association. The MR-1 

Egger method is similar to the IVW analysis, but does not force the intercept to pass through the origin. 2 

The slope of the MR-Egger regression provides the estimate of the causal association between CRP and 3 

the clinical outcome. An MR-Egger intercept that is significantly different from zero suggests directional 4 

pleiotropic effects that may bias uncorrected estimates of the causal effect. MR-Egger regression depends 5 

on the InSIDE (Instrument Strength Independent of Direct Effect) assumption, that states that the strengths 6 

of the effect of the SNP on the outcome is uncorrelated with the direct pleiotropic effect of the SNP on the 7 

outcome.  8 

Weighted median (WM) and penalized Weighted Median (PWM): We applied the median based 9 

method to provide robust estimates of causal association even in the presence of horizontal pleiotropy 10 

when up to 50% of the information contributed by the genetic variants is invalid35. In PWM analysis the 11 

effect of each variants is weighted by a factor that corresponds to the Q statistics (heterogeneity test) of 12 

the SNP; this means that most variants will not be affected by this correction, but the causal effect of the 13 

outlying variants, which are most likely to be invalid IVs, will be down-weighted.  14 

We displayed the individual SNP causal effect estimates and corresponding 95% confidence 15 

intervals in a forest plot. To assess whether one of the variants used in the genetic score had 16 

disproportionate effects, we performed “leave-one-out” analyses where one SNP at a time is removed 17 

from the score. We depicted the relationship between the SNP effect on CRP and the SNP effect on the 18 

clinical outcomes in a scatter plot, and plotted the individual SNP effect against the inverse of their 19 

standard error in a funnel plot. When unbalanced pleiotropy is absent, the causal effect estimates of the 20 

individual should center around the meta-analysis estimate in the funnel plot.   21 

We used the proportion of variance in CRP explained by the genetic instruments (0.014 for the 22 

rs2794520 SNP and 0.065 for the 52-SNP score) to perform power calculations for each outcome using 23 

the online tool mRnd36. We calculated the power to detect a relative 5%, 10%, 15%, and 20% difference in 24 

outcome risk. For example, a 10% difference refers to an OR of at least 0.90 or 1.10 in outcome risk 25 

(Table S13). 26 
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 1 

Results 2 

HapMap GWAS meta-analysis for CRP levels 3 

The HapMap meta-analysis identified 3,977 genome-wide significant variants at P<5×10-8 (QQ-plot 4 

Figure S1; Manhattan plot Figure S2), which mapped to 48 distinct loci (Table 1, Table S3). Of the 5 

previously reported 18 variants for CRP, 16 remained associated. Compared to the previous GWAS, the 6 

rs6901250 variant at the GPRC6A locus (P=0.09) and the rs4705952 variants at the IRF1 locus (P=2.7×10-7 

3) were not significant. The beta estimates for natural log-transformed CRP for each of the associated loci 8 

ranged from 0.020 to 0.229. We observed the strongest association for rs2794520 at the CRP gene 9 

(β=0.182 in the natural log-transformed CRP (mg/L) per copy increment in the coded allele, P=4.17×10-10 

523), followed by rs4420638 at the APOC1/E gene (β=0.229, P=1.23×10-305). Similarly to previous GWAS 11 

meta-analysis, the lead variant within the interleukin-6 receptor gene (IL6R) was rs4129267 (β=0.088, 12 

P=1.2×10-129). Related to the interleukin-6 pathway, we identified rs1880241 upstream of the IL6 gene (β= 13 

0.028, P=8.4×10-14). In addition to the previously described interleukin-1 signaling, the IL1RN-IL1F10 14 

locus (interleukin-1 receptor antagonist and interleukin-1 family member 10), we found rs9284725 within 15 

the interleukin-1 receptor 1 gene (IL1R1, β=0.02, P=7.3×10-11, Table 1). The sex-specific meta-analyses 16 

did not identify additional loci for CRP compared to the overall meta-analysis including both sexes, but at 17 

four genetic variants we found evidence for heterogeneity in effect estimates between sexes (Table S4), 18 

though the directions of associations were consistent.  19 

 20 

1KG GWAS meta-analysis for CRP levels 21 

In the 1KG meta-analysis, 8,002 variants were associated with CRP at P<5×10-8 (QQ-plot Figure S3; 22 

Manhattan plot Figure S4). This resulted in 40 distinct loci, of which 36 overlapped with the HapMap 23 

meta-analysis (Table 1). The lead variant at the CRP locus in the 1KG GWAS was rs4287174 (β=-0.185, 24 

P=1.95×-398), which is in high LD with rs2794520 (r2=0.98), the lead variant at the CRP locus in the 25 

HapMap GWAS. Among eight of the overlapping loci, the lead variant was at the same position in both 26 
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GWAS (rs1260326, rs1490384, rs10832027, rs1582763, rs7310409, rs2239222, rs340005, and 1 

rs1800961). Compared with HapMap, the four additional variants identified in 1KG were rs75460349, 2 

rs1514895, rs112635299, and rs1189402. The variants rs1514895 and rs1189402 were available in the 3 

HapMap GWAS, but were not associated at the genome-wide threshold (respectively P=1.2×10-7 and 4 

P=8.1×10-3). The two variants rs75460349 and rs112635299 were not available in the HapMap GWAS, 5 

nor were variants in high LD (r2<0.8). The rs75460349 is a low frequency variant with a coded allele 6 

frequency of 0.97 (β=0.086, P=4.5×10-10). Also rs112635299 near the SERPINA1/2 gene is a low 7 

frequency variant with a MAF of 0.02 (β=0.107, P=2.1×10-10). Adjustment for BMI in the 1KG GWAS 8 

(n=147,827) revealed six additional loci that were not associated with CRP in the HapMap and 1KG 9 

primary analyses (Table 1; Table S5, QQ-plot Figure S5; Manhattan plot Figure S6). The associations at 10 

three lead variants were much reduced after adjustment for BMI (rs1558902 (FTO), Padjusted=0.40; 11 

rs12995480 (TMEM18), Padjusted=0.02; rs64343 (ABO), Padjusted =1.0×10-7). Both the FTO and TMEM18 12 

gene are well-known obesity genes. Except for the FTO, TMEM18, and ABO loci, all distinct loci 13 

identified in the primary 1KG analysis were also associated with CRP in the BMI adjusted 1KG analysis. 14 

No genome-wide significant association was observed on the X-chromosome in the 1KG GWAS 15 

including 102,086 individuals.  16 

 17 

LD score regression 18 

The HapMap GWAS LD Score regression intercept was 1.03 (standard error: 0.013), and the 1KG 19 

intercept was 1.02 (standard error 0.011). This suggests that a small proportion of the inflation is 20 

attributable to confounding bias (~12% for the HapMap GWAS and ~13% for the 1KG GWAS). Hence, 21 

the vast majority of inflation is due to the polygenic architecture of circulating CRP levels. As depicted in 22 

Figure 1, CRP showed strong positive genetic correlations with anthropometric traits (e.g., BMI: Rg=0.43, 23 

P=5.4×10-15), glycemic phenotypes (e.g., type 2 diabetes Rg=0.33, P=3.1×10-6), lipid phenotypes (e.g., 24 

triglycerides Rg=0.29, P=7.9×10-5), and coronary artery disease (Rg=0.23, P=2.4×10-5) (Table S6). By 25 

comparison, CRP showed inverse genetic correlations with educational attainment (e.g., college 26 
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completion Rg=-0.27, P=9.2×10-7), lung function (e.g., forced vital capacity Rg=-0.24, P=4.6×10-12), and 1 

HDL-cholesterol (Rg=-0.30, P=4.8×10-9). 2 

 3 

Additional signals at distinct loci 4 

Approximate conditional analyses in the 1KG GWAS revealed additional signals at nine loci (Table S7). 5 

Five loci showed one secondary signal (IL6R, NLRP3, HNF1A, CD300LF, and APOE/APOC1), the 6 

PPP1R3B locus had two additional signals, the LEPR locus had three additional signals, and the SALL1 7 

locus had four additional signals, whereas the CRP locus showed a total of 13 distinct associated variants. 8 

Interestingly, the rs149520992 rare variant (MAF=0.01) mapping to the CRP locus showed an association 9 

at Pconditional=3.7×10-15 with β=-0.272 for the T-allele. The GCTA effect estimates for the ten distinct 10 

variants in the vicinity of the CRP gene identified in the 1KG conditional analysis are in high correlation 11 

with the effect estimates of these variants obtained from the RS-I and WGHS individual level data 12 

(rRS=0.97, and rWGHS=0.84), confirming the reliability of the GCTA estimates.  13 

 14 

Variance explained of CRP 15 

The lead variant at the CRP locus in both the HapMap (rs2794520) and 1KG (rs4287174) GWAS 16 

explained 1.4% of the variance in natural log-transformed CRP levels. The distinct variants at the CRP 17 

locus derived from the joint conditional analysis in the 1KG GWAS explained 4.3% of the variance. The 18 

lead variants at all distinct loci together explained 6.2% of the CRP variance in the HapMap GWAS, and 19 

6.5% in the 1KG GWAS. When we added the distinct variants at associated loci derived from the 20 

conditional analysis, the variance explained by all associated loci was 11.0% in the 1KG GWAS. 21 

 22 

Functional annotation 23 

We applied DEPICT and MAGMA analyses for functional annotation and biological interpretation of the 24 

findings. The DEPICT analysis included 9,497 genome-wide significant variants, covering 283 genes, and 25 

prioritized 55 candidate genes across 29 regions (FDR<0.05, Table S8). The prioritized genes included 26 
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IL6R mapping to the 1q21.3 locus (represented by rs4129267) and APCS to the 1q32.2 locus. 1 

Investigating 10,968 reconstituted gene sets for enrichment, DEPICT highlighted 583 (5.3%) gene sets to 2 

be significantly enriched among CRP-associated loci at FDR<0.05 (Table S9). Using further clustering, 3 

we identified 66 groups of gene sets that substantially correlated and clustered in two sets, one mainly 4 

comprised of immune pathways, and the other enriched for metabolic pathways (Figure 2). In Figure 3, we 5 

present the prioritized genes and the most significant gene sets. We found synovial fluid, liver tissue, and 6 

monocytes to be enriched for the expression of the prioritized genes (FDR<0.05). The MAGMA analysis 7 

was applied on the HapMap GWAS, identifying five significantly enriched gene sets (Bonferroni-8 

corrected P<0.05, Table S10). Results included consequences of gene EGF induction, positive regulation 9 

of gene expression, and IL-6 signaling pathway, in line with the most strongly prioritized gene from 10 

DEPICT gene prioritization. MAGMA analysis prioritized liver as a sole enriched tissue (P=0.048). 11 

To prioritize the most likely trait-relevant gene for each GWAS locus, we interrogated the GWAS 12 

data with cis-eQTL data identified from 44 post-mortem tissues and a large whole blood eQTL meta-13 

analysis using colocalization analysis (Table S11). Figure S7 presents the GWAS loci that colocalize with 14 

cis-eQTLs with the corresponding tissue, the colocalizing gene, and the posterior probability of one shared 15 

underlying variant driving both associations. Out of the 58 lead gSNPs, 25 SNPs (43%) showed evidence 16 

of colocalization with one or more local eQTL effects (posterior probability >0.9). For example, the 17 

rs2293476 locus colocalizes with several cis-eQTL effects for PABC4, and pseudogenes OXCT2P1, 18 

RP11−69E11.4, and RP11−69E11.8. The rs10925027 locus shows colocalization with cis-eQTL effect 19 

for NLRP3, exclusively in the highly powered blood meta-analysis. Out of 25 loci, for nine loci there was 20 

only one colocalizing gene. Altogether, gSNP-associated cis-eQTL effects were present in up to 14 21 

different tissues, with whole blood, esophagus mucosa, skin, and tibial nerve being the most frequent. 22 

 23 

Mendelian randomization analyses 24 

We observed a protective effect of genetically determined variance in CRP with schizophrenia with an 25 

IVW odds ratio (OR) of the 52-SNP score of 0.89 (95%CI: 0.81-0.97, P=6.6×10-3) (Tables S14-S15, 26 
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Figure S8-S11). The MR-Egger intercept was compatible with no unbalanced pleiotropy (P=0.48). The 1 

estimate of the rs2794520 variant was comparable to the 52-SNP score estimate (OR 0.89, 95% CI 0.84-2 

0.94, P=0.046). The WM and PWM estimates were comparable to the IVW estimate (ORWM 0.89, 3 

PWM=5.1×10-3; ORPWM 0.89, PPWM=4.4×10-3). The “leave-one-out” analysis provided evidence that no 4 

single variant was driving the IVW point estimate (Figure S10). The causal OR between the rs2794520 5 

variant and BD was 1.33 (95% CI 1.03-1.73, P=0.032). For the 52-SNP score, the IVW OR was 1.16 6 

(95% CI 1.00-1.35, P=0.054). The MR-Egger intercept was compatible with unbalanced pleiotropy 7 

(P=0.049). The MR-Egger estimate OR of the 52-SNP score was comparable to the rs2794520 estimate 8 

(OR 1.36, 95%CI 1.1.-1.69, P=6.7×10-3), as were the WM and PWM estimates (ORWM 1.33, PWM=3.4×10-9 

3; ORPWM 1.32, PPWM=4.3×10-3). 10 

 We observed evidence against a causal association between either CRP rs2794520 (OR 1.01, 11 

95%CI 0.91-1.12, P=0.88), or the 52-SNP instrument (OR 0.96, 95%CI 0.84-1.09, P=0.51) and CAD. An 12 

Egger intercept of 0.014 suggested presence of unbalanced pleiotropy (P=5.8×10-3), with an MR-Egger 13 

causal estimate of OR 0.79 (95%CI 0.67-0.94, P=0.012). However, the WM and PWM showed no 14 

association between CRP and CAD. For AD, there was evidence against an association with rs2794520 15 

(P=0.592), though the IVW OR showed a protective effect (OR 0.51, 95%CI 0.30-0.88, P=0.015). The 16 

Egger intercept of 0.046 suggested unbalanced pleiotropy (P=0.042), and the MR-Egger OR was 0.27 17 

(95%CI 0.12-0.60). However, the association was null for the WM and PWM analyses (ORWM 1.04, 18 

PWM=0.61; ORPWM 1.05, PPWM=0.53). We observed evidence against an effect for CD, DBP, IBD, RA, and 19 

SBP for the rs2794520 variant and the IVW, MR-Egger, WM, and PWM analyses. 20 

 21 

Discussion 22 

Using genomic data from >200,000 individuals, we have identified 58 distinct signals for circulating CRP 23 

levels, confirming 16 previously identified CRP loci. BMI-adjusted GWAS suggested that the vast 24 

majority of genetic risk variants affect CRP levels independent of its main determinant (BMI). The 25 

genome-wide in silico functional annotation analysis highlights 55 genes which are likely to explain the 26 
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association of 29 signals to CRP levels. The data identified gene sets involved in the biology of immune 1 

system and liver as main regulators of serum CRP levels. Mendelian randomization analyses supported 2 

causal associations of genetically increased CRP with a protective effect on schizophrenia, and increased 3 

risk of bipolar disorder.  4 

Obesity is one of the main determinants of chronic low-grade inflammation in the general 5 

population37; 38. Adjustment for BMI in the CRP GWAS abolished the association at only three lead 6 

variants, suggesting that the genetic regulation of chronic low-grade inflammation is largely independent 7 

from BMI. Notably, BMI adjustment resulted in the identification of six variants that were not associated 8 

with CRP in the BMI-unadjusted GWAS. This supports the notion that adjustment for covariates that 9 

explain phenotypic variance may improve the statistical power in linear model analyses of quantitative 10 

traits39. Although adjustment for heritable correlated traits in GWAS may bias effect estimates (collider 11 

bias)40, there is consistent evidence in the literature that BMI has a causal direct effect on CRP levels41, 12 

and therefore, collider bias in CRP GWAS adjusted for BMI is less likely.  13 

The sex-stratified analyses revealed significant heterogeneity in effect estimates between men and 14 

women at only four lead variants, which represent less than 10% of all CRP loci. Even among these four 15 

loci the effect directions were similar, thus the heterogeneity was limited to effect sizes. The data suggest 16 

that the difference between men and women in CRP levels is less likely to be explained by genetic factors. 17 

Furthermore, two signals identified in the former HapMap GWAS of CRP levels were not significant in 18 

the current HapMap GWAS. The effect estimates in the current analyses were too small to identify with 19 

our sample size. 20 

The top variant at the CRP locus in both the HapMap and 1KG GWAS explained 1.4% of the 21 

variance in circulating CRP levels. The approximate conditional analysis resulted in 13 variants jointly 22 

associated within the CRP locus in the 1KG GWAS. With respect to locus definition, we used a 23 

conservative distance criterion compared to other GWA studies that often use ±500kb surrounding the 24 

GWAS peak42. Here, we used the criterion that the minimum distance between the boundaries of loci is 25 

500kb. In order to identify further variants associated with CRP levels, we performed approximate 26 
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conditional analyses resulting in multiple putative additional variants, also inside and near genes that were 1 

not identified in the primary GWAS. As an example, the CRP locus spanned >2MB according to our 2 

criterion. Approximate conditional analysis revealed that two variants, namely rs3027012 near DARC and 3 

rs56288844 near FCER1A, both downstream of the CRP gene, were associated with CRP levels. 4 

Furthermore, upstream of CRP, we identified a variant near FCGR2A (Immunoglobulin G Fc Receptor II). 5 

These results show that for a given lead variant, potentially multiple causal loci, here DARC, FCER1A, 6 

and FCGRA2, alongside CRP contribute to chronic low-grade inflammation and variation in circulating 7 

CRP levels. 8 

DEPICT analysis provided further evidence that the genes annotated to the associated CRP 9 

variants mainly cluster in the immune and liver biological systems. Notably, the gene set “inflammatory 10 

response”, which captures both immune response and liver metabolism, was the main connector network 11 

between the two networks. This is in line with the observation that CRP is mainly produced by liver cells 12 

in response to inflammatory cytokines during acute and chronic inflammation43. Interestingly, the analysis 13 

highlighted iron homeostasis as an enriched gene set. In agreement, the conditional analysis highlighted a 14 

distinct genetic association at the hemochromatosis gene HFE, a transmembrane protein of the major 15 

histocompatibility complex (MHC) class I family. Previous studies show that iron metabolism plays a 16 

pivotal role in inflammation44; 45. However, genetic pleiotropy may highlight co-regulated networks in 17 

pathway analysis that are not causal to inflammation per se. It is also important to note that the results of 18 

DEPICT analyses apply to reconstituted gene sets which may sometimes have slightly different overlaying 19 

biological theme than the original gene set annotation. 20 

The MR analyses validate previous evidence that genetically-elevated CRP is protective for the 21 

risk of schizophrenia13; 46, although observational data suggest a positive association between CRP and 22 

risk of schizophrenia47. For bipolar disorder we observed a positive causal effect, which is in line with 23 

previous MR and observational studies13; 48. Although the causal underlying mechanisms remain to be 24 

elucidated, a hypothesis for the schizophrenia observation might be the immune response to infections 25 

early in life. Levels of acute-phase response proteins in dry blood spots collected at birth are lower for 26 
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patients with non-affective psychosis, which includes schizophrenia, compared to controls, suggesting a 1 

weaker immune response at birth49. Also, neonates that have been exposed to a maternal infection and 2 

have low levels of acute-phase response proteins, have a higher risk of schizophrenia50. Altogether, the 3 

evidence suggests that a deficient immune response may contribute to chronic infection in children and the 4 

development of schizophrenia. For AD and CAD, the Egger intercept showed evidence of unbalanced 5 

pleiotropy and the Egger estimate showed a protective effect of CRP on the risk of AD and CAD. 6 

However, for both outcomes, the effects of the WM and PWM analyses, as well as analyses using the 7 

single rs2794520 variant (which is least likely to be affected by pleiotropy) were null. The MR-Egger 8 

estimate relies on the InSIDE assumption which states that the strength of the association between the 9 

genetic variants and CRP is independent from the strength of the direct pleiotropic effects of the genetic 10 

variants on the outcome. This assumption may be violated when the genetic variants are associated with a 11 

confounder of the CRP-outcome association. Such a scenario may occur when the genetic variants are 12 

associated with an exposure that is causally upstream of the exposure under study. In the context of the 13 

association of CRP with AD and CAD, this could be lipids or glycemic phenotypes. Several genetic 14 

variants used in the 52-SNP instrument are associated with metabolic phenotypes that may affect CRP 15 

levels. In agreement, the WM and PWM, in which the InSIDE assumption is relaxed, and the single 16 

variant analysis showed no association. Furthermore, the observation that CRP is not causally related to 17 

CAD in the MR analyses is in comparison to previous published studies51. Power calculation showed that 18 

we had 100% power to detect a 10% difference in CAD risk, thus the probability of a false negative 19 

finding is small. Also, CRP is associated with future CAD in observational studies, and randomized trials 20 

have shown a beneficial effect of lowering inflammation using statins52 and canakinumab53 on CAD risk, 21 

but this effect is unlikely to be attributable to CRP. 22 

The strengths of our study are the use of a very large sample size for CRP and the use of both 23 

HapMap and 1KG imputed data. Furthermore, we conducted sex-specific and BMI-adjusted analyses to 24 

study the effect of sex and body mass on the associations between genetic variants and CRP. To maximize 25 

power and to efficiently use the data, we meta-analyzed all available samples in a discovery setting 26 
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without replication. The consistent association of the variants in >50 studies at a strict Bonferroni 1 

corrected threshold provide confidence that our findings represent true associations. We used both 2 

HapMap and 1KG imputed data to identify genetic variants for circulating CRP levels. At the start of the 3 

project, more studies had HapMap imputed data available. Hence, the sample size and thus power in the 4 

HapMap GWAS was higher compared to the 1KG. Also, HapMap may identify variants that are not 5 

identified in 1KG GWAS54. Nevertheless, 1KG offers better coverage of uncommon variants and includes 6 

INDELs, which are not included in the HapMap reference panel. Including both reference panels, we used 7 

all available samples and maximized the possibility to identify genetic variants for CRP, both common 8 

and uncommon.  9 

However, we note limitations to our study. GWAS merely identify loci associated with complex 10 

phenotypes and the identification of causal genes remains challenging. We only included individuals of 11 

European ancestry; the generalizability of our findings to other races/ethnicities is uncertain. In addition, 12 

although our analyses provided support for causal associations, we acknowledge that we may not have 13 

identified the causal variants and we may not have eliminated residual confounding. The colocalisation 14 

analyses provide evidence for colocalisation of CRP GWAS signals and eQTLs, however, it does not 15 

provide evidence that the GWAS signal is functioning on CRP through the gene expression. We further 16 

note that the method assumes identical LD-structure from the GWAS and eQTL datasets. As there are 17 

~14% of non-European samples in the full GTEx dataset, this assumption might be violated for some 18 

tissues. Last, we meta-analyzed all available samples in one meta-analysis and did not replicate our 19 

findings in an independent sample. Therefore, our findings may need replication. 20 

In conclusion, we performed a large GWAS meta-analysis to identify genetic loci associated with 21 

circulating CRP levels, a sensitive marker of chronic low-grade inflammation, and found support for a 22 

causal role of CRP with a decreased risk of schizophrenia and higher risk of bipolar disorder. As 23 

inflammation is implicated in the pathogenesis of multiple complex diseases, the new insights into the 24 

biology of inflammation obtained in the current study may contribute to future therapies and interventions. 25 

  26 
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Figure Legends 4 

Figure 1. Genome-wide genetic correlation between serum CRP levels and different phenotypes and 5 

clinical diseases. The genetic correlation and its standard error are estimated with linkage disequilibrium 6 

score regression analysis. ADHD, attention deficit and hyperactivity disorder; FEV1, forced expiratory 7 

volume in 1 second; FVC, forced vital capacity; HOMA-B, homeostatic model assessment β-cell function; 8 

HOMA-IR, homeostatic model assessment insulin resistance; HbA1C, Hemoglobin A1c.  9 

 10 

Figure 2. Results of the DEPICT functional annotation analysis. Each node represents exemplar gene 11 

set from Affinity Propagation clustering and links represent corresponding Pearson correlation coefficients 12 

between individual enriched gene sets (only the links with r>0.3 are shown). As an example, outlined are 13 

the individual gene sets inside two clusters (“Inflammatory response” and “negative regulation of 14 

peptidase activity”). 15 

 16 

Figure 3. Heatmap representing the results of DEPICT functional annotation analysis. Each row 17 

represents enriched (FDR < 0.05) gene sets and each column represents prioritized (FDR<0.05) genes. 18 

Colors on the heatmap represent each gene´s contribution to gene set enrichment (depicted as Z-score, 19 

only top 10 highest Z-scores per gene set are visualized). Sidebars represent p-values for GWAS, gene set 20 

enrichment (GSE), and gene prioritization (nominal P-value on log10 scale). Top 10 gene sets per 21 

annotation category are visualized. GO, Gene Ontology; KE, Kyoto Encyclopedia of Gene and Genomes; 22 

RE, REACTOME pathways; MP, Mouse Phenotypes; PI, protein-protein interactions.  23 
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Table 1. Newly identified loci associated with C-reactive protein. 24 

Variant Chr Position Coded allele Coded Allele freq Beta SE P-value Closest Gene 1KG lead variant 

Loci found in the HapMap GWAS       
rs469772 1 91530305 T 0.19 -0.031 0.005 5.54×10-12 ZNF644 rs469882 
rs12995480 2 629881 T 0.17 -0.031 0.005 1.24×10-10 TMEM18 rs62105327 
rs4246598 2 88438050 A 0.46 0.022 0.004 5.11×10-10 FABP1 - 
rs9284725 2 102744854 C 0.24 0.027 0.004 7.34×10-11 IL1R1 rs1115282 
rs1441169 2 214033530 G 0.53 -0.025 0.004 2.27×10-11 IKZF2 - 
rs2352975 3 49891885 C 0.30 0.025 0.004 6.43×10-10 TRAIP rs10049413 
rs17658229 5 172191052 C 0.05 0.056 0.010 5.50×10-09 DUSP1 rs34471628 
rs9271608 6 32591588 G 0.22 0.042 0.005 2.33×10-17 HLA-DQA1 rs2647062 
rs12202641 6 116314634 T 0.39 -0.023 0.004 3.00×10-10 FRK - 
rs1490384 6 126851160 T 0.51 -0.025 0.004 2.65×10-12 C6orf173 rs1490384 
rs9385532 6 130371227 T 0.33 -0.026 0.004 1.90×10-11 L3MBTL3 - 
rs1880241 7 22759469 G 0.48 -0.028 0.004 8.41×10-14 IL6 rs13241897 
rs2710804 7 36084529 C 0.37 0.021 0.004 1.30×10-08 KIAA1706 - 
rs2064009 8 117007850 C 0.42 -0.027 0.004 2.28×10-14 TRPS1 rs6987444 
rs2891677 8 126344208 C 0.46 -0.020 0.004 1.59×10-08 NSMCE2 rs10956251 
rs643434 9 136142355 A 0.37 0.023 0.004 1.02×10-09 ABO 9:136146061 
rs1051338 10 91007360 G 0.31 0.024 0.004 2.27×10-09 LIPA - 
rs10832027 11 13357183 G 0.33 -0.026 0.004 4.43×10-12 ARNTL rs10832027 
rs10838687 11 47312892 G 0.22 -0.031 0.004 9.12×10-13 MADD rs7125468 
rs1582763 11 60021948 A 0.37 -0.022 0.004 2.37×10-09 MS4A4A rs1582763 
rs7121935 11 72496148 A 0.38 -0.022 0.004 5.28×10-09 STARD10 - 
rs11108056 12 95855385 G 0.42 -0.028 0.004 5.42×10-14 METAP2 rs12813389 
rs2239222 14 73011885 G 0.36 0.035 0.004 9.87×10-20 RGS6 rs2239222 
rs4774590 15 51745277 A 0.35 -0.022 0.004 2.71×10-08 DMXL2 rs1189402 
rs1558902 16 53803574 A 0.41 0.034 0.004 5.20×10-20 FTO rs55872725 
rs178810 17 16097430 T 0.56 0.020 0.004 2.95×10-08 NCOR1 - 
rs10512597 17 72699833 T 0.18 -0.037 0.005 4.44×10-14 CD300LF,RAB37 rs2384955 
rs4092465 18 55080437 A 0.35 -0.027 0.004 3.11×10-10 ONECUT2 - 
rs12960928 18 57897803 C 0.27 0.024 0.004 1.91×10-09 MC4R - 
rs2315008 20 62343956 T 0.31 -0.023 0.004 5.36×10-10 ZGPAT - 
rs2836878 21 40465534 G 0.27 0.043 0.004 7.71×10-26 DSCR2 rs4817984 
rs6001193 22 39074737 G 0.35 -0.028 0.004 6.53×10-14 TOMM22 rs4821816 
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Additional loci found in the 1KG GWAS       
rs75460349 1 27180088 A 0.97 0.086 0.014 4.50×10-10 ZDHHC18  
rs1514895 3 170705693 A 0.71 -0.027 0.004 2.70×10-09 EIF5A2  
rs112635299 14 94838142 T 0.02 -0.107 0.017 2.10×10-10 SERPINA1/2  
rs1189402 15 53728154 A 0.62 0.025 0.004 3.90×10-09 ONECUT1  
        
Additional loci found in the BMI adjusted 1KG GWAS     
3:47431869 3 47431869 D 0.59 0.024 0.004 1.10×10-08 PTPN23  
rs687339 3 135932359 T 0.78 -0.030 0.005 2.80×10-10 MSL2  
rs7795281 7 74122854 A 0.76 0.028 0.005 3.10×10-08 GTF2I  
rs1736060 8 11664738 T 0.60 0.029 0.004 2.60×10-13 FDFT1  
17:58001690 17 58001690 D 0.44 -0.026 0.004 9.50×10-10 RPS6KB1  
rs9611441 22 41339367 C 0.49 -0.022 0.004 1.40×10-08 XPNPEP3  

β coefficient represents 1-unit change in the natural log-transformed CRP (mg/L) per copy increment in the allele A1. Freq is the frequency of A1. Position is 25 
according to Hg19. When a variant is located within a gene, that gene is reported in the closest gene column, otherwise the closest gene. The HapMap variants 26 
are presented, except for the 1KG additional findings. For the HapMap loci, the lead variant from the 1KG GWAS is presented when the locus was also found in 27 
the 1KG GWAS. 28 


