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Abstract

Acute toxicity is one of the most challenging properties to predict purely with com-

putational methods due to its direct relationship to biological interactions. Moreover,

toxicity can be represented by different endpoints: it can be measured for different

species using different types of administration, etc., and it is questionable if the knowl-

edge transfer between endpoints is possible. We performed a comparative study of

prediction multi-task toxicity for a broad chemical space using different descriptors

and modeling algorithms and applied multi-task learning for a large toxicity dataset

extracted from the Registry of Toxic Effects of Chemical Substances (RTECS). We

demonstrated that multi-task modeling provides significant improvement over single-

output models and other machine learning methods. Our research reveals that multi-
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task learning can be very useful to improve the quality of acute toxicity modeling and

raises a discussion about the usage of multi-task approaches for regulation purposes.

Introduction

Toxicity is defined as the potential for a chemical compound to cause injury.1 Accurate

prediction of toxicity of organic compounds is one of the most challenging tasks in medicinal

chemistry and pharmacology. According to a study,2 nearly 30% of drug candidates fail in

the first stage of clinical trials due to a presence of non-desired side effects, which results in

a cost increase for pharmaceutical industry. This fact emphasizes that current methods for

‘in-silico‘ toxicity estimation, as well as experimental techniques, have serious shortcomings

and that development of the new methods is of the utmost interest. Because it is involved in

many organisms systems and metabolic pathways, toxicity can not be easily modeled solely

by calculation. Moreover, the methodology of the experiments that measure toxicity and

the statistical analysis of the data obtained is under criticism.3,4

Toxicity estimation can be performed in two main ways: in-vivo using rodent models

or clinical trials data and in-vitro using cell-based bioassays. The former approach allows

for the estimation of the toxic effect, at organism level, producing comprehensive results,

and is widely used in preclinical tests. It should be noted that rodent models are not fully

representative of humans and their use can thus result in unexpected side effects, which

can be observed during clinical trials or even after drug approval.5 The fact that in-vitro

tests are relatively inexpensive facilitates automation and makes their use possible in high-

throughput screening (HTS).6 The different types of toxicity mechanisms can be detected by

using different assay types. Currently, there is great demand for development of new reliable

relevant assays for, e.g., nephrotoxicity.7 However, due to their biological complexity, the in

vitro tests do not also always provide a reliable estimation of the in vivo toxicity because

human cell-based data used in in vivo testing may not take into account the general systemic
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toxicity for the whole organism. At the same time, the in-vivo based rodent models do not

always correctly represent human toxicity. Thus there is a strong interest in and hope

that the development of computational techniques could account for the drawbacks of these

methods and help to reliably predict toxicity.8

Currently, a large amount of information has been accumulated and kept in commercial

and open source databases. Some examples of the open source databases are the TOXNET

database9 and DSSTox,10 which includes Tox21 high throughput data and CheMBL11 database

containing approximately 15 million of bioactivities. Among the proprietary databases, the

Registry of Toxic Effects of Chemical Substances (RTECS)12 database is the most valu-

able, and it contains information about 187 000 chemical substances. It has in-vivo data for

acute toxicity, skin irritation, tumorogenic properties and other effects measured for different

organisms such as rodents, rabbits, and many others.

The recent advances in accessibility of bioactivity data in these and other databases

prompted the development of high quality prognostic models created using various ma-

chine learning methods. For example, the PASS software (and web-service)13 based on the

Naive Bayes approach and trained using ChEMBL, demonstrates good reliability when per-

forming the classification task on a set of more than 2500 protein targets. The EMolTox

web-service14 predicts different types of toxicity using random forests and conformational

prediction as measure of confidence and simultaneously visualizes the ToxAlert substruc-

tures on the molecular graph. The ProTox web-server is another tool for prediction of acute

toxicity and other types of toxicity,15 which utilizes a nearest neighbor approach combined

with fingerprint similarity assessment. There is a number of models constructed for a narrow

class of chemical compound16–18 or the certain model organism,19,20 however, the applica-

bility domain of such models is limited. The toxicity of chemical compounds is estimated

using different types of biological assays which describe various toxic effects (neurotoxic-

ity, cardiotoxicity, etc), model organisms (rodents, dogs, monkeys), or the toxicity outcome

(LD50, LD100). Only a few compounds are investigated in several assays and unavailability
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of experimental data in all assays may prevent detection of their toxicity. However, since the

toxicity datasets are correlated, we can expect that such correlations could help to develop

models with higher predictivity for each datapoint by modeling such datasets simultane-

ously (multi-task learning). The previously mentioned RTECS dataset, which contains data

for different species and endpoints, is especially interesting for such a study. However, this

dataset is not widely used for the development of predictive models. We are only aware that

part of it was used for mapping and chemical space visualization of the IDDB dataset.21 In

this study we have addressed this question by using multi-task learning22–24 with state of

the art machine learning methods.

Materials and methods

Dataset

We used RTECS12 database version 2018.1 to extract organic compounds with acute toxi-

city records available. Since the structures of organic compounds are not presented in the

database, we extracted them from PubChem25 using Chemical Abstract Structure (CAS)

registration numbers. The non-organic compounds, plant extracts, parts of biological com-

pounds, and compounds containing elements other than (C, H, O, N, P, S, F, Cl, Br, I) were

ignored.

The goal of this study was to examinate the toxic effects of the organic compounds.

However, many compounds were reported in the database as salts or as mixtures, and some

of the counterions are toxic themselves, e.g. methylsulphate ion (CH3OSO –
4 ). Their toxicity

could interfere with the interpretation of the toxicity of the organic part. Therefore, only

compounds with non-toxic counterions listed in Figure 1 were kept in the database. The

compounds with other counterions and compounds with mixtures were eliminated. We also

eliminated all polymeric substances. For the salts which were kept in the database, only the

organic part was used to generate descriptors.
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After the preprocessing stage, all compounds were grouped for the same toxicity type by

two parameters: the route of administration and the animal species used for the experiment.

We removed all records that had less than 300 reported measurements for each group to

reduce the dimensionality of the output. As the result, a database with 129,142 toxicity

measurements was created. It consists of 87,064 unique molecular structures and 29 unique

endpoints. The sparsity (the percentage of the filled values) of the data matrix is 5.12%.

The information on the endpoints is summarized in Table 1
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Figure 1: Ions considered to be nontoxic

Molecular descriptors

Different descriptor sets may have different performance in the modelling of toxicity.26,27

The investigation of different sets of descriptors for the performance of single and multi-task

models could help better to understand whether the performance of models depends on the

used descriptor sets. Therefore, we calculated a number of molecular descriptor sets which

are provided by the OCHEM platform. A short description of the descriptors used is given

in Table 2.

Machine learning methods

In this work we used Deep learning Neural Networks (DNN) as well as several other popular

machine methods that are gaining a lot of popularity in machine learning community. Below,
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Table 1: Endpoints extracted from RTECS dataset

Species Administration Type of Toxicity No. of records
Guinea pig Oral Lethal Dose Fifty 799
Mammal, species unid. Unreported Lethal Dose Fifty 1121
Man Oral Toxic Dose Low 512
Mouse Intraperitoneal Lethal Dose Fifty 37202
Mouse Intraperitoneal Lethal Dose Low 2965
Mouse Intraperitoneal Toxic Dose Low 1057
Mouse Intravenous Lethal Dose Fifty 17742
Mouse Oral Lethal Dose Fifty 24355
Mouse Oral Lethal Dose Low 1565
Mouse Oral Toxic Dose Low 646
Mouse Subcutaneous Lethal Dose Fifty 7221
Mouse Subcutaneous Lethal Dose Low 921
Mouse Unreported Lethal Dose Fifty 1804
Rat Intraperitoneal Lethal Dose Fifty 5041
Rat Intraperitoneal Lethal Dose Low 1029
Rat Intraperitoneal Toxic Dose Low 1117
Rat Intravenous Lethal Dose Fifty 2538
Rat Intravenous Toxic Dose Low 608
Rat Oral Lethal Dose Fifty 10743
Rat Oral Lethal Dose Low 966
Rat Oral Toxic Dose Low 955
Rat Subcutaneous Lethal Dose Fifty 2014
Rat Subcutaneous Toxic Dose Low 555
Rat Skin Lethal Dose Fifty 930
Rat Unreported Lethal Dose Fifty 838
Rabbit Intravenous Lethal Dose Fifty 764
Rabbit Oral Lethal Dose Fifty 910
Rabbit Skin Lethal Dose Fifty 1734
Woman Oral Toxic Dose Low 490
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Table 2: The descriptors used in our experiment. Several descriptor blocks that are indicated
by “(3D)” required 3D representation of molecules, which was calculated by using 2D to 3D
structure conversion using Corina program.

Descriptor Short description
PyDescriptor (3D)28 A PyMOL-based plugin for calculations different groups of descrip-

tors
Dragon6 (3D)29 Descriptors provided by Dragon 6 program
SIRMS30 Calculates simplexes, which are n-atoms fragments of a xed com-

position, structure, chirality and symmetry
StructuralAlerts31 Presence of certain sub-fragments in molecular graphs which are

believed to be related to toxicity of organic compounds
QNPR32 Uses substrings of SMILES as a representation of molecules
Spectrophores (3D)33 Spectrophores are one-dimensional descriptors that describe the

three-dimensional molecular fields surrounding a molecule
Adriana (3D) The descriptors provided by Adriana.CODE program
Inductive (3D)34 Descriptors based on inductive and steric effects of atoms
Chemaxon (3D) A subset of descriptors calculated by Chemaxon

(www.chemaxon.com) module in OCHEM
Mera and Mesry (3D)35 3D descriptors of molecules
GSFrag35 Descriptors calculated by GSFRAG program (the occurrence num-

bers of certain special fragments on k=2,...,10 vertices in a molec-
ular graph)

Fragmentor36 Molecular fragments which contains from 2 to 4 atoms genereted
by ISIDA module in OCHEM

ALogPS,37,41 OEstate42 Prediction of logP by ALogPS2.1 program in combination with
OEstate descriptors which are based on electrostatic properties of
atoms and bonds

CDK2 (3D)43 Chemistry development kit descriptors, version 2.0
Morgan fingerprints38,39 Morgan (circular) fingerprints of radius two (which corresponds to

ECFP438) calculated by RDKit.40
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we provide a brief overview of these methods:

Deep neural networks: DNN are now the state of the art methods for the development

of models across different areas of science and technology. Their efficiency was confirmed for

bioinformatics , medicinal applications (e.g., tissue image analysis and recognition of patholo-

gies from voice analysis), prediction of chemical compounds properties, and other areas. In

some cases these approaches provided higher prediction accuracy compared to all previously

published models. Moreover, it was shown that further improvement of these methods could

come from their application to multi-task datasets. An artificial neural network is a function

that maps points from the input space to the output space. Deep ANNs commonly consists

of several sequential layers where each layer represents linear vector transformation Wx+ b

where W – is a matrix of tunable weights, b – is a bias vector, followed by a non-linear

transformation function (i.e. sigmoid). The training procedures use several techniques, such

batch normalization44 and dropout,45 which help to achieve faster convergence and prevent

overfitting. Deep neural networks are also a good choice for multi-tasked approached due to

their simplicity of implementation and the ability to handle a loss function explicitly. In our

model each endpoint was represented as separate output of a DNN as it is shown on Figure

2.

The architecture and training parameters are given in the Supporting Information for

the article. We implemented our DNN in the Chainer46 framework and included one into

the OCHEM47 platform.

XGBoost: Gradient boosted trees is one of the most prominent approaches in data mining.

This algorithm frequently becomes the leader in the Kaggle data science competition. It was

shown that XGBoost can be very efficient for processing large chemical dataset in terms of

accuracy and speed of computation.48 On each iteration of XGBoost a new decision tree is

constructed to fit the residuals of the model obtained at the previous stage.

K-nearest neighbors: is a popular method for QSAR/QSPR modeling in which the pre-

diction is calculated as a mean (or weighted sum) of N compounds that are the nearest ones
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Figure 2: Representation of endpoints as outputs of a deep neural network.
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to the compound under investigation in some descriptor space.49 The idea is close to chem-

ical paradigm that similar compounds have lookalike properties. This method is frequently

used in chemical modeling especially for small datasets.50,51

Random Forest: this method uses the set (forest) of the simple classifiers or regressors,

namely decision trees.52 This method has been heavily used in chemoinformatics for the

last decade before the rise of deep learning due to a long list of advantages, particularly

the performance of modelling, the speed of computation, and the ability to use default

parameters or parameters with minimal tuning. It should be mentioned that this method

has a long history of usage for toxicity prediction.53 54

Consensus: models frequently improve the quality of predictions of toxicity of single mod-

els by combining top-ranked models.55 We constructed consensus models by averaging of the

predictions of top five individual models.

Model validation and statistical performance measurement

A number of common metrics to evaluate a statistical performance have been used: Root

Mean Square Error (RMSE), Mean Absolute Error (MAE) and R2 in accordance with for-

mulas below:

RMSE =

√∑T
i (ŷi − yi)2

T

MAE =

∑T
i |ŷi − yi|
T

R2 = 1−
∑T

i (ŷi − yi)2∑T
i (yi − y)2

where ŷi is a predicted value, yi is a real value, y is a mean value over all samples, and

T is the number of samples. Overfitting of machine learning algorithms is a well-known

problem resulting in inadequate performance estimations.56 To combat with this problem

and estimate the statistical performance in a robust way a 5-fold cross-validation routine has

been carried out for all models in this study. A graphical explanation of a cross-validation

10



procedure is given in Figure 3.

Figure 3: The scheme of 5-fold cross-validation procedure. On each fold 4
5

of a dataset
becomes a training set and 1

5
becomes a test set, sliding over folds. The cross-validation is

done based on molecules and thus all toxicity values for the same molecules are within the
same set always.

It should be noted that OCHEM develops a new model on each validation step without

using any information about the test compounds, which are only predicted following model

developments. This provides correct validation (identical to the use of so-called “external

sets”) since no information about the test molecules is used to guide model development.

Results and discussion

The description of the dataset chemical space

For the description of the whole dataset, we took the highest value across all endpoints for

each molecule. For the generation of the 2D chemical space representation the calculated

RDKit40 circular fingerprints (4096 bit vectors) based on the standardized SMILES molecular

representation (molvs python package) were embedded into the 2D space using the t-SNE

method.57 A pairwise distance matrix was calculated using the Dice metric, and the default

values were chosen for parameters of the algorithm. Fig. 4 shows the results of the chemical

11



Figure 4: The RTECS chemical space visualization. Each point stands for the one molecular
structure and its color indicates the acute toxicity values in log(mol/kg).
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space embedded in the 2D space. Each point corresponds to a chemical structure and

the color denotes the toxicity values according to the palette. Some of the toxic clusters

are highlighted by the rectangular shapes and their representative members are visualized

in Figure 4. We provide the description of several clusters composed from the relatively

toxic molecules. The enlarged image of cluster K is given for clarity and demonstrates its

composition from the hydroxytriptamine derivatives. Arylcarbamate (neostigmine derivative

is shown as a representative cluster member) derivatives are embedded into cluster A and

their toxic effects may be explained by the cholinesterase inhibition. Cluster B is composed

of possible nicotinic acetylcholine receptor ligands. The derivatives of the 3-quinuclidinyl

benzilate which is a potent muscarinic anticholinergic agent are the major members of cluster

C. Cluster D, similarly to cluster B, is composed of compounds based on the two quarternary

amine groups connected by a linker. Phenotiazine derivatives acting on a number of different

targets and widely used as antipsychotic agents earlier are the major components of cluster

E. Phencyclidine derivatives (NMDA-receptor channel blocker) are included in cluster F.

Possible alkylating agents and organophosphorus compounds were grouped in clusters G and

H, respectively. Cluster I is composed of the adrenoreceptor ligands and the propranolol

structure is shown for example in Figure 4. And isoquinoline derivatives belong to cluster

J. This result shows that toxic compounds are grouped by similar structural features and

neighbor compounds tend to have similar toxicity.

Correlation analysis of endpoints

Previous studies58 pointed out that the efficiency of multi-task modelling depends on corre-

lations between targets. To examine it, a correlation analysis of endpoints was performed.

Pearson correlation coefficients between each pair of endpoints were calculated. Mutual

correlations as heatmaps are presented on Figure 5. For the objective evaluation of corre-

lations, we set a number of thresholds. If the corresponding endpoints have the number of

simultaneous measurements less then a threshold, the color on the heatmap is absent. It is
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possible to observe that the correlations between endpoints are significantly high and it can

explain the success of multi-task modelling. The high correlations between endpoints also

can reflect the good quality of the data presented in RTECS on the assumption that the

provided measurements were independent.

Comparison of models

Our main goal was to compare models of toxicity built for different endpoints. In this paper

we defined each endpoint according to the conditions of the experiments. For example the

LD50 toxicities measured when using intraperitoneal administration to mouse belong to the

same endpoint. As a counterexample LD50 records with oral and intraperitoneal admis-

sion belong to different endpoints. However, due to hidden relations between endpoints we

can exepect that the multi-task (multi-endpoint) models should achieve better quality than

single-task models. To prove the hypothesis we built multi-task DNN models (MT DNN),

single target DNN models (ST DNN), and several models with other aforementioned ma-

chine learning algorithms, namely: XGBoost, Random Forest, k nearest neighbors . In order

to show that the observed relationships are not specific to a single set of descriptors, we used

all sets of descriptors reported in Table 2. The performance of different models is given in

Figure 6.

The MT DNN models outperformed both ST DNN models and all other methods used

for all analyzed sets of descriptors. Models, which are based on ALogPS combined with

OEstate descriptors achieved the best average performances across all studied methods. The

red dashed line on Figure 6 corresponds to average RMSE = 0.71 ± 0.01, which was calcu-

lated using MT DNN for several sets of descriptors, namely Fragmenter, CDK, Dragon and

ALogPS, OEstate. The performances of ST DNN models were comparable with XGBoost

and Random Forest models. This result is not surprising, and it confirmed observations

of previous studies48,59 that the efficiency of these methods is similar. The Random Forest

method achieved a better average performance compared to the XGBoost method. This
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Figure 5: Matrices of correlations for endpoints with various thresholds (min samples) val-
ues. The toxicity endpoints demonstrate their correlation notwithstanding the number of
compared samples.
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can be related to the robustness of this method in comparison to that of XGBoost. One

should carefully select the XGBoost parameters to achieve close to optimal solution, while

Random Forest usually provides high quality results for the models “out-of-the-box”. We

also experimented with other ANN types. Associative neural networks (ASNN)60 required

long computational time, because they used CPU and not GPU computing. This algo-

rithm, which was based on a so-called “shallow neural network” which used just one hidden

layer, provided a lower accuracy presumably due to the absence of latent representation of

the molecules (in deep neural networks latent representation is commonly regarded as the

outputs of second-to-last layer).

Figure 6: Average RMSE of predictions of toxicity for all endpoints in -log(mol/kg) units by
different methods and descriptor sets. Descriptors were arranged in accordance with mean
values of predictions by all methods (the best are on the left). Methods are ordered by
the mean RMSE over all descriptors (MT DNN and KNN demonstrated highest and lowest
overall performances, respectively).

Endpoints modelling

We also compared the quality of models for each individual endpoint. To do that, a con-

sensus model which averages of the outcomes of the top 5 descriptor models were created.

There were 29 endpoints which represent 4 animal species: mouse, rat, rabbit, guinea pig,

one unspecified class, and two classes of humans: man and woman, several types of adminis-
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tration and 3 outcomes: Lethal Dose Fifty (LD50), Toxic Dose Low (TDLo), Lethal Dose

Low (LDLo). The numbers of records for each endpoint are given in Table 2. Our automatic

data extraction procedure keeps the extracted endpoints unchanged, that is the reason why

the human toxicity is reported separately for man and woman and an “unspecified” animal

class is also present. There is the significant gap in the quality of prediction of toxicity for

different endpoints. LD50 values were predicted with relatively good quality for several

species and several types of admission: for mouse intravenous, oral, subcutaneous and

LD50 type of toxicity the value of R2 ≥ 0.65 for corresponding models. The same model

quality is observed for rat and rabbit intravenous LD50 toxicity. It should be noted that

LDLo was predicted with lower accuracy than LD50 toxicity for all species and admission

types. For TDLo the prediction accuracy is inferior: R2 values for those targets are in the

range 0.26-0.43 which is fairly low. The low accuracy of the prediction of these endpoints

can be explained by the limited amount of data for these types of toxicity. Moreover, TDLo

and LDLo measurements are less reliable due to disproportionately inaccurate experimen-

tal conditions (e.g. could be contributed by other sources of toxicity not directly related

to the analyzed compounds) the instrumental errors during measurements were higher for

these endpoints, since both of these toxicities have lower values compared to LD50. The

target with the lowest error is rat, intravenous, LD50 with R2 = 0.71 and RMSE = 0.54.

Toxicity for humans is represented only by TDLo values and the quality of prediction of

models for this target is unsatisfactory. This is related to the factors mentioned above and

it should inspire new developments because of the extreme importance of such modelling to

drug development. On Figure 7 we demonstrate some representative prediction charts, a full

set of prediction charts (for each endpoint) can be found in Supporting Information to this

paper.
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Figure 7: Prediction charts for a number of selected endpoints

Attributed modeling

Multi-task modeling can be approximated as single-task where the endpoint tags are provided

to the input of the model as attributes. For example in our case animal species as soon as

a type of administration and type of toxicity can be encoded by one-hot encoding and

concatenated with a vector of chemical descriptors. The scheme of the attributed modeling

is given in Figure 8. The advantage of the attributed modeling is the possibility to use

any machine-learning algorithm without additional modifications of a loss function. We

compared the performance of consensus XGBoost attributed model with consensus multi-

task DNN model and consensus single-target DNN model. XGBoost method has been chosen

due to both quickness and its ability to achieve the good quality among single-target models.

Our experiments revealed that there is no significant discrepancy between the performance

of the multi-task DNN and the attributed XGBoost model. The statistical performance of

different modelling schemes is given in Table 3.

Table 3: The comparison of quality of two consensus attributed models with consensus
multi-task model (averaged over all endpoints)

Model MAE R2 RMSE

DNN
(attributed)

0.49 0.54 0.69

XGBoost
(attributed)

0.49 0.55 0.68

DNN
(multi-task)

0.49 0.55 0.68
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Figure 8: Representation of endpoints as attributes in STL modelling. The encoding of
endpoints as input descriptors allows their simultaneous prediction using neural network
with one output neuron.
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Feature Net approach

The Feature Net approach has been proposed as a variant of multi-task learning by some

of us. The main idea of this approach is a usage of predictions of one (or a group) model

as additional descriptors for the resulting ST models. It was shown that the Feature Net

approach can achieve better accuracy than single-task learning61 and can provide models

with similar accuracy to MT models. We used results of ST DNN as the feature nets to

train the models and after that we used these predictions as additional descriptors to develop

final models. The statistical performance of these models are given in Table 4.

Table 4: The comparison of RMSE for models based on Feature Net approach with multi
and single task models (averaged over all endpoints)

Descriptors Feature Net ST DNN MT DNN

Dragon 6 0.77 0.85 0.74

ALogPS, OEstate 0.75 0.86 0.74

Fragmentor 0.77 0.88 0.74

PyDescriptor 0.76 0.85 0.74

We observed that for all descriptors the general trend remains the same. The accuracy

of Feature Net models is between that of single-task models and multi-task models. We

believe that Feature Net models partially regard latent correlations in the data; however,

the multi-task models have significantly better performance. Taking into account that fact

that the Feature Net approach requires significantly more time compared to MT models the

feasibility of usage of this approach is questionable.

Processing of intervals

Toxicity datasets frequently include a significant number of records reported as intervals

e.g., “>” (greater than), in cases where the exact value of toxicity has not been measured.

This frequently happens for non or low toxic compounds or for compounds for which larger

concentrations can not be achieved due to solubility or availability. The existence of this
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large number of the records without exact toxicity values is a special problem in automatic

data analysis. The most common approach in this case is to set the maximal toxicity dose

observed in the whole dataset for these types of records, considering them to be nontoxic.

But in case of particularly heterogeneous data this discussed approach is not optimal due to

the large variations in the toxicity values for different endpoints. We propose a modification

of a loss function which allows the correct processing of such records; the formula for a RMSE

loss function over a batch which regards intervals is given below:

L(y, ŷ) =


1
n

∑n
i=1(ŷi −max(ŷi, yi))

2 if >

1
n

∑n
i=1(ŷi −min(ŷi, yi))

2 if <

where ŷi – is a predicted value, yi – is a real value, n – total number of samples in a batch.

To estimate the efficiency of the training with our modified loss function we trained

two models: one with modified loss function and one with the standard RMSE loss, then

a comparison of those models applied only to compounds with exact values of toxicity was

performed. The motivation for this kind of experiment was to find out if the training on

ranged data can improve the quality of models or not. However, no significant difference

between models trained with modified loss functions and with RMSE loss were shown. This

showed that despite the simplicity of the idea to modify the loss function, this method is not

efficient for the dataset under study and the use of standard loss function i.e. RMSE or MAE

during training is preferable. Nonetheless, the problem of correct and efficient processing of

ranged data, especially for large diverse datasets, is still open and we hope that our research

will stimulate interest to this problem.

Latent representation of compounds

Neural networks generate a hidden representation of data on their hidden layers by processing

the data. We visualized this process directly by performing projection of the latent represen-

tations of the compounds onto the 2D plane by the t-SNE method, using the same approach
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for mapping of toxicity data to compounds from “The description of the dataset chemical

space”. The neuron’s activation on the last-to-last ANN layer for the molecule was used as

their hidden representations. The visualization of this latent space on Fig. 9 shows that

ANN on the last hidden layer achieves good separation of toxic and non-toxic compounds

but generally does not group structurally similar compounds together. One can notice three

areas containing the most toxic compounds and each of these groups are composed of differ-

ent compounds: organophosphorus compounds, sterane derivatives, etc. It should be noted

that the least toxic compounds are grouped in one cluster: iodine-containing contrast agents,

perfluorinated alkanes and compounds with β-lactam ring.

Figure 9: The results of the application of the t-SNE method to deep features generated
by the multitarget DNN, values are minus logarithms of maximal endpoint (greater values
correspond to larger toxicity). Several clusters with high toxicity, which presumably reflect
different mechanism of actions (MOAs) are observed.
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Regulations in the light of multi-task learning

Recent progress in QSAR/QSPR modelling raises questions about the correspondence of

newer methods to guidelines established and approved by authorities. In this section we

would like to put forward for discussion the OECD principles for the validation, for reg-

ulatory purposes of QSAR models. ”Guidance Document on the Validation of (Quantita-

tive) Structure-Activity Relationship [(Q)SAR] Model” summarized the collective opinion of

OECD specialists to QSAR modelling. In this document a peculiar attention is given to

the Principe N 1 – a defined endpoint. Despite of an uncertainly of formalizing defined

endpoint, the authors of the guideline warned researchers from usage of endpoints which

are not clearly defined. We agreed with the authors that for a QSAR model the endpoint

should be clearly defined, but we believe that the current description of the defined endpoint

is insufficient. For example Item 68. states that “4. The chemical endpoint of the (Q)SAR

should be contained within the chemical endpoint of the test protocol. 5. The endpoint be-

ing predicted by a (Q)SAR should be the same as the endpoint measured by a defined test

protocol that is relevant for the purposes of the chemical assessment.” The interpretation

of this formulation may prohibit the usage of multi-task learning. In the same time, we are

at the beginning of a “big data” time62 in chemistry and biology The appearance of these

data promotes development of powerful multi-task models that could significantly increase

quality of models for individual end-points. But these methods can break the paradigm “one

accurate dataset” −→ “one model for narrow endpoint”. It should be mentioned that the

Feature Net approach, in principle, can still allow us to use the OECD principles by treating

predictions of STL models as additional descriptors. However, as we have shown in our

studies this approach many not allow us to use the full advantages of multi-task modeling.
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Conclusions

In this work the efficiency of several methods of machine learning and several types of

descriptors was estimated on a large multi-task dataset. The statistical analysis of the

data extracted from the largest toxicity dataset the Registry of Toxic Effects of Chemical

Substances (RTECS) was performed. We demonstrate that multi-task deep neural networks

can significantly improve prediction of toxicity by comparing them to investigated single-

output types of models including: single-task deep neural network, XGBoost, Random Forest,

K-nearest neighbors. The models with highest prediction abilities were those obtained for

rabbit and rat species.

Interestingly, the attributed models (target endpoints are encoded with additional de-

scriptors), and multi-task models (each endpoint corresponded to one output) demonstrated

similar accuracy. While the Feature Net approach contributed better models than single-

task models, it performed worse than the multi-task models. Our results demonstrate that

multi-task approach can be beneficial for toxicity prediction due to its ability to processing a

heterogeneous dataset containing different endpoints. In conclusion, we would like to raise a

discussion about applications of multi-task learning methods for the regulatory purposes and,

possibly, to provide a correct interpretation of the Organisation for Economic Co-operation

and Development (OECD) guidelines which will allow the use of models developed with such

methodology for legal purposes.
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