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MYELOID NEOPLASIA
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KEY PO INT S

l Characterization of an
aPD-L1 3 aCD3 3

aCD33 antibody
construct with
bifunctional activity
against AML cells.

l Strong cytotoxicity
against primary AML
cells in vitro and high
selectivity in
a xenograft
mouse model.

The CD33-targeting bispecific T-cell engager (BiTE) AMG 330 proved to be highly efficient
in mediating cytolysis of acute myeloid leukemia (AML) cells in vitro and in mouse models.
Yet, T-cell activation is correlated with upregulation of programmed cell death-ligand 1
(PD-L1) and other inhibitory checkpoints on AML cells that confer adaptive immune re-
sistance. PD-1 and PD-L1 blocking agents may counteract T-cell dysfunction, however, at
the expense of broadly distributed immune-related adverse events (irAEs). We developed
a bifunctional checkpoint inhibitory T cell–engaging (CiTE) antibody that combines T-cell
redirection to CD33 on AML cells with locally restricted immune checkpoint blockade. This
is accomplished by fusing the extracellular domain of PD-1 (PD-1ex), which naturally holds
a low affinity to PD-L1, to an aCD3.aCD33 BiTE-like scaffold. By a synergistic effect of
checkpoint blockade and avidity-dependent binding, the PD-1ex attachment increases T-cell
activation (3.3-fold elevation of interferon-g) and leads to efficient and highly selective
cytotoxicity against CD331PD-L11 cell lines (50% effective concentration 5 2.3-26.9 pM) as

well as patient-derived AML cells (n 5 8). In a murine xenograft model, the CiTE induces complete AML eradication
without initial signs of irAEs as measured by bodyweight loss. We conclude that our molecule preferentially targets AML
cells, whereas high-affinity blockers, such as clinically approved anticancer agents, also address PD-L11 non-AML cells. By
combining the high efficacy of T-cell engagers with immune checkpoint blockade in a single molecule, we expect to
minimize irAEs associated with the systemic application of immune checkpoint inhibitors and suggest high therapeutic
potential, particularly for patients with relapsed/ refractory AML. (Blood. 2018;132(23):2484-2494)

Introduction
The treatment of acute myeloid leukemia (AML) remains chal-
lenging in 2018. Only one-half of the patients are eligible for
curative intensive induction chemotherapy, and the majority will
relapse because of the persistence of chemoresistant leukemic
stem cells. Allogeneic hematopoietic stem cell transplantation as
postremission therapy is able to lower this risk, yet it is correlated
with a significant incidence of transplant-related morbidity and
mortality.1-4 Particularly patients with relapsed or refractory (r/r)
disease as well as patients that are medically not fit for intensive
treatment regiments urgently require new therapeutic approaches.

In acute lymphoblastic leukemia (ALL), several targeted immu-
notherapies have already reached clinical implementation as

standard treatment. With the approval of the bispecific T-cell
engager (BiTE) blinatumomab in 2014, the utilization of T cells as
immune effectors also entered clinical mainstream.5 This bis-
pecific molecule addresses CD19 on B cells and thus redirects
antigen-experienced T cells to leukemic cells.6,7 In AML, the
myeloid lineage antigen CD33 has been the focus of immu-
notherapeutic strategies for decades. Targeting CD33 by the
antibody-drug conjugate gemtuzumab ozogamicin (Mylotarg)
has proven to be safe and led to reapproval for the treatment of
adults at primary diagnosis as well as adults and children with r/r
disease.8 Also, the preclinical evaluation of the BiTE antibody
AMG 330 indicated efficient cytotoxic lysis of primary AML
patient samples in allogeneic and autologous settings and en-
tered clinical trials in August 2015 (NCT02520427).9-12
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However, T-cell–recruiting immunotherapy is accompanied by
the induction of adaptive immune escape mechanisms such as
programmed cell death-ligand 1 (PD-L1) upregulation in re-
sponse to proinflammatory cytokines.13,14 Recent studies were
able to directly correlate PD-L1 expression on cell lines with
a decrease in AMG 330–mediated cytotoxicity and demon-
strated that this effect could be abrogated by PD-L1 blockade.15

We could underpin these findings ex vivo on primary AML
patient cells, in which the efficacy of AMG 330 was enhanced by
complementation with PD-1/PD-L1 blocking monoclonal anti-
bodies (mABs).13

PD-1 and PD-L1 inhibitors are approved for the treatment of
solid cancers, and clinical trials are currently exploring these
agents in hematologic malignancies.16-18 So far, monotherapy
has shown limited clinical benefit and current strategies explore
combinatorial approaches with hypomethylating agents. First
data of a clinical phase 1B/2 study with the aPD-1 mAB nivo-
lumab in combination with azacytidine in patients with r/r AML
demonstrated encouraging median overall survival rates of
5.7 months (NCT02397720).19

Yet, the clinical application of PD-1 and PD-L1 blocking mABs is
hampered by the frequent occurrence of immune-related ad-
verse events (irAEs). These include skin disorders, colitis, hep-
atitis, endocrinopathies, pneumonitis, and myocarditis and
range from weak to severe or fatal toxicity.20-25 Medical in-
tervention can require treatment interruption or discontinua-
tion and immune suppression with corticosteroids.26

To combine the benefits of bispecific T cell–engaging molecules
with PD-1/PD-L1 checkpoint blockade and prevent on-target
off-leukemia events, we have developed a novel immunother-
apeutic format. Bifunctional checkpoint inhibitory T cell–engaging
(CiTE) antibodies consist of a high-affinity aCD33 single-chain vari-
able fragment (scFv) fused to an aCD3e scFv in 1 polypeptide chain.
Additionally, we attached the extracellular domain (amino acid
33-149) of PD-1 (PD-1ex), which intrinsically holds a low-affinity
to PD-L1. We hypothesized that the PD-1ex domain is not suf-
ficient to directly target PD-L1–expressing cells and does not
block PD-1/PD-L1 interactions unspecifically. Instead, we aimed
that PD-L1 blockade is thus dependent on aCD33 scFv-
mediated targeting, which would consequently restrict check-
point blockade to the surface of leukemic cells. A single-chain
triplebody (sctb),27 in which the PD-1ex module is replaced by an
aPD-L1 scFv, served as high-affinity control.

Our data reveal that the CiTE antibody binds to AML and T cells,
increases T-cell effector functions compared with a BiTE-like
molecule, and induces efficient cancer cell eradication. Notably,
in vitro the CiTE demonstrates a high selectivity for CD331PD-
L11 cells, whereas PD-L11 cells are not affected. This is further
supported in a murine model system, where no indication for the
development of irAEs because of on-target off-leukemia binding
of the cross-reactive PD-1ex could be detected. Contrarily, the
sctb also leads to the depletion of PD-L11 cells in vitro as well as
body weight loss and leukemia-unrelated PD-1 upregulation
in vivo. Therefore, we consider the new CiTE format a promising
therapeutic approach to treat patients with AML with high ef-
ficacy and minimize the risk to induce irAEs that are associated
with systemic immune checkpoint blockade.

Methods
Expression and purification
PD-1ex was amplified from human muscle complementary DNA
(cDNA; PDCD1 gene). The aPD-L1 scFv was published before
(YW243.55.S70, atezolizumab-derived) with variable light and
variable heavy chains connected by a (G4S4)4 linker.28 The OKT3-
based aCD3 scFv and hP67.6-derived aCD33 scFv were obtained
from published sequences.29,30 Coding sequences for CiTE, sctb,
and controls were cloned into the expression vector pSecTag2/
HygroC (ThermoFisher Scientific,Waltham,MA) containing aHis6-
tag. As control, PD-1ex was fused to a C-terminal human IgG1-Fc.
These molecules and the specificity control27 were expressed in
FreeStyle 293-F or Expi293F cells (Thermo Fisher Scientific). The
aPD-L1 scFv was cloned into the pAK40031 vector and expressed
in Escherichia coli BL21 cells (NEB, Ipswich, MA). Proteins were
purifiedby nickel affinity and size exclusion chromatography (SEC)
using Superdex 200 increase 10/300 or Superdex 75 10/300
columns (GE Healthcare, Little Chalfont, UK) in 20 mM histidine
and 300 mM NaCl (pH 6.5). Proteins were analyzed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and analytical
SEC (Superdex 200 increase 5/150, GE Healthcare). For mouse
studies, proteins were prepared in 13 DPBS (Thermo Fisher
Scientific) and endotoxin levels were confirmed to be ,5 EU/kg
per day.32 Stability was measured by fluorescence-based thermal
shift (ThermoFluor) assay using the CFX96 Touch Real-Time PCR
Detection System (Bio-Rad, Hercules, CA).33

Cell lines
All cell lines were cultivated at standard conditions. Flp-In T-REx
293 cells (Thermo Fisher Scientific) weremodified for expression of
humanPD-L1 andCD33 (HEK:PD-L1 andHEK:CD33:PD-L1), which
could be enhanced by tetracycline induction (HEK:PD-L1_ind.).
MOLM-13, OCI-AML3, BA/F3, and Jurkat cells were purchased
from the Deutsche Sammlung von Mikroorganismen und Zell-
kulturen (Leibniz-Institut DSMZ, Braunschweig, Germany). Stable
PD-L1–expressing cells were generated by retroviral transduction
with cDNAof humanPD-L1 (MOLM-13:PD-L1 andOCI-AML3:PD-
L1) or murine PD-L1 (Panc02-OVA:mPD-L1), BA/F3:CD33:PD-L1
cells by further transduction with cDNA of human CD33.34

Patient and healthy donor material
After written informed consent in accordance with the Decla-
ration of Helsinki and approval by the Institutional Review Board
of the Ludwig-Maximilians-Universität (Munich, Germany), pe-
ripheral blood or bone marrow (BM) samples were collected
from healthy donors (HDs) and AML patients. At initial diagnosis
or relapse, samples were analyzed at the Laboratory for Leu-
kemia Diagnostics of the Klinikum der Universität München as
described previously.35-37 Patient characteristics are summarized
in supplemental Table 2, available on the Blood Web site.

Flow cytometry
Flow cytometry measurements were performed on a Guava
easyCyte 6HT instrument (Merck Millipore, Burlington, MA) and
analyzed using GuavaSoft, version 3.1.1 (Merck Millipore) or on an
LSR II flow cytometer (BD Biosciences, Franklin Lakes, NJ) and data
were evaluated using FlowJo, version 9.6 (Tree Star Inc., Ashland,
OR). Commercial antibodies are listed in the supplemental
Methods. Surface antigen density of cell lines was evaluated with
QIFIKIT (Agilent Dako, Santa Clara, CA). Apparent dissociation
constants were determined by calibrated flow cytometry as
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described.38 A total of 3.0 to 3.4 mm Rainbow Calibration particles
(BioLegend, San Diego, CA) served as calibration control. Data
points were normalized to the maximum mean fluorescence in-
tensity and fitted to a 1-site specific binding model.

T-cell activation and cytotoxicity assays
HD T cells were incubated with target cell lines at an effector to
target cell (E:T) ratio of 2:1, 1:3, or without targets in the
presence of CiTE, sctb, and control molecules. Assays were
performed in RPMI1640 1 GlutaMAX supplemented with 10%
fetal calf serum and penicillin/streptomycin (100 U/mL) (Thermo
Fisher Scientific). BA/F3 medium included 10% WEHI-3B su-
pernatant and 2.5 mg/mL aCD28 mAB (BD Pharmingen). Bead-
immobilized aCD3/aCD28 antibodies (Thermo Fisher Scientific)
served as positive control. After 96 hours, T-cell activation was
assessed by flow cytometry quantifying the CD21CD691, CD21

CD251, or CD21PD-11 population. For cytotoxicity readout,
MOLM-13– and BA/F3-derived cells were directly applied, OCI-
AML3:PD-L1 and OCI-AML3 were labeled with PKH67 (Sigma-
Aldrich, St. Louis, MO). After 72 hours, total target cell numbers
were assessed by flow cytometry as live CD22CD331 or CD22

PKH671 population, respectively, and normalized to negative
control. Data were transformed with a 4-parameter nonlinear fit

model. Interferon-g (IFN-g) and Granzyme B release were
determined after 72 hours by Cytometric Bead Array (Human
IFN-g/Granzyme B Flex Set, BD Biosciences).

HEK:PD-L1 and HEK:CD33:PD-L1 cells were labeled with 15 mM
Calcein AM (Thermo Fisher Scientific). Preactivated T cells de-
rived from an 18-day ex vivo peripheral blood mononuclear cell
expansion were incubated with a 1:1 mixture of unlabeled HEK:
PD-L1 and labeled HEK:CD33:PD-L1 cells and vice versa at
a total E:T ratio of 2:1 and increasing concentrations of mole-
cules.39 The 2.5% Triton X-100 served as maximum lysis. Fluo-
rescence intensity was measured using an Infinite M100 plate
reader (TECAN, Männedorf, Switzerland) and specific lysis was
calculated and analyzed with a 4-parameter nonlinear fit model.

Specific lysis [%] 5 (fluorescence(sample) – fluorescence(spontaneous lysis))/
(fluorescence(maximum lysis) – fluorescence(background)) 3 100

Ex vivo redirected lysis assay of cocultured AML
patient cells
Redirected lysis assays of AML patient samples were performed
in a-MEM (Thermo Fisher Scientific) supplemented with 12.5%
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fetal calf serum, 12.5% horse serum, 1% penicillin/streptomycin/
glutamine (Invitrogen, Carlsbad, CA), and a distinct cytokine
cocktail on irradiatedMS-5 cells as described elsewhere.10,13,40-42

HD T and AML cells were incubated at an E:T ratio of 1:4 and
addition of 10 nM of molecules or 10 mg/mL aPD-L1 mAB
(eBioscience Thermo Fisher Scientific). Cell populations were
assessed by flow cytometry. Cytotoxicity and T-cell proliferation
were evaluated as described previously.10,13

Murine AML xenograft studies
Female non-obese diabetic severe combined immunodeficiency g
(NSG) mice 170 to 265 days of age were housed under pathogen-
free conditions at the research animal facility of the Helmholtz
Zentrum München, Munich, Germany. Animal experiments were
approved by regional regulating authorities (Regierung von
Oberbayern) and conducted as described in a published pro-
tocol.43 At day 0, 2 3 104 MOLM-13:PD-L1 cells were injected IV.
At day 3, 107 in vitro preactivated T cells were transferred in-
traperitoneally and mice were randomized into 5 groups: 3 treat-
ment groups containing 6 mice each, a specificity control group

of 4 mice, and a 13 DPBS control group of 5 mice. At day 4,
1.7 pmol of molecules/g body weight or 13 DPBS were daily
IV injected until day 12. At day 13, mice were euthanized, spleens
were removed, and BM was obtained from femora of hind legs.

Plotting and statistical analysis
Statistical evaluation was performed using GraphPad Prism version
6.07 (GraphPad Software Inc., San Diego, CA) applying unpaired
Student t test with Welch correction for cell line–based assays with
the same T-cell donors, Wilcoxon test for different HDs and patient
samples, and Mann-Whitney U test for mouse xenograft experi-
ments. If P , .05, results were considered statistically significant.

Results
Generation and characterization of the
CiTE antibody
To combine specific T-cell redirection to AML cells with a target
cell–restricted PD-1/PD-L1 blockade, we generated a CiTE
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Figure 2. CiTE-mediated T-cell activation depends on crosslink to target cells and is enhanced comparedwith BiTE-likemolecule. (A) CiTE- and sctb-induced upregulation
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antibody by fusing PD-1ex to an aCD3.aCD33 BiTE-like molecule.
The CiTE was compared with a sctb,27 in which PD-1ex was
replaced by a high-affinity aPD-L1 scFv. The BiTE-like molecule
aCD3.aCD33, PD-1ex.aCD3 and aPD-L1.aCD3, as well as a non-
targeting molecule served as controls (Figure 1A; supplemental
Figure 1A). Purified proteins were analyzed by sodium dodecyl
sulfate-polyacrylamide gel electrophoresis and analytical SEC
(supplemental Figure 1B-C) and protein stability was assessed
by fluorescence-based thermal shift assay (supplemental Figure 1D).

The binding properties and apparent dissociation constants of
CiTE and sctb to antigen-presenting cells were analyzed by flow
cytometry (supplemental Figure 2). When investigating CiTE and
sctb as whole molecules, both bound similarly to CD331PD-L11

AML cell lines and HD T cells (Figure 1B). Because the unique
feature of the CiTE format is the weak PD-1ex affinity to PD-L1,
we evaluated the binding abilities of PD-1ex and the aPD-L1 scFv
independently. To this end, MOLM-13 and tetracycline-
inducible HEK293 cells both stably expressing PD-L1 (MOLM-
13:PD-L1 and HEK:PD-L1) were quantified for their PD-L1
surface antigen density (supplemental Table 1A). As expected,

our results showed weak physiological binding of PD-1ex (de-
scribed in the low micromolar range)44,45 and comparably strong
binding of the aPD-L1 scFv (Figure 1C).

Consequently, CiTE-mediated checkpoint inhibition on AML cells
depends on avidity contribution of the CD33 targeting module.
We performed a blocking assay with a labeled aPD-L1 mAB that
interfereswith the binding of the checkpointmodules. Despite the
weak interaction of PD-1ex in comparison with the aPD-L1 scFv,
the CiTE was able to block subsequent binding of the aPD-L1
mAB on CD331PD-L11AML cells (Figure 1D). However, it was not
as efficient as the sctb and the high-affinity aPD-L1.aCD3 control,
which were able to completely occupy accessible PD-L1 surface
molecules. In line with the binding studies, the low-affinity
PD-1ex.aCD3 control was displaced by the aPD-L1 mAB. Thus,
PD-1ex only interacts with its ligand on AML cells when it is
covalently linked to a high-affinity leukemia-targeting arm.

CiTE-mediated activation of resting T cells
In vitro, BiTE-mediated T-cell activation strictly depends on the
crosslink to target cells.46 To assess T-cell activation caused by
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sole CD3 engagement, we incubated HD T cells with CiTE and
sctb in the absence or presence of MOLM-13:PD-L1 cells
(Figure 2A). As expected, none of the molecules induced ex-
pression of CD25 and CD69 without target cells, whereas T cells
significantly upregulated both markers in the presence of
MOLM-13:PD-L1 cells. As a further hallmark of T-cell activation,
we quantified the IFN-g and Granzyme B release (Figure 2B-D).
On CD331PD-L11 cells, both CiTE and sctb led to a significant
increase in IFN-g and Granzyme B levels compared with the
BiTE-like molecule. We also observed an upregulation of PD-1
upon T-cell activation (supplemental Figure 3).

To effectively counteract adaptive immune resistance caused
by PD-1/PD-L1 signaling, current clinical trials investigate
combination therapies of targeting agents with checkpoint
inhibitors.47,48 Thus, INF-g levels were measured upon T-cell
activation by CiTE, BiTE-like molecule, or combinations of
BiTE-like and checkpoint inhibitors. Strikingly, the CiTE induced
similar cytokine levels compared with high-affinity blocking
agents plus BiTE-like molecule, whereas the equimolar addition
of PD-1ex-Fc (low-affinity blocking module) triggered a weaker
IFN-g release (Figure 2D). We conclude that the fusion of PD-1ex
to a BiTE-like scaffold leads to similar T-cell activation as com-
bination approaches, but with the advantage of local restriction
to CD331 cells. We hypothesize that this effect is due to
a synergy of avidity-dependent binding and PD-1/PD-L1
checkpoint blockade.

CiTE-mediated cytotoxicity is limited to CD331 cells
With the CiTE format, we provide a molecule that targets CD331

leukemic cells with high affinity and locally blocks PD-L1 because
of the low affinity of PD-1ex. Furthermore, we expect the CiTE to
address CD331PD-L11 cells more efficiently than CD331PD-L12

cells because of avidity-dependent binding of the aCD33 scFv
and PD-1ex. To test this hypothesis, the molecules were in-
cubated with nonstimulated HD T cells and MOLM-13 or
MOLM-13:PD-L1 cells, expressing high levels of CD33 (Figure 3;
supplemental Figure 5; supplemental Table 1). Both CiTE and
sctb induced specific lysis of both cell lines, yet, PD-L1 ex-
pression on AML cells increased the efficacy of target cell de-
pletion (Figure 3A,C). Also, T-cell proliferation was triggered
more strongly on CD331PD-L11 target cells (supplemental
Figure 4). Interestingly, both molecules revealed similar 50%
effective concentration (EC50) values despite their different af-
finities for PD-L1. Consistent with the previous characterization,
the low-affinity PD-1ex.aCD3 control had a low impact on cy-
totoxicity, whereas the high-affinity aPD-L1.aCD3 control led to
target cell lysis when PD-L1 was expressed. Because CD33 levels
on AML cells exhibit a high inter- and intrapatient heteroge-
neity,10 the results were confirmed with OCI-AML3 and OCI-
AML3:PD-L1 cells, which express low CD33 levels (Figure 3B,D;
supplemental Table 1). The advantage of the bifunctional CiTE
and sctb in comparison with the standard BiTE-like molecule was
further investigated by T cell–induced cytotoxicity assays using
MOLM13:PD-L1 or BA/F3:CD33:PD-L1 target cells at an E:T
ratio of 1:3 (Figure 3E-F). In contrast to the BiTE-like molecule,
both CiTE and sctb significantly enhanced target cell lysis.
Collectively, CiTE- and sctb-mediated cytolysis is strongest
against CD331PD-L11 double-positive cells, independent of
the absolute affinity of the checkpoint blocking module, and
the fused PD-L1 blocking module increases lysis of double-
positive cells.

We next evaluated whether the CiTE molecule is able to induce
elimination of CD331PD-L11 cells selectively in the presence of
PD-L11 cells. To this end, preferential lysis was analyzed in
a mixed target cell population (Figure 4; supplemental Figure 6).
Although the CiTE triggered preferential lysis of CD331PD-L11

cells, molecules with high affinity to PD-L1 revealed dose-
dependent elimination of both CD331PD-L11 and PD-L11 cell
lines. This indicates that the low-affinity PD-1ex module is not
sufficient to redirect T cells to PD-L11 non-AML cells, which might
provide an important safety feature for the CiTE platform.

CiTE and sctb increase specific cytotoxicity against
patient-derived AML cells and enhance
T-cell proliferation
In ALL, relapse after blinatumomab treatment was suggested to
originate from PD-L1 expressing leukemic cells, which are re-
sistant to T cell–mediated cytotoxicity.14 A similar mechanism
was identified in AML, where AMG 330-induced T-cell activation
was accompanied by PD-L1 upregulation on patient-derived
AML cells as well as PD-1 expression on T cells ex vivo.13

Also, CiTE-mediated T-cell activation led to the upregulation
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of PD-L1 on primary AML patient cells (supplemental Figure 7A).
In 7 of 8 patients, the CiTE was able to induce equal or en-
hanced redirected lysis of target cells compared with the
BiTE-like molecule (62 6 9% compared with 55 6 6%), and
the sctb triggered similar or higher lysis in all patients (76 6
6%) (Figure 5A-B; supplemental Figure 7B). An increase in
T-cell proliferation was induced by the CiTE and sctb in contrast to
the BiTE-like molecule through prolongation of coculture time to
6 to 7 days (Figure 5D). Furthermore, elevated T-cell activity was
demonstrated by virtue of PD-1 expression as well as IFN-g re-
lease (Figure 5C; supplemental Figure 7C). Interestingly, addition
of a PD-L1 blocking mAB to the BiTE-like molecule had a lower
impact on cytotoxicity and T-cell proliferation than the sctb.
Thus, we hypothesize that CiTE and sctb are able to efficiently
counteract PD-L1–mediated resistance mechanisms and to
induce specific lysis of AML cells by a synergy of avidity-
dependent binding and checkpoint blockade.

CiTE induces leukemia eradication in vivo without
on-target off-leukemia events
Because T cell–based immunotherapies such as BiTEs, chimeric
antigen receptor T cells and hematopoietic stem cell trans-
plantation rely on T-cell activation, the induced proinflammatory
response will consistently evoke PD-L1 upregulation on AML

cells.13,49-52 To mimic this physiological situation in vivo, we
engrafted MOLM-13:PD-L1 cells into NSG mice followed by
transfer of in vitro activated human HD T cells (Figure 6A).
Evaluation of the residual hCD451CD331 AML population in the
BM after 9 days of treatment revealed complete eradication of
leukemic cells in all 3 treatment groups (Figure 6B). In contrast, the
control cohort showed 1% to 3% AML cells in the BM, which
resemblesminimal residual disease criteria of,5%myeloblasts in
humans (supplemental Figure 8A).53

Besides efficient eradication of AML cells, the main purpose of
the CiTE antibody is to avoid irAEs that originate from systemic
binding to PD-L11 tissue. To investigate potential targeting of
non-AML cells, we took advantage of the cross-reactivity of both
PD-L1 checkpoint blocking modules to murine PD-L1, which
bound murine PD-L1 with comparable affinities than human
PD-L1 (supplemental Figure 8B). Mice treated with the high-
affinity sctb lost body weight compared with the other treatment
groups (Figure 6D; supplemental Figure 8C). PD-1 was signifi-
cantly upregulated on CD41 and CD42 T cells in the BM
(Figure 6C); a similar T-cell phenotype was noted when splenic
T cells were analyzed (data not shown). We hypothesize that
this observation is due to sctb-mediated T-cell redirection to PD-
L11 murine cells and represents on-target off-leukemia events.
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Most importantly, no such effects were observed for the CiTE
antibody. These findings demonstrate that the CiTE efficiently
induces specific AML eradication in vivo without affecting the
body weight as indication for systemic PD-L1 targeting. Thus,
we consider the new CiTE format as favorable postremission
approach in AML, which is particularly suited to counteract
PD-L1–mediated adaptive immune resistance.

Discussion
The BiTE technology is a successful immunotherapeutic ap-
proach in ALL, and with AMG 330, a first T-cell engager recently

entered the clinics for AML treatment. However, it has been
shown that BiTE-mediated T-cell activation and the associated
release of proinflammatory cytokines trigger the upregulation of
the inhibitory ligand PD-L1 on AML and ALL cells.13,14 As reflected
in ex vivo experiments using human patient samples, the com-
bination of AMG 330 and PD-1/PD-L1 inhibitors might abrogate
this axis and restore T-cell activity.13 Yet, PD-1 and PD-L1 blocking
mABs that have hitherto been approved by regulatory authorities
are limited by their risk to induce irAEs. Although adverse events
are often successfully managed, they can develop into a severe
state and require therapy interruption or discontinuation; thus,
new approaches are urgently needed.
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The presented CiTE format is able to combine T-cell redirection
with a restricted PD-1/PD-L1 blockade to the surface of AML
cells and thereby to sustain immune tolerance against healthy
tissue. This is achieved by fusing the extracellular domain of
human PD-1, which naturally holds a low affinity to PD-L1, to
a BiTE-like scaffold. PD-1ex is not sufficient to bind PD-L1 alone,
but only linked to a high-affinity leukemia-targeting module. As
a consequence, the CiTE exclusively induces lysis of CD331PD-
L11 cells in vitro, whereas PD-L11 non-AML cells are not af-
fected. In vivo, the CiTE did not lead to on-target off-leukemia
events indicated by body weight loss and leukemia-unrelated
T-cell activation. Thus, the bifunctional format displays a prom-
ising therapeutic strategy to lower irAEs compared with high-
affinity PD-1 and PD-L1 blocking agents.

Because CD3-addressing approaches by T-cell–engaging mole-
cules are effective at very lowprotein concentrations (picomolar or
even subpicomolar),9,54,55 an obvious question is whether fusing
checkpoint ligands to CD3-binding modules in a single molecule
would be sufficient to block PD-1/PD-L1 interactions. However,
T-cell receptor and PD-1 are suggested to be closely associated in
the immunological synapse.56 Consequently, a locally restricted
full or even partial inhibition of PD-1/PD-L1 interactions at the
T-cell receptor could lead to a more efficient T-cell activation
even at low antibody concentrations.

Stimulation of CD3e on T cells with monoclonal antibodies was
shown to induce T-cell activation.46,57 Accordingly, patients
treated with muromonab (Orthoclone OKT3) frequently experi-
ence cytokine release syndrome.58,59 In contrast, monovalent CD3
stimulation by the CiTE does not per se trigger upregulation of
T-cell activation markers such as CD69 or CD25 in vitro. In con-
cordance to preclinical studies of BiTE antibodies,46 T cells are
exclusively activated by crosslinking to leukemic cells that express
the targeted CD33. Nevertheless, blinatumomab does induce
cytokine release syndrome in some patients.60 Intensive inves-
tigations in animal models are therefore indispensable.

Similar to BiTE molecules,9,54,55 the CiTE is able to induce redir-
ected lysis of cancer cells at very low concentrations with EC50

values in the low picomolar range. Because of avidity-dependent
binding, the targeting efficacy of CD331 AML cells that express
PD-L1 is increased. This might provide the possibility to prefer-
entially address double-positive cells, which is especially important
because CD33 is also expressed on CD341CD382 hematopoietic
stem cells and healthy myeloid cells, and the general depletion of
CD331 cells by CD33monotargeting agents such as gemtuzumab
ozogamicin consequentially results in neutropenia.10,61-66

Because the upregulation of immune checkpoints in response to
T-cell activation is a general mechanism of adaptive immune
resistance, combination therapies of targeting agents, chemo-
therapies, or kinase inhibitors with blocking mAB are under
intensive investigation.16,47,48,67 We were able to demonstrate
that the CiTE molecule, despite the low-affinity PD-1ex domain,
induces similar IFN-g levels in comparison with the combination
of the BiTE-likemolecule and PD-1 or PD-L1 inhibitors. However,
most importantly and in contrast to high-affinity PD-L1 binders
applied in combination therapies, the CiTE preferentially and
highly selectively eliminated CD331PD-L11 double-positive tar-
get cells. This is expected to translate into a decreased incidence
of irAEs, as was observed in our xenograft mouse model.

Collectively, we showed that the CiTE antibody reveals a high
potency to activate resting T cells and to induce efficient cy-
totoxicity against AML cells. It features a high specificity for
CD331PD-L11 target cells in vitro and does not show adverse
events in vivo. Because of its beneficial performance compared
with the BiTE format, we consider the CiTE a promising can-
didate to reverse immune resistance in AML. Future studies will
have to examine efficacy and tolerance in more advanced in vivo
models before applying the CiTE format into a clinical setting.
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