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Liquid chromatography-mass spectrometry (LC-MS)-based
proteomics studies of large sample cohorts can easily
require from months to years to complete. Acquiring con-
sistent, high-quality data in such large-scale studies is
challenging because of normal variations in instrumenta-
tion performance over time, as well as artifacts intro-
duced by the samples themselves, such as those because
of collection, storage and processing. Existing quality
control methods for proteomics data primarily focus on
post-hoc analysis to remove low-quality data that would
degrade downstream statistics; they are not designed to
evaluate the data in near real-time, which would allow for
interventions as soon as deviations in data quality are
detected. In addition to flagging analyses that demon-
strate outlier behavior, evaluating how the data structure
changes over time can aide in understanding typical in-
strument performance or identify issues such as a degra-
dation in data quality because of the need for instrument
cleaning and/or re-calibration. To address this gap for pro-
teomics, we developed Quality Control Analysis in Real-
Time (QC-ART), a tool for evaluating data as they are ac-
quired to dynamically flag potential issues with instrument
performance or sample quality. QC-ART has similar accu-
racy as standard post-hoc analysis methods with the addi-
tional benefit of real-time analysis. We demonstrate the
utility and performance of QC-ART in identifying deviations
in data quality because of both instrument and sample is-
sues in near real-time for LC-MS-based plasma proteomics
analyses of a sample subset of The Environmental Deter-
minants of Diabetes in the Young cohort. We also present a
case where QC-ART facilitated the identification of oxida-
tive modifications, which are often underappreciated in pro-
teomic experiments. Molecular & Cellular Proteomics 17:
1824–1836, 2018. DOI: 10.1074/mcp.RA118.000648.

Control of data quality is a fundamental need for facilitating
scientific reproducibility, and it is also essential for the trans-
lation of experimental discoveries to clinical, industrial or en-
vironmental applications (1–3). In liquid chromatography-
mass spectrometry (LC-MS)1-based proteomics studies, it
has been demonstrated that performing robust quality control
(QC) can improve overall protein quantification and subse-
quently yield more accurate statistical estimates of differential
abundance by detecting outlier data points (4). To date, only
a few tools have been developed to assess LC-MS-based
proteomics data quality in the context of an entire study
(reviewed in (5)), and most of these are implemented as post-
hoc analyses to be utilized at the end of the experiment.
However, because of the complexity of proteomic studies,
especially those involving large sample sets or cohorts, per-
forming QC assessment of proteomics data in real-time would
offer significant advantages. The sources of variability in a
proteomics experiment that are addressed by QC can be
categorized into two groups: biological and technical. The
goal of QC is to not remove normal biological variability;
however, there are circumstances where an LC-MS analysis
displays outlier behavior and should be flagged and evalu-
ated. For example, a sample may display outlier behavior and
further examination may find that the subject had a cofounder,
such as a medical drug exposure. The biological profile is
likely no longer normal in the context of the experimental
design, and thus either the sample would need to be removed
or the cofounder would need to be dealt with statistically -
either way the issue could be addressed. Thus, there is a
clear advantage when performing further analysis of the data,
either post-hoc or in near real-time, to identify analyses or
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samples for further investigation. Technical variability is de-
rived from sample collection, transportation, storage, prepa-
ration, and/or instrument performance. Teasing out the cause
of outliers in the category of technical variability can be ex-
tremely challenging, but evaluation of some data parameters,
such as peak intensities and peptide sequences identified,
which can vary depending on the mass spectrometer, LC
column (particularly important for multi-column platforms),
time since last instrument cleaning, length of proteolytic di-
gestion, and sample cleanup, can improve downstream anal-
ysis (6). These issues are further complicated when the pro-
teomics study requires months or years to complete, as other
parameters in the instrument can drift over time. Thus, QC
evaluation that differentiates normal change over time from
outlier behavior could dramatically improve overall data qual-
ity by notifying investigators of the need for instrument main-
tenance, thus minimizing instrument-related artifacts.

The need for reliable QC approaches for LC-MS-based
proteomics studies can be measured by the increasing num-
ber of publications on the topic (4, 7–15). Initial research in this
area resulted in several web-based applications that track
individual QC metrics on the fly with varying levels of sophis-
tication (7–10). In Wang et al., (11) QC metrics are tracked,
then quantified and the uncertainty is partitioned into sources
such as lab and instrument type, but the evaluation is focused
on the entire experiment rather than individual MS analyses.
Amidan et al., (12) proposed a method to identify poor-quality
datasets using a supervised learning approach. Because of
the dynamic nature of mass spectrometry data, the method
performs well post-hoc, but the supervised algorithm is overly
specific to the training data and therefore cannot accurately
track the quality of experiments in real-time. Bielow et al., (13)
developed a software tool (PTXQC) that summarizes QC met-
rics to allow an expert to curate individual datasets more
quickly. However, their method currently is tailored to the
QuaMeter metrics (16) only and the extension to other types
of metrics is not immediate. Finally, Bittremieux et al., (14)
proposed a powerful tool that is unsupervised in nature and
can handle generic QC data of high-dimension.

We have developed a method, QC Analysis in Real Time
(QC-ART), that identifies local and global deviations in data
quality because of either biological or technical sources of

variability. The procedure is similar to that of Matzke et al. (4)
in the context of the statistical outlier algorithm employed but
adds a dynamic modeling component to analyze the data in a
streaming LC-MS environment. We demonstrate the accu-
racy of QC-ART on data from both label-free and isobarically-
labeled (i.e. iTRAQ (17)) proteomics studies. QC-ART is gen-
eral enough to be applied to any LC-MS-based study where
appropriate QC metrics can be collected over time, such as
metabolomics and lipidomics. Using hand-curated data, QC-
ART was validated to achieve similar accuracy to state-of-
the-art post-hoc analyses (4) but in real-time. Lastly, the ca-
pabilities and benefits of QC-ART for large-scale proteomics
studies is demonstrated for data collected from analyses of a
sample subset of The Environmental Determinants of Diabe-
tes in the Young (TEDDY) cohort (18). Using QC-ART in this
study, we identified multiple types of both naturally occurring
issues and those because of deliberate, yet subtle manipula-
tions of instrument operating parameters, and the results
were compared with current state-of-the-art methods (14).
We also demonstrated the utility of QC-ART in identification of
oxidations of tryptophan, tyrosine and cysteine residues,
which are often overlooked in peptide identification. QC-ART
is available as an online application (https://ascm.shinyapps.
io/BAS_QCART), where researchers can perform analyses by
uploading their own data. Additionally, the source code
necessary to implement QC-ART as a standalone applica-
tion is freely available as the R package QCART on GitHub
(https://github.com/stanfill/QC-ART), and the source code for
a corresponding web interface is freely available at https://
github.com/stanfill/QC-ART-Web-App.

EXPERIMENTAL PROCEDURES

As discussed above, existing algorithms for QC of LC-MS-based
untargeted proteomics data are not designed for streaming applica-
tions (14). However, for purposes of comparison to the state-of-the-
art, QC-ART is compared with several existing algorithms and results
are compared in a post-hoc fashion to determine if QC-ART performs
as well as or better than existing approaches in a dynamic manner.
The two key algorithms used to compare with QC-ART were Robust
Mahalanobis Distance on Peptide Abundance Vectors (RMD-PAV)
and an unsupervised QC method, InSPECTor. These two algorithms
are described at a high level for comparative purposes, and details of
these methods are available in (4) and (14), respectively. For both
algorithms, data matrices are represented at the sample level, i.e. in
the case where samples are fractionated before LC-MS analysis, the
data for a single sample is the sum of all fractions.

Existing Post-Hoc QC Algorithms—RMD-PAV is a post-hoc anal-
ysis technique used to identify outlier LC-MS data based on all of the
quantified peptide peak intensities for a sample. The observed pep-
tide peak intensities are summarized as an abundance distribution
represented by a set of statistical metrics, such as median and
skewness. This set of metrics is reduced using robust principal com-
ponents analysis (rPCA), and then the robust Mahalanobis distance
between the metrics transformed using the rPCA coordinate system
is measured. The distance computed for each sample is compared
against percentiles of the appropriate chi-square distribution to de-
termine how extreme an instrument run is relative to the rest of the

1 The abbreviations used are: LC, Liquid Chromatography; AUC,
Area Under the Curve; BPMZ, Base peak m/z; iTRAQ, Isobaric Tags
for Relative and Absolute Quantitation; LTQ, Linear Ion Trap; MASIC,
MS/MS Automated Selected Ion Chromatogram Generator; m/z,
mass-to-charge ratio; NIST, National Institute of Standards and Tech-
nology; PCA, Principal Component Analysis; PIMZ, Parent ion m/z;
QC, Quality control; QC-ART, Quality Control Analysis in Real-Time;
RMD-PAV, Robust Mahalanobis Distance on Peptide Abundance
Vectors; ROC, Receiver Operating Characteristic; rPCA, Robust Prin-
cipal Component Analysis; SARS-CoV, Severe Acute Respiratory
Syndrome Coronavirus; TEDDY, The Environmental Determinants of
Diabetes in the Young.
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data set. A score akin to a p value is used to identify samples that may
be outliers.

InSPECTor is a recently developed method that represents the
cutting edge in unsupervised outlier detection for large LC-MS ex-
periments. It is based on a local outlier probability distance metric,
which identifies potentially outlying instrument runs by finding a group
of k instrument runs most like the analysis in question. InSPECtor then
uses the standard normal density kernel to estimate the probability of
each run being an outlier (15). The probability threshold used to
identify outlying instrument runs is chosen by the user and varies from
experiment to experiment.

QC-ART—QC-ART is an algorithm that uses a dynamic linear
model to flag anomalies while accounting for typical instrument
change over time. Furthermore, to perform this task in near real time,
only metrics that can be computed in a rapid fashion are used, such
as those defined by NIST (19) and proposed along with QuaMeter
(16). Fig. 1 illustrates the generic workflow for QC-ART. Once data
collection has started, variables are computed for each instrument
analysis in near-real time. The model is fit using a baseline set of data,
and as each new sample is analyzed by the instrument, it is immedi-
ately scored. If the data do not show any anomalous behavior in the
context of the baseline set, the process continues with the results
from analysis of the next sample. However, if the data appear anom-
alous in the context of the baseline, then the sample is flagged for
follow up by a technician. At this point the user may evaluate the
model assumptions and determine if the existing baseline is still
appropriate or if a new one should be established. If the user believes
that the instrument performance has changed or that the instrument
needs to be cleaned, then the process begins again.

QC-ART Variables—It has been shown that summary statistics
derived from reporter ion distributions from isobarically labeled pro-
teomics data are beneficial in addition to NIST and QuaMeter QC
metrics when assessing LC-MS-based proteomics data quality (20).
Inspired by these metrics, we considered a large list of potential
variables that could be generated rapidly for inclusion in QC-ART.
However, to increase the rate at which QC-ART can process data, it
was prudent to reduce the number of variables to just those that
demonstrate predictive qualities for identifying low-quality data. PCA
was used to identify a subset of the initial variables in conjunction with
domain expertise associated with common sources of altered LC-MS
data quality, such as nanoelectrospray instability. For label-free pro-
teomics data, only the NIST QC metrics are used.

Setting the Baseline—A baseline data set comprised from good
quality instrument runs is critical and driven by the researcher’s
goal(s). For real-time analysis, for example to track instrument per-
formance over time, then a set of data from the beginning of the
experiment from analyses that were performed under ideal instrumen-
tal conditions should be chosen. In this way, successive instrument
runs that have scores significantly far away from the quality threshold
will signify a shift in data quality that should be evaluated. The
dynamic nature of QC-ART allows the baseline to change over time as
needed. When using QC-ART to perform post-hoc QC, a baseline that
is evenly distributed thorough out the course of the experiment in
chronological order, which accounts for uncertainty because of var-
iability in instrument performance over time, is selected. We investi-
gate the impact of baseline size and quality on the accuracy of
QC-ART in supplemental File S1.

FIG. 1. The workflow of the QC-ART algorithm
expressed as a flow chart. The steps in the flow
chart are either input/output nodes (colored red),
process nodes (colored gray) or decision nodes (col-
ored blue).

Real-time Quality Control of MS-based Data: QC-ART
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Scoring New MS Data—An rPCA method is used to transform the
data, and then the robust Mahalanobis distance between the reduced
set of variables is computed to assess similarity, a modification of the
existing Sign2 metric (21). Given that the metrics can vary dramati-
cally in scale and the underlying statistical distributions of the metrics
are unknown, rPCA is more accurate than traditional PCA methods at
identifying outlying observations (22). Similarly, the robust Mahalano-
bis distance is used to score the instrument runs transformed to the
rPCA space because it has been shown to be the preferred multivar-
iate distance in the presence of extreme observations (4). The result-
ant scores, called QC-ART scores, are not guaranteed to follow a
distribution; therefore, cutoff values based on percentiles of a com-
mon distribution are not appropriate. Thus, the baseline scores are
used to build a model against which all future scores are compared.
Previous QC methods assume a static linear model to the QC metrics,
which implicitly assumes the mechanism generating the data is un-
changed throughout the course of the experiment (7, 10, 13). Because
instrument behavior is likely to change over time, we additionally
implemented dynamic linear models, whose parameter estimates are
continually updated when additional experiments are performed and
observed to be high quality (23). Experiments that are identified to be
of poor-quality should not be used to update the parameter estimates
as doing so could decrease the chances of identifying poor-quality
instrument runs performed later in the study.

For both the static and dynamic models, the assumptions associ-
ated with the model must be checked as new instrument runs are
added to the dataset. See supplemental File S1 for a further discus-
sion about model assumptions and how to verify them. Both the static
and dynamic linear models are used to define threshold values for the
QC-ART scores. The threshold values are chosen to control the
probability of a false positive, i.e. a good quality instrument run was
erroneously flagged as being of poor quality. The static model thresh-
old is used to identify changes in instrument quality relative to the
chosen baseline set only, whereas the dynamic model threshold is
used to identify changes in instrument behavior relative to the base-
line set after controlling for the recent behavior of the instrument.
Because QC-ART scores are distances, they cannot be less than zero
and a large score indicates that a given instrument run is different
compared with the baseline set. Therefore, isolated large scores are
interpreted as a single instrument run that warrants further investiga-
tion, e.g. because of an occluded electrospray ionization emitter or
inappropriate database search parameters, but do not signify a sys-
tematic change in instrument quality. Several successive scores
above the threshold value or deviations from the model assumptions
represent a potential systematic change in data. Finally, the QC-ART
scores on their own are not easily translated from one study to
another. However, QC-ART scores can be translated to probabilities
by using the probability distribution function implied by the static and
dynamic models. Probabilities derived from the static model are
interpreted as the probability that an extreme LC-MS instrument run
occurred given the baseline data only. Alternatively, probabilities de-
rived from the dynamic model are interpreted as the probability that
an extreme LC-MS analysis occurred given the baseline data and
recent changes in instrument behavior.

RESULTS

We assessed the ability of QC-ART to identify outlying
instrument runs using both a previously published label-free
proteomics data set that has been expertly curated, and a
new isobarically-labeled proteomics data set from analysis of
a large sample cohort. QC-ART is compared against RMD-
PAV and InSPECtor for both data sets.

Real Data Benchmark - Expert Identified Outlier Runs—The
label-free proteomics data are comprised from analyses of a
human lung-derived cell line, Calu-3, infected with Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV). A to-
tal of 141 LC-MS runs were performed using an LTQ-Orbitrap
instrument, and the data were expertly curated, and 28
LC-MS analyses identified as potentially outlying (4). The
same five statistics as previously published (4) were used to
summarize each LC-MS run for the RMD-PAV and InSPECtor
methods: (1) the fraction of missing peptides, (2) a group-wide
correlation coefficient, (3) median, (4) skew, and (5) kurtosis of
the abundance distribution. QC-ART scores were computed
using the same five statistics except for the group-wide cor-
relation coefficient because it could not be computed until all
peptide quantifications were completed. The first ten LC-MS
runs that were not suspected of being outliers were used as
the baseline for QC-ART, which was applied to each sample
in the order in which it was quantitated without using any
information from samples that had not yet been quantitated.
The InSPECtor method was implemented with a neighbor-
hood size of ten to parallel the baseline choice for QC-ART.
Results for other baseline sizes are given in supplemental
File S1.

A receiver operating characteristic (ROC) curve analysis
was used to compare the ability of QC-ART to identify ex-
treme peptide abundance distributions relative to the RMD-
PAV and InSPECtor methods (Fig. 2). QC-ART and RMD-PAV

FIG. 2. Comparison of the accuracy of InSPECTor, QC-ART and
RMD-PAV to identify extreme peptide abundance distributions
for the Calu-3 data via ROC curve analysis. The area under the
curve for each of the methods is 0.820 for QC-ART, 0.823 for RMD-
PAV and 0.816 for InSPECtor, which indicates that QC-ART is able to
achieve comparable levels of accuracy as both post-hoc techniques
but in real-time.

Real-time Quality Control of MS-based Data: QC-ART
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perform comparably across the range of possible cut-off val-
ues and have extremely close area under the curve (AUC)
values. Compared with QC-ART and RMD-PAV, the InSPECtor
method achieved larger true-positive rates for the same
false-positive rate over a limited range of cutoff values, but
had lower accuracy overall, as indicated by the lower AUC
score.

Case Study - Longitudinal Cohort Study—To test the utility
of QC-ART for monitoring the quality of LC-MS data in real
time, we used it to supervise data from plasma proteomics
analyses of a subset of samples from TEDDY (18), a large
prospective study with the goal of discovering factors that
initiate the autoimmune response and destruction of the pan-
creatic beta cells, leading to the development of type 1 dia-
betes. To fulfill this goal, we are performing comprehensive
plasma proteomic analyses of TEDDY samples to better un-
derstand progression of the disease. A total of 2252 plasma
samples from 368 donors were pooled together by donor,
depleted of the 14 most abundant proteins, then digested
with trypsin and labeled with 8-plex iTRAQ reagent according
to the manufacturer recommendations. Each 8-plex iTRAQ
set was multiplexed by including 6 TEDDY samples plus one
common reference sample (channel 121) that was generated
by pooling aliquots from all donors, whereas the remaining
iTRAQ channel (119) was not used. Each of the resulting
sixty-two 8-plex iTRAQ sets was fractionated into 24 frac-
tions, resulting in 1488 individual samples for LC-MS/MS
analysis that in total required 14 months to complete, together
with analysis of one independent QC sample (tryptic digest of
the bacterium Shewanella oneidensis) and one blank every 24
fractions, which were used to assess instrument performance.
The variables used by QC-ART to monitor these instrument
runs are described in Table I. The NIST variables were calcu-
lated using the PNNL-developed software SMAQC, which is
freely available on GitHub https://github.com/PNNL-Comp-
Mass-Spec.

To monitor instrument performance using QC-ART, a set of
instrument runs that were collected during peak instrument
performance were chosen. In this instance, the first ten frac-
tion sets of data (a total of 240 LC-MS/MS runs) collected
after instrument cleaning, calibration and running an inde-
pendent QC sample before each iTRAQ set were treated as
the baseline for all future instrument runs (Fig. 3A). Addition-
ally, because the fractions might contain completely different
peptides, each of the 24 fractions of the iTRAQ sets was
treated separately. For example, to assess the quality of the
data collected in Fraction 1 of Set 11, the corresponding
variables for Fraction 1 of Set 11 were compared against
those same variables for Fraction 1 of Sets 1 through 10.

If an instrument run was known or later judged to be of
poor-quality, its value was not used to update the dynamic
threshold model. In practice, the samples that were flagged
by QC-ART were reanalyzed at the end of the study because
this methodology was under-development when the samples
were being processed. For future studies employing QC-ART,
flagged samples will be reanalyzed immediately. Five events
of interest that occurred during the study are labeled in Fig. 3A
(and all subsequent figures); (1) iTRAQ sets 16 and 17, (2) test
runs with deliberately mistuned instrument parameters, (3)
drop in instrument performance, (4) gap in analysis and (5)
diluted samples. In July 2015, a still underdevelopment ver-
sion of QC-ART flagged several runs of iTRAQ sets 16 and 17
as poor-quality datasets, at which point the instrument oper-
ator stopped the data collection and cleaned the mass spec-
trometry ion source. These samples were rerun in early Au-
gust 2015, and the corresponding QC-ART scores returned to
normal levels. We also collected 10 samples using deliber-
ately mistuned mass spectrometry parameters and liquid
chromatography gradient to assess QC-ART’s ability to iden-
tify poor-quality data. The mistuned parameters were: (1)
changing the mass spectrometer front lens voltage from �8 to
�6, which affects the number of ions entering the ion trap; (2)

TABLE I
Variables used by QC-ART to identify instrument runs of poor quality

The variables derived from the reporter ion file (top section) are used only when available, i.e., iTRAQ instrument runs.

Source Variable Definition

PIMZ_skew Skewness of the parent ion m/z
BPMZ_skew Skewness of the base peak m/z

Reporter I119_skew Skewness of the blank reporter ion channel
Ion I121_median Median of the reference reporter ion channel
File I121_skew Skewness of the reference reporter ion channel

WAPIC_skew Skewness of the weighted average percent intensity correction
Missingness Percentage of missing data over all ions
P_2C Number of tryptic peptides; unique peptide count
MS1_2B Median TIC value for identified peptides from run start through middle 50% of separation

NIST RT_MS_Q1 The interval for the first 25% of all MS events divided by RT-Duration (RT-Duration is
defined as the highest scan time observed minus the lowest scan time observed)

RT_MS_Q4 The interval for the fourth 25% of all MS events divided by RT-Duration
RT_MSMS_Q1 The interval for the first 25% of all MS/MS events divided by RT-Duration
RT_MSMS_Q4 The interval for the fourth 25% of all MS/MS events divided by RT-Duration

Real-time Quality Control of MS-based Data: QC-ART
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inserting a dead volume in the LC tubing, which affects the
chromatographic performance; (3) changing the mass spec-
trometer S-lens from 69 to 25%, which generates a bias
toward lower m/z ions being transmitted to the ion trap; and
(4) increasing the number of microscans, which reduces the
overall number of collected spectra. In January 2016, the
instrument behavior dropped significantly (labeled “Drop in

instrument performance”) and led to a period of instrument
recalibration and cleaning (labeled “Gap”). Finally, in April
2016, a full set of samples seemed to be too concentrated
and was then diluted before reanalysis, which led to differ-
ences in data quality (labeled “Diluted samples”).

Using the first ten sets as the baseline, QC-ART correctly
flagged the poor-quality test runs in July 2015. Similarly, the

FIG. 3. QC-ART scores of the iTRAQ data with static and
dynamic thresholds when different sets of instrument runs
were used as the baseline (red areas in timelines below
figures). In all figures, the point circled in green represents a
sample that exhibited suspicious oxidation patterns, the gray
vertical lines indicate instrument cleaning and recalibration
events, and the horizontal lines represent static (gray) and
dynamic (yellow) threshold values. A, When the first ten sets
are used as the baseline then the poor quality test runs are
correctly identified, but the fundamental shift in instrument
performance over time causes the method to flag too many
data points later in the experiment. B, Checking model as-
sumptions throughout the course of the cohort study tells the
researcher when a new baseline is needed, which allows the
method to correctly identify instrument runs of poor quality
without negatively impacting the false alarm rate. C, Distribut-
ing the baseline throughout the course of the study reduces
some of the noise in the QC-ART scores, but they cannot be
computed in real-time because some of the baseline samples
occur late in the study.

Real-time Quality Control of MS-based Data: QC-ART
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QC-ART scores correctly increased in response to the de-
crease in instrument performance in January 2016. QC-ART
did not, however, identify the diluted samples in late April
2016. QC-ART’s inability to detect the difference in sample
preparation is because of the difference in instrument behav-
ior before and after the recalibration and cleaning in January
2016. To properly account for the change in instrument per-
formance after the long maintenance period, a new baseline
must be chosen. The need for a new baseline is also apparent
when assessing model assumptions (supplemental File S1).

Fig. 3B illustrates a QC-ART update when model assump-
tions were violated, that is, a systematic change in instrument
performance was identified. From Fig. 3A the distribution of
the QC-ART scores changes throughout the course of the
study, though it is not obvious exactly when that change is
significant enough to warrant a new baseline. Tracking the
model assumptions through time in conjunction with the QC-
ART scores indicated that significant changes in instrument
performance occurred in October 2015 and March 2016 (sup-
plemental File S1). To account for the changed instrument
behavior, two new baselines were chosen in October 2015
and again after the gap in experimental runs in early 2016 (red
areas in timeline below Fig. 3B). Both retraining periods co-
incide with significant instrument maintenance that were ini-
tiated by the technicians and are immediately preceded by
large shifts in QC-ART scores. This illustrates that when QC-
ART is appropriately trained, it can identify all areas of inter-
est. The poor-quality test runs in July 2015 have very large
scores, with the scores leading up to the gap in January 2016
increasing as the instrument performance drops, and the
diluted samples in July 2016 being identified successfully.

QC-ART can also be used as a post-hoc data quality tool by
selecting a baseline comprised of data from analyses that are
distributed throughout the course of the study (Fig. 3C). Com-
pared with the results from when the baseline is comprised of
data collected at the beginning of the study (Fig. 3A), spread-
ing out the baseline greatly reduced the variance in scores as
indicated by, e.g. reduced QC-ART scores associated with
the poor-quality test runs in July 2015. Also, the variability in
instrument performance through time was partially accounted
for by the alternative baseline selection. Used as a post-hoc
data analysis tool, QC-ART could identify the poor-quality test
runs in July 2015, and the diluted samples in April 2016.
QC-ART could not, however, identify the last group of instru-
ment runs before the gap in January 2016. This is likely
because data acquired just before it was included in the
baseline set. This illustrates the importance of choosing an
appropriate baseline set when using QC-ART.

To validate the QC-ART results, data from each LC-MS/MS
analysis of the TEDDY cohort study was analyzed by the
InSPECtor and RMD-PAV methods in a post-hoc fashion, i.e.
the respective methods are applied once all the samples were
analyzed at least once. The InSPECtor method was applied to
all instrument runs using the same variables that informed

QC-ART as reported in Table I (Fig. 4A). Unlike the QC-ART
scores in Fig. 3A, the change in instrument performance over
time cannot be detected with the InSPECtor method, which
was expected given the local focus of its distance metric. The
instrument runs starting in March 2016 do not appear to be
different from those that occurred much earlier in the study
even though they are quite different when compared directly.
The upward trend in outlier scores starting in January 2016
indicates that InSPECtor could detect the degradation in in-
strument performance before the gap in early 2016, however.
Based on the chosen 95% threshold, InSPECtor also identi-
fied the poor-quality test runs in July 2015 and data from
some of the diluted samples in May 2016.

To apply the RMD-PAV method to the cohort study, the
peptide reporter ion intensity data for each sample within
each fraction set was extracted using MASIC (24). Because of
the complexity of the cohort study, the collected data had to
be manipulated to implement RMD-PAV. First, the full data set
was reduced such that only the initial analysis of each iTRAQ
set was retained. For example, samples from fraction set four
were analyzed in May 2015 and March 2016, but only the
results from May 2015 were used to compute RMD-PAV
scores. Second, the iTRAQ 8-plex configuration used for this
study creates results for six individual samples and a pooled
reference sample. The RMD-PAV scores were derived from
the pooled reference sample data because the data from the
individual samples exhibited unwanted variation because of
biological differences between the donors. Finally, because
the study groups were spread across fraction sets, the sug-
gested group average correlation variable typically used by
RMD-PAV was replaced with a global average correlation.
That is, the average pairwise correlation between the peptide
abundance vectors for each sample is used in place of the
average group correlation defined in Equation (1) of Matzke et
al. (4). The RMD-PAV scores on the log base two scale that
resulted from this implementation of RMD-PAV along with a
99.9% threshold are plotted in Fig. 4B.

The large group of samples with scores above the threshold
starting in May 2016 suggests that RMD-PAV could recognize
that data processed at the end of the study differ system-
atically from data collected at the beginning of the study.
However, RMD-PAV was not able to differentiate the diluted
samples from any of the other samples that occur after the
break. Additionally, the data collected just before the gap
does not look to be of poor-quality based on RMD-PAV scores.
Note that the interesting data point plotted previously in green
and the poor-quality test runs flagged by QC-ART and InSPEC-
tor were not analyzed using RMD-PAV because they were re-
runs of samples analyzed earlier in the experiment.

The instrument run represented by the green point in Figs.
3 and 4A was flagged by QC-ART based on all three-baseline
choices using both the dynamic and static thresholds. When
the individual metrics corresponding to that run were investi-
gated, no individual outlying values were noticed. To further
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investigate this issue, a thorough manual inspection was car-
ried out for several LC-MS runs with similar behavior. Al-
though only small differences were observed in peak intensi-
ties and overall shape of the total-ion chromatogram, some
regions of the chromatogram revealed different peak distribu-
tions compared with the corresponding fractions in different
iTRAQ sets (Fig. 5A). By examining one of those regions
(elution time 32–37 min) we observed extensive mass shifts of
15.99 Da, which corresponds to the addition of one oxygen
atom (Fig. 5B). The sequence of a peptide in this region was
determined to be GQYCYELDEK, which corresponded to
amino acid residues 177–186 of human vitronectin (Uniprot
ID: P04004). Surprisingly, this peptide lacks methionine resi-
dues, which are easily oxidized and usually set as a possible
modification location in proteomic data analysis. Note that
InSPECtor gave this instrument run a score below 50/100 (Fig.

4A), which could imply it is incapable of capturing subtle
changes in data quality as reliably as QC-ART.

To determine possible oxidation sites, database searches
were performed again but with MSGF� (25) now considering
potential oxidation in any amino acid residue. Those peptide
identifications that were reported by MSGF as having oxidized
residues were then analyzed by Ascore (26), a tool that cal-
culates probabilities for specific localization of modifications,
to assure the localization of the oxidation. The final oxidation
counts were normalized by the total number for each amino
acid (Fig. 5C), and the results showed enrichment in oxida-
tions of cysteine, methionine, tryptophan and tyrosine resi-
dues (Fig. 5D). Although methionine oxidation was expected,
cysteine was not because the samples were reduced with
dithiothreitol during sample preparation. Tryptophan and ty-
rosine oxidations have been previously described in specific

FIG. 4. Results of the InSPECtor and RMD-PAV methods for the TEDDY iTRAQ data with labeled time periods of interest. A,
The InSPECtor outlier scores (%) were computed using a neighborhood size of 10 are plotted for each instrument run in chronological order.
The horizontal line corresponds to a 95% threshold and the green point represents a sample that exhibited suspicious oxidation patterns. The
mistuned sample runs and some of the diluted samples were correctly flagged to be of poor quality, but the instrument drift was not detected.
B, The RMD-PAV scores were computed for each fraction set once. The solid horizontal line corresponds to a 99.9% threshold. Some of the
diluted samples were correctly flagged to be of poor quality, but the large shift in instrument performance at the end of the cohort prevents
RMD-PAV from identifying many of the other phenomena of interest during this study.
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oxidative stress conditions (27, 28), but they are not usually
considered during informatics processing for peptide identi-
fication. Moreover, oxidation on cysteine, tryptophan, tyrosine
and proline residues were recently identified by an unbiased
database search analysis of HeLa and HEK293 proteome (29).
We then reanalyzed the data by performing the protein data-
base searches considering these oxidations, which led to an
increase of up to 27% in the number of identified peptides

(Fig. 5E), but which was not reflected in a significant increase
in the identification of proteins (Fig. 5F).

Development of a User-friendly Interface—To make QC-
ART more accessible to instrument operators and core facility
personnel, we developed a user-friendly, online application
(https://ascm.shinyapps.io/BAS_QCART), where researchers
can perform analyses on QC metrics of their own samples
(Fig. 6A). The researcher simply uploads their data to the

FIG. 5. QC-ART leads to the identification of unexpected oxidations. A, Total-ion chromatogram of a LC-MS/MS run and the corre-
sponding high pH reversed-phase fractions of three different iTRAQ sets. B, A selected m/z range of the region highlighted in A. C, Workflow
of the MSGF� database searches to identify new oxidized residues. D, Normalized counts of oxidized amino acid residues. E-F, Average
number of peptide (E) and protein (F) identifications per fraction. The blue bars represent the database search performed considering
methionine oxidation as the only possible modification, whereas the red bars represent searches performed considering methionine, cysteine,
tryptophan and tyrosine oxidations. The asterisks represent p � 0.05 by t test.
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application, then QC-ART scores and thresholds are com-
puted using default parameter values (Fig. 6A–6C). We have
pre-set reliable threshold values based on our extensive train-
ing. However, advanced users can manipulate tuning param-
eters such as the baseline size and the proportion of variability
explained by the principal components (Fig. 6C). The QC-ART
scores are plotted in an interactive dot plot along with dy-
namic and static thresholds to identify instrument runs that
may require further evaluation. The source code used by the
online application to implement the QC-ART method is freely
available as the R package QCART on GitHub (https://github.
com/stanfill/QC-ART).

DISCUSSION

QC-ART is a novel and powerful real-time QC tool. Its
flexibility sets it apart from existing QC methods, with the
added cost of more oversight by the researcher. The re-
searcher must choose the baseline data sets, appropriate
variables and a model to fit to the scores, but the insights
derived from QC-ART are deeper than those currently attain-

able and offer informative metrics to allow researchers to
actively steer data collection. Existing QC tools either auto-
matically chose a baseline set using a machine-learning algo-
rithm, e.g. InSPECtor, or use all instrument runs available, e.g.
RMD-PAV. By selecting a baseline of instrument runs at the
beginning of a long study when instrument performance is
likely optimal, QC-ART can reveal previously unexplored
sources of uncertainty, such as normal m/z instrument drift.
Using a data set that was expertly curated to be of good or
bad quality, we showed that QC-ART is equally or more
accurate than RMD-PAV and InSPECtor, but the QC scores
for each sample were available immediately after peptide
identification and other data processing was completed,
rather than after all samples were analyzed. In the context of
a long running cohort study, neither InSPECtor nor RMD-PAV
could identify the gradual change in instrument performance
that was obvious in Fig. 3. The benefits of QC-ART relative to
existing post-hoc tools like RMD-PAV is derived from the
baseline flexibility, but also QC-ART’s ability to fuse multiple
sources of data. The inclusion of NIST variables such as

FIG. 6. QC-ART interface. A, Data upload and settings. B, Verification of the uploaded data. Once the data are uploaded they can be verified
and searched. C, Results and output. The results can be visualized in the interactive graph and downloaded as a comma separated file. Tuning
parameters, including baseline size, can be adjusted by experienced users to better discriminate poor-quality runs.
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BPMZ skew, MS1 2B and P 2C, allowed QC-ART to identify
samples that were prepared incorrectly, but had peptide
abundance vectors similar to other runs. Because RMD-PAV
is defined solely based on peptide abundance data, it was not
able to identify the improperly prepared samples. Further,
using all other instrument runs as a baseline makes it easy for
RMD-PAV to identify large changes in instrument perform-
ance, but those large shifts in performance often mask the
subtle changes such as the slow degradation of instrument
performance in January 2016. Finally, by fitting a model to the
QC-ART scores and continually checking the assumptions
associated with those models, QC-ART was able to pinpoint
exactly when the instrument needed service or cleaning. None
of the existing methods for LC-MS-based proteomics analysis
QC can identify change points in instrument performance with
this level of rigor. In addition, QC-ART scores can be modeled
either statically or dynamically, allowing QC-ART to identify
both global and local changes in instrument behavior. Static
thresholds are used exclusively in the literature to identify
global outlying observations (7, 10, 13).

QC-ART is an important addition to the existing proteomics
QC toolkit and can substantially reduce the amount of time
required to identify and re-run samples that may have been
subject to unwanted sources of variability.
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