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Abstract

Background/Objectives: Although the prevalence of obesity and its assediat
metabolic disorders is increasing in both sexesctimical phenotype differs between
men and women, highlighting the need for individuakatment options.
Mitochondrial dysfunction in various tissues, irdilug white adipose tissue (WAT),
has been accepted as a key factor for obesity4assdccomorbidities such as
diabetes. Given higher expression of mitochondrlated genes in the WAT of
women, we hypothesized that gender differencesenbioenergetic profile of white
(pre-) adipocytes from obese (age- and BMI-matchkledprs must exist.
SubjectsMethods. Using Seahorse technology, we measured oxygen cgoign
rates (OCR) and extracellular acidification rate€AR) of (pre-)adipocytes from
male (n=10) and female (n=10) deeply-phenotyped®benors under hypo-, normo-
and hyperglycemic (0, 5 and 25 mM glucose) and limstimulated conditions.
Additionally, expression levels (mMRNA/protein) ofitochondria-related genes (e.g.
UQCRC?2) and glycolytic enzymes (e.g. PKM2) weresedained.

Results: Dissecting cellular OCR and ECAR into different ¢tinonal modules
revealed that preadipocytes from female donors sh&gnificantly higher
mitochondrial to glycolytic activity (higher OCR/EBR ratio, p=0.036), which is
supported by a higher ratio of UQCRC2 to PKM2 mRI®els (p=0.021). However,
no major gender differences are detectablenivitro differentiated adipocytes (e.qg.
OCR/ECAR, p=0.248). Importantly, glucose and insusuppress mitochondrial
activity (i.e. ATP-linked respiration) significagtlonly in preadipocytes of female

donors, reflecting their trends towards higher iimssensitivity.
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Conclusions: Collectively, we show that preadipocytes, butimotitro differentiated
adipocytes, represent a model system to reveal egedifferences with clinical
importance for metabolic disease status. In pddarcdemales maintain enhanced
mitochondrial flexibility in preadipocytes, as denstrated by pronounced responses

of ATP-linked respiration to glucose.
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1. | ntroduction

Obesity is characterized by reduced mitochondrieddnesis and activity in several
tissues including the white adipose tissue (WAT). [Decreased mitochondrial
function in white adipocytes leads to dysfunctidnipid storage and compromised
endocrine function of WAT [2,3]. These observati@ssociate with obesity-induced
metabolic complications such as insulin resistgd¢e Several studies demonstrate
reduced mitochondrial content and activity of adyges from obese donors [5-9],
independent of fat cell size [8,9]. Furthermoreipadytes from obese donors show
lower oxygen consumption aftegb-adrenergic stimulation as compared to lean
individuals [7]. Of note, gender-differences ofidipnetabolism have been described
[10-13], showing that women exhibit higher lipotytresponses than men after
epinephrine infusion [14]. Based on these resultshas been suggested that
triglyceride synthesis rates in subcutaneous WAGWAT) of obese women are
higher than in obese men [15]. Notably, these gedidferences are reflected at the
cellular level. Isolated adipocytes (subcutaneaus \ésceral) show gender-specific
differences in basal and norepinephrine-stimuléipaalysis [13,16]. Furthermore, the
lipolytic capacity of adipocytes appears to beatéhtially modulated by obesity [16]
and weight-reduction [11] in a gender-specific mamrCollectively, these gender-
specific differences in lipid metabolism of WAT mag caused by distinct cellular
metabolism. Molecular evidence supports the ideagefder differences in the
mitochondrial function of fat cells: Higher genepesssion related to electron
transport chain (ETC) has been observed in the WiATomen, independently of fat
distribution and sex hormones [17]. However, a itedacharacterization of the

cellular bioenergetics of preadipocytes and adifesgyin particular distinguishing
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obese men vs. women is still lacking. These studiesld reveal whether gender
differences of cellular and mitochondrial bioengiggeexist.

The response of adipocytes bioenergetics to substtgpply (such as glucose) and
hormonal control (e.g. insulin) may also be gerspecific as adipocytes from female
mice showed increased insulin sensitivity [10].tRarmore, the maximally insulin-
stimulated glucose uptake is higher in adipocytesifobese women as compared to
obese men [18]. In human skeletal muscle, the nadidul of bioenergetic parameters
by insulin was shownn vitro [19] andin vivo [20-22], and may relate to clinical
parameters such as HOMA-IR and insulin levels igeader-specific manner [23].
Thus, we hypothesized the existence of genderfpédierences of the bioenergetic
machinery in adipocytes, and its differential madian by insulin. Taking advantage
of new technologies simultaneously assessing iitiraa time mitochondrial and
glycolytic activity in intact, undisturbed cell ¢ufes, we determined the bioenergetic
profile of preadipocytes and adipocytes from fensid male donors. To assess the
flexibility of cellular bioenergetics, we apply hyfp normo- and hyperglycemic
conditions, which are modulators of human adipayteoenergetics [24]. The
responses to insulin are integrated in the experiahesetup to determine acute

insulin-induced changes in human white adipocys$giration and glycolytic activity.
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2. Material and method

2.1. Subjectsand cdll culture

Subcutaneous preadipocytes (stromal vascular dractSVF) isolated from 20
metabolically characterized obese patients (10 sndle females (6 pre- and 4 post-
menopausal), mean age: 41 (range: 26-62) yearsn B&H: 50 (range: 41-70)
kg/m2), who underwent bariatric surgery at the @mity Hospital Ttubingen between
2006 and 2010, have been tested for absence of HBY, HCV, and mycoplasma.
Patients had not been on special diet prior to esyrgDetails on donors’
characteristics (Table S1) and medication (Tablec&8 be found in the Appendix A.
After expanding the SVF for two generations, celisre frozen in liquid nitrogen
until further expansion and experiments. Cells {risible contamination with
epithelial or immune cells, third generation) weeeded and grown until confluency.
Then, cells were either subjected to analysis a&adwppocytes (dO) orn vitro
adipogenic differentiation was induced as descrif2&d. 10 days after induction of
differentiation, cells accumulated visible lipid optets and were analyzed as
adipocytes (d10). 24h before RNA/protein isolateord bioenergetic profiling, cells

were cultured in DMEM/F12 containing 0.5% FCS.

2.2. Determination of adipocyte number and DNA quantification

The number of adipocytes was estimated in the nayeos by direct counting using a
net micrometer (Leica, Wetzlar, Germany). Cellseveounted as adipocytes, when
>5 lipid droplets were visible in the cell. DNA dent as a surrogate for cell number

per XF96-well was determined using picogreen Qudnéissay (ThermoFisher).
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2.3. Geneexpression analysis

RNA was harvested and isolated from preadipocytdsaaipocytes using the RNeasy
lipid tissue kit or miRNeasy Kit (Qiagen, Hilden, efenany). After reverse
transcription (SuperScript, Invitrogen or TranswipcDNA Synthesis Kit, Roche),
expression of genes together with the housekeegeng RPS13 was analyzed with

Viia realtime PCR or Roche Lightcycler.

2.4. Immunological detection of OXPHOS complexes and glycolytic enzymes
Preadipocytes and adipocytes were lysed (30 mé#f@}, cleared by centrifugation
and protein concentrations were determined using Bftein assay (Pierce). 15 or
30 ug protein lysate were separated on a 4-12%rBigEl (Invitrogen) and blotted
onto a Nitrocellulose Membrane using iBlot (Invgem). Membrane was blocked for
1h in Odyssey Blocking Buffer (LiCor, Lincoln, NESA) followed by incubation
with primary antibodies. Subsequently, IRDye® oreXdFluor® secondary
antibodies (LiCor or Abcam, Cambridge, England) eversed and signals were
detected using the Odyssey Sa or classic (LiCalowing antibodies were use:
MitoProfile® Total OXPHOS Human WB Antibody Cocktg¢#ab110411, abcam),
PFKP (D4B2, Cell Signaling), PKM2 (D78A4, Cell Sajimg) andp-tubulin (Santa

Cruz, Heidelberg, Germany or Abcam).

2.5. Energetic pathway studies

Preadipocytes (d0) and adipocytes (d10) were washitd XF assay medium
containing 0 mM glucose (pH adjusted to 7.5) ardilrated with indicated glucose
concentrations (0, 5 and 25 mM) for 1 h in a 37iCirecubator. The XF96 plate

(Seahorse Bioscience, Agilent Technologies) was thensferred to a temperature
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controlled (37°C) Seahorse (extracellular flux) lgper (Agilent Technologies) and
subjected to an equilibration period. One assajecgomprised a 1-min mix, 2-min
wait, and 3-min measure period. Oxygen consumpties (OCR) were analyzed as
follows: after 4 basal assay cycles, medium (Or 3%mM) or medium (5mM) with
insulin (1uM) was added by automatic pneumaticcinga. After insulin stimulus,
OCR and ECAR were recorded for 6 assay cycles ¢appately 40 min), before
oligomycin (1 pg/ml) injections were made to inhidhe ATP synthase for
determination of OCR related to ATP synthesis. ARdurther assay cycles, carbonyl
cyanide-4-(trifluoromethoxy)phenylhydrazone (FCC®5 uM) was injected to
stimulate maximal respiration by protonophoric aatiAfter another 3 assay cycles,
rotenone (R, 4 uM) plus antimycin A (AA, 2 uM) wadded followed by 4 assay
cycles to determine the non-mitochondrial OCR. Tdveest OCR measurement after
addition of R/AA was subtracted from all other mtdo determine extracellular
acidification rates (ECARS) deriving from glycolgsthe last injection also contained
2-deoxy-glucose (2DG, 100 mM). Lowest ECAR aftest lmjection was subtracted
from all ECAR values to obtain ECAR due to glycadyCoupling efficiency (CE)
was calculated as the oligomycin-sensitive fractmn mitochondrial respiratory
activity. Cellular respiratory control ratio (cCRCI) the ratio of maximal respiration
to proton leak respiration. ATP production from GMPS and glycolysis was
calculated as published previously [24]. OCR to EChatio (OCR/ECAR) is the
ATP-linked OCR divided by glycolytic ECAR. After ¢hmeasurement, cells were
lysed and total dsDNA amount per well was deterohineing Quant-iT PicoGreen
dsDNA Assay Kit (Thermo Fisher). All rates were matized to 50 ng dsDNA
(~mean DNA content/well of all donors) which is empmately 7600 cells assuming

0.0065 ng dsDNA per mammalian cell [26].
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2.6. Statistics

For statistical comparison, which served to supfh@tgroup differences shown in the
figures, unpaired t-test (two-tailed) to compardane female group was performed
or Mann-Whitney test, if data failed to meet asstiompof normal distribution (Fig.
1,2,4). To compare glucose effects and gender @jgwo-way ANOVA (post-hoc:
Bonferroni) were performed. To test effects of insone-sample t-test to the value 1
was performed (Fig. 4). p<0.05 was considered sstzdily significant. Statistical
tests were performed using Graph Pad Prism (GrapBB&ware, Inc, La Jolla, CA,

USA) and Sigma Plot 12.0 (Systat Software, Incn $@se, California, USA).
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3. Results

3.1. Electron Transport Chain (ETC) mRNA and protein expression reveal no
major gender differencesin preadipocytes and adipocytes

To study gender differences in the bioenergeticgabtells from obese donors, we
analyzed gene expression of subcutaneous preadgso@0) and adipocytes (d10) of
10 obese women and 10 obese men matched for BMaga{Table S1). We focused
on genes encoding ETC components (NDUFB8, UQCRCHE and UCP1, and
genes involved in glucose uptake and glycolysis YE1, GLUT4, PKM2, and
PFKP). No significant differences were detectedirC component and glycolysis-
related mRNA levels between preadipocytes of fenvalanale donors. In female
preadipocytes, UQCRC2 expression trended towaglehiexpression (p=0.076) and
PKM2 towards lower expression (p=0.088) as comp#vanale preadipocytes (Fig.
1A). The mRNA levels of ETC components and glycisly®lated genes were not
significantly different between adipocytes of femaonors as compared with male
donors (Fig. 1B). GLUT4 expression was below deectlimit (Ct>35) in
preadipocytes (Fig. 1A), but robustly detectableadipocytes (Fig. 1B), confirming
previous reports [27]. UCP1 mRNA levels were undeigle in preadipocytes and
adipocytes.

The protein abundance of ETC components (NUDFB&IBDUQCRC2, MTCO2,
ATP5A) together with two rate-limiting enzymes dieplysis (PFKP, PKM2) was
not significantly different between gender in prgadytes (Fig. 1C). Adipocytes of
women displayed higher protein levels of SDHB arkKP, and lower levels of

PKM2 (Fig. 1D). Together, the gene expression amdtepn data of cultured
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adipocytes suggest no major differences of mitodhnahgenes/proteins, contrasting

published results on WAT [17].

3.2. Mitochondrial efficiency is higher in preadipocytes from obese women
under normoglycemic conditions

To test if there are functional differences in whkl energy metabolism of
preadipocytes from obese women compared to men,amayzed bioenergetic
function of preadipocytes under normoglycemic cbads. Total cell number per
well was identical, as estimated by DNA contenpdadipocytes (Fig. S1A, B). The
traces for cellular oxygen consumptions rates (O@m) acidification rates (ECAR)
of preadipocytes (Fig. S1C, D) were analyzed fdfecences between women and
men, as described in Methods and previous pubdicati[24,28]. No gender
differences were found for non-mitochondrial respan (Fig. S1E), maximal
substrate oxidation capacity (Fig. S1F), and ATRdd respiration (Fig. 2A). ECAR
values, which report glycolytic activity, were slari between obese women and men
(Fig. S11, J). Next, we calculated coupling effreg (CE), cellular respiratory control
ratio (cCRCR) and OCR/ECAR ratio, to internally nalme the traces, enabling us to
determine functional changes such as efficienceradrgy turnover and switch of
metabolic routes with confidence. CE was signiftamigher in female vs. male
preadipocytes (Fig. 2B). Higher mitochondrial effitccy in energy turnover was
further supported by significantly higher cRCR (@®) (Fig. 2C). Estimating the
total ATP production rates from the Seahorse dath known stoichiometries [24]
revealed no differences between preadipocytes fram (50.4 pmol ATP/min £7.9)
and women (56.7 pmol ATP/min £9.3). However, weerlied that the mitochondrial

contribution to ATP production was higher in prgsmtiytes of female donors, which

11



244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

was demonstrated in a significantly higher OCR/ECA&io (Fig. 2D), and
complementary, the proportion of glycolytic ATP g@uztion in female was
significantly lower (Fig. 2E). Notably, the higheatio of oxidative to glycolytic
activity in preadipocytes from women (Fig. 2D,E)snalso reflected in a higher ratio

of UQCRC2 to PKM2 mRNA levels (Fig. 2F).

3.3. Adipocytes of obese female and male donors display no differences in
cellular energy metabolism

Adipogenic differentiation was induced in the pripadytes of the identical donors
and the differentiated adipocytes subjected to rmogetic analyses under
normoglycemic conditions. No differences in theeraf adipogenic differentiation
were detectable between adipocytes from men and ewo(@®NA content and
adipocyte number per well (Fig. S2A-C)). As prewlyuperformed for preadipocytes,
the identical bioenergetic parameters were detexthior adipocytes. However, we
found no significant gender differences of the hergetic parameters under basal,
normoglycemic conditions (Fig. S2D-K and Fig. 2G-IKurthermore, differences in
the ratio of UQCRC2 to PKM2 mRNA levels disappearedifferentiated adipocytes

(Fig. 2L).

3.4. Mitochondrial coupling efficiency (CE) and ATP-linked respiration
respond to glucose in preadipocytes of obese women

Next, we studied the gender differences of preagif@ energy metabolism in
response to hyperglycemic (25 mM glucose) and hiygegic (0 mM glucose)
conditions. We previously established the work-flfav in-depth bioenergetics in

SGBS adipocytes, which represent a subcutaneouarhieh cell model [24]. In this
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study, we apply this work-flow to compare the bieegetic profile of preadipocytes
from men and women under hypo-, normo- and hypeegiyc conditions (c.f. Fig.
2). Preadipocytes from women show a wider scopad@pt mitochondrial energy
metabolism to glucose. This was evident in the iraBpn rates linked to ATP
synthesis, where ATP-linked respiration was sigaifily higher at hypoglycemic
conditions (p=0.034) (Fig. 3A). Preadipocytes frbath genders increased glycolytic
rates with increasing glucose concentration (Fig), 3which was reflected in
significant changes of the OCR/ECAR ratio for pipadytes from both genders (0O
vs 25mM men: 3.4 vs 0.5; p=0.008; women 5.9 vs p€).001). In total, high
glucose levels provoked a higher contribution oycglytic ATP to total ATP
production (Fig. 3C). Notably, preadipocytes frommen significantly decreased CE
under hyperglycemic conditions as compared to hiyoegic condition (Fig. 3D).
Cellular respiratory control ratio (cCRCR) was nagngficantly changed with
increasing glucose concentrations, but preadipscfitem women showed higher
cRCRs under all three conditions as compared to (@emM: p=0.006; 5mM:
p=0.003; 25mM: p=0.045) (Fig. 3E).

Next, differentiated adipocytes were challenged hwihypo-, normo- and
hyperglycemic conditions. ATP-linked respiratiorcoeased with increasing glucose
concentration (Fig. 3F; OmM vs 25mM, p= 0.039), ethwas paralleled by trends of
ECAR in the opposite direction (Fig. 3G; OmM vs 28mp= 0.057). Both
parameters, however, show no gender differenceg. rBhative contribution of
glycolysis to ATP production (% ATP from glycolysikig. 3H) and CE (Fig. 3I)
were significantly different between hypo- and hygbgcemic condition in adipocytes

of women (p=0.004 and p=0.027), but not of mercdntrast, differences of cRCR in
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response to hypo- and hyperglycemic conditions vieoad for both genders (Fig.
3J).

Taken together, when challenged with hypo- or hgiyeemic conditions,
preadipocytes only from women significantly deceshscoupling efficiency and
reduced ATP-linked respiration, demonstrating germliiéerences in the adaption of
oxidative metabolism to glucose availability. Thegender differences were

pronounced in preadipocytes and not detectable uive differentiated adipocytes.

3.5. Distinct bioenergetics responses to insulin are specific for preadipocytes of
obese women

Gender-dependent differences have been implicateéni important feature of
adipocytes, i.e. insulin-stimulated glucose uptdke18]. Thus, we integrated insulin
stimulation during the bioenergetic analysis tcestigate gender differences.

Insulin significantly suppressed ATP-linked respoma in preadipocytes of females
(Fig. 4A). Insulin treatment increased ECAR ~1.Itfm preadipocytes, suggesting
insulin-induced glycolysis as expected. Interesyingnsulin-dependent glycolytic
rates responded irrespective of gender (Fig. 4B8ulln action in preadipocytes from
women was reflected in decreased CE (Fig. 4C) &@Rc(Fig. 4D). Notably, insulin
decreased the OCR/ECAR ratio in preadipocytesegbyemdicating the switch from
oxidative towards glycolytic metabolism. The OCRAR was significant different
between gender, and thus demonstrates increasalilitg of overall metabolism in
female preadipocytes (~ -50% for women vs ~-30%fen) (Fig. 4E).

In differentiated adipocytes, we detected insutideiced suppression of ATP-linked
respiration for both genders (Fig. 4F). In paraltek ECAR increased almost 2-fold

after insulin treatment independent of gender (&@g). CE (Fig. 4H), cRCR (Fig. 4l)

14
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and OCR/ECAR (Fig. 4J) significantly decreased raftesulin treatment without
gender-specific effects.

Taken together, the responses of mitochondrialnamgetics to glucose and insulin,
in particular ATP-linked respiration and CE, areren@ronounced in preadipocytes
from obese women, and thus more flexible, allowhigher metabolic plasticity.
Importantly, these gender-dependent differences m@oe longer detectable in
differentiated adipocytes, suggesting that cellinsic differences between women
and men vanish during adipogenic differentiatidrieast in our experimentat vitro

setting.
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4. Discussion

In the present study we report on gender differemcehe cellular energy metabolism
of preadipocytes. In particular the differencesnisulin-dependent glucose handling
may have profound implications for gender-spedigatment of metabolic diseases.
Pronounced gender differences of ATP-linked respma were found in
preadipocytes from obese donors in response togguand insulin. The results from
female donors suggest that preadipocytes displaatgr plasticity of oxidative
metabolism that may be related to differences iabahc or catabolic processes.
Gender differences have also been found in otlaaggmitor cells, e.g. muscle-derived
stem cell (MDSC) and embryonic cells (neurons) frmmece and rats, which display
sex differences in the susceptibility to stresswmiuiced cell death [29—-31].
Preadipocytes appear to be a more robust testnsystenterrogate gender-related
hypotheses in relation to metabolism and metaldibeases, contrasting (in vitro)
differentiated adipocytes which showed no, or oniynor, bioenergetic gender
differences. We cannot exclude that the absengewnder differences may relate to
commonly applied experimental conditions, using antonal cocktail to induce
adipogenic differentiation that putatively overisdexisting genetic and epigenetic
differences. Thus, the absence of differencesearctpacity ofn vitro differentiation
(Fig. S2A-C) could be due to experimental condsiodowever, the differences seen
in preadipocytes could potentially impact diffeiation in vivo, contributing to
gender differences in subcutaneous WAT celluldritgérplasia [32]. Vice versa, our
observations in preadipocyt@s vitro may be primed (e.g. epigenetic changes) by
gender-specific differences of thevivo WAT environment, including sex hormones

and nutrients (e.g. glucose, Table S1). For examyphether the menstrual cycle has
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an impact in this study has not been assessedowgthwe cannot formally exclude
these confounding factors, it should be noted thatpreadipocytes were cultivated
for at least three generations in the medium witbntical hormone and nutrient

concentrations.

Obesity significantly disturbs WAT cellular metaisoh [5]. Importantly, this
bioenergetic fingerprint is preservedimvitro differentiated adipocytes, contrasting
vanished gender differences. In previous studiescemprehensively characterized
the bioenergetics of human SGBS adipocytes, whegresents a “lean”, insulin-
sensitive preadipocyte cell strain [24,33]. Comgaie SGBS cells, the ATP-linked
respiration ofin vitro differentiated adipocytes from obese donors wasuab0%
lower, suggesting impact of the obesity state orPAtirnover. The depression of
ATP metabolism in obesity is further supported layadof Yeo and colleagues, who
directly compared SGBS tm vitro differentiated subcutaneous adipocytes from
obese donors, the latter showing lower mitochohdaivity and reduced lipid
accumulation and insulin-stimulated glucose upt§Bé]. Furthermore, isolated
mitochondria from human primary (“floating”) adipdes revealed strong BMI-
dependent decreases of mitochondrial activity (mmeasas ATP-linked respiration)
[8,9]. In line with our observations, a study onsdélaheat production of primary
(“floating”) adipocytes from lean vs obese womerd anen revealed no gender
difference but decreased heat output by obesity~50% [35]. Concerning
mitochondrial differences between pre- and matuiparytes, we calculated for
SGBS adipocytes vs preadipocytes from our prewopsiblished data ~4.4- fold
higher oxygen consumption [24], which is in a sanilange as data from von

Heimburg and colleagues (who detected ~4.8-folthdrigespiration in adipocytes vs
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preadipocytes from lean donors) [36]. In the pres&udy focusing on obese donors,
cellular respiration in preadipocytes vs adipocyteseased only ~3-fold (18 pmol
O./min/50 ng dsDNA vs 53 pmol 4min/50 ng dsDNA), further supporting the idea
that obesity disturbs cellular metabolism. Our datggest that obesity-induced (epi-
)genetic, molecular and metabolic perturbations aiemn ex vivo differentiated
adipocytes, despite the lack of potentralivo gender differences. This also confirms
previous studies ai vitro differentiated adipocytes, showing molecular dédfeces
for metabolic healthy vs unhealthy obese donor$ ®gether justifying the value of

in vitro studies in adipocytes for metabolic disease.

To the best of our knowledge, we report for thetftime on significant gender
differences of oxidative to glycolytic activity ras (OCR/ECAR) in preadipocytes
from obese donors. This functional difference wdso areflected on the gene
expression level showing higher levels of UQCRCZ M2 in women (p=0.021,
Fig. 2F). However, other molecular bioenergetic kaes do not reveal gender
difference, contrasting analyses on whole WAT [1fdicating that there is either no
robust link of mMRNA/protein levels with functiom particular during acute exposure
to hormones and nutrients, or that the gender-Bpaunicroenvironment created by
hormones (e.g. adiponectin [38]) or inflammationg(eTNFa [39]) is strongly
affecting the expression of bioenergetic markers.

The functional differences in preadipocyte energgtaholism may at least partially
provide the basis for well-described systemic gendgferences in substrate
metabolism [40-42]. Females display higher netligkidation than males in resting
conditions [42]. In particular, when energy demancreases (e.g. during physical

activity), women show a higher contribution of fakidation to total energy
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expenditure [40,41]. For other tissues such as lub@her oxidative to glycolytic
activity has been suggested for women [43,44]. bese and diabetic individuals,
increased glycolytic to oxidative muscle metaboli$tas been reported [45,46],
indicating the link between insulin sensitivity artde balance of oxidative to
glycolytic pathways. The over-proportioned reliamceglycolytic pathways, possibly
due to compromised oxidative pathways, may be lanbak of insulin resistance [45].
Our functional studies on adipose cells are congmeive but would not allow for
gender-stratified correlation analyses testing lthie between function and clinical
parameters at this stage, as the number of 20 slamtwo low. Nevertheless, our data
indicate that improvement of mitochondrial functiand the higher oxidative to
glycolytic ratio of preadipocytes from obese wonwuld be beneficial. Improved
glucose homeostasis and insulin sensitivity is mioeguently observed in obese
women as compared to age- and BMI-matched men }7-Bur cohort showed

trends towards higher insulin sensitivity in won{@&ppendix A, Table S1).

The acute insulin stimulus significantly lowered@R and coupling efficiency (Fig.
4) in human adipocytes from women, contrastinglinseffects in human myotubes
where insulin acutely increases cRCR and couplifigiency by decreasing proton
leak respiration [19]. In adipocytes, neither basat FCCP-stimulated respiration
rates were robustly altered by insulin (Fig S3 A-us, the changes in cRCR and
CE are mainly due to changes in proton leak respira(Fig. S3E,F). Increased
proton leak respiration is either caused by chamgéle conductance of protons or
other ions at the mitochondrial inner membrane. el®v, similar to human
myotubes [19] we found a robust increase of ECAporing glycolytic activity in

response to insulin, that should also enhance gkiagptake. This is in line with
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reports on increased glycolytic activities in meriadipocytes [53,54]. Therefore,
extracellular flux analyses are instrumental to ownnsulin sensitivity, and offers
simultaneous real-time measurements of both, gyg®glucose uptake and

mitochondrial oxidation.

5. Conclusions

In summary, preadipocytes retain gender differengestro, and cells from obese
women possess a higher metabolic flexibility inwody oxidative metabolism.

Metabolic flexibility may assist to sustain metabdiealth better as age- and BMI-
matched men. Therapies targeting obesity, adipaossue and dysfunctional

mitochondrial properties must consider gender dbffees.
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Figurelegends

Figure 1: The expression of genedproteins involved in oxidative and glucose
metabolism of male and female preadipocytes and adipocytes

(A, B) Total mRNA of preadipocytes (d0) and adipocyteDjddiere prepared and
analyzed by gPCR. The relative mMRNA expression exfeg involved in oxidative
metabolism (NDUFB8, SDHB, and UQCRC2) and glucosstatmolism (GLUT1,
GLUT4, PFKP, and PKM2) was normalized b€t to housekeeper RPS13. Data are
fold change to men and are the mean + SEM of 1@ matl 10 female donors for
which bioenergetic pathway analyses were perfornf€d.D) Protein lysates of
preadipocytes (d0) and adipocytes (d10) were peepand analyzed by western blot.
Representative western blots for preadipocytesaalijubcytes of 5 female and 5 male
donors using total OXPHOS human antibody cockRHKP, PKM2 and3-tubulin
antibody. Quantification of signals for OPXHOS antilies (NDUFB8, SDHB,
UQCRC2, MTCO2 and ATP5A) and glycolytic enzymes KPFand PKM2)
presented as ratio fbtubulin and as fold change to the mean of maleatig-tubulin
per membrane. Data are the mean + SEM of 10 mald @rfiemale donors for which

bioenergetic pathway analyses were performed. 05,0+ p<0.01

Figure 2: The cellular metabolism of preadipocytes and adipocytes from obese
women and men under nor moglycemic conditions

(A-E,G-K) Oxygen consumption (OCR) and extracellular aadiion (ECAR) after
interference of energetic pathways with specifibibitors were analyzed under
normoglycemic (5 mM) conditions using a XF96 exélddar flux analyzer as

described previously [24] and in Materials and Melth All data were normalized to
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50 ng dsDNA per well. OCR and ECAR traces vs timeshown in Sl (Fig. S1 and
S2). Mitochondrial respiration (Fig. S1G, S2F) vaissected int¢A,G) ATP-linked
respiration and proton leak respiration (Fig. SB2H). Coupling efficiency (CE,
(B,H)) and cell respiratory control ratio (CRCE,1)) were calculated as described in
Methods. The OCR/ECAR rati¢D,J) and the percentage of ATP produced by
glycolysis(E,K) of male and female preadipocytes and adipoc{kes) The mRNA
levels of UQCRC2 and PKM2 mRNA levels were analybgdjPCR, normalized by
ACt to RSP13 (c.f. Fig 1) and are presented as cdtidQCRC2 to PKM2 mRNA
levels for preadipocytes and adipoctyes. All data the mean of 10 men and 10

women + SEM. * < 0.05, ** p<0.01

Figure 3: The celular metabolism of preadipocytes and adipocytes from obese
women and men under hypo- and hyperglycemic conditions

(A-J) Oxygen consumption (OCR) and extracellular aadiion (ECAR) after
interference of energetic pathways with speciftuliitors were analyzed under hypo-
(0 mM) and hyperglycemic (25 mM) conditions togethgith normoglycemic
conditions (c.f. Fig. 2) using a XF96 extracelluldux analyzer as described
previously [24] and in Materials and Methods. OQORI &CAR traces vs time are
shown in Sl (Fig. S1 and S2). The effect of glucoseéATP-linked respiratiofA, F),
glycolysis (B, G), the percentage of ATP produced by glycoly§s H), coupling
efficiency (D, 1) and cRCR(E, J) are shown for preadipocytes and adipocysds
data were normalized to 50 ng dsDNA per well arelthe mean of 10 men and 10
women + SEM. Glucose: * < 0.05, ** p<0.01, *** p<D1. Gender? p<0.05 vs

women
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Figure 4: Acute effects of insulin on the cellular metabolism of preadipocytes and
adipocytes from obese men and women

OCR and ECAR were recorded and detailed disseamatysis was performed as
described in Method section. All data are preseatetbld change to medium control
(normoglycemic condition, c.f. Fig 2) of each danosulin-induced changes in ATP-
linked respiration(A, F), glycolysis (B, G), coupling efficiency (CE(C, H)), cell
respiratory control ratidcRCR, (D, 1)) and OCR/ECAR(E, J) are presented for
preadipocytes and adipocytes. All data were nomeadlio 50 ng dsDNA per well and
are the mean of 10 men and 10 women + SEM. Gehget0.05; insulin: # p<0.05,

## p<0.01, ### p<0.001 vs basal.
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Figure 2
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Figure 3
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Figure 4
Effects of
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Highlights

Preadipocytes may represent a model system to study gender differences

Female vs male preadipocytes show higher mitochondrial to glycolytic activity
ATP-linked respiration of female preadipocytes is suppressed by glucose and insulin
Female vs. male preadipocytes have higher metabolic flexibility via mitochondria

Gender differences are not detectable in in vitro differentiated adipocytes



