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Objectives: Changes in skeletal muscle composition, 
such as fat content and mass, may exert unique meta-
bolic and musculoskeletal risks; however, the reproduc-
ibility of their assessment is unknown. We determined 
the variability of the assessment of skeletal muscle fat 
content and area by MRI in a population-based sample.
Methods: A random sample from a prospective, 
community-based cohort study (KORA-FF4) was 
included. Skeletal muscle fat content was quanti-
fied as proton-density fat  fraction (PDFF) and area 
as cross-sectional area (CSA) in multi-echo Dixon 
sequences (TR 8.90 ms, six echo times, flip angle 4°) 
by a standardized, anatomical landmark-based, manual 
skeletal muscle segmentation at level L3 vertebra by 
two independent observers. Reproducibility was 
assessed by intraclass correlation coefficients (ICC), 
scatter and Bland–Altman plots.
Results: From 50  subjects included  (mean age 
56.1  ±  8.8  years, 60.0% males, mean body mass index 
28.3  ±  5.2) 2′400 measurements were obtained. 

Interobserver agreement was excellent for all muscle 
compartments (PDFF: ICC0.99, CSA: ICC0.98) with only 
minor absolute and relative differences (–0.2  ±  0.5%, 
31  ±  44.7  mm2; –2.6  ±  6.4% and 2.7  ±  3.9%, respec-
tively). Intra-observer reproducibility was similarly 
excellent (PDFF: ICC1.0, 0.0 ± 0.4%, 0.4%; CSA: ICC1.0, 
5.5 ± 25.3 mm2, 0.5%, absolute and relative differences, 
respectively). All agreement was independent of age, 
gender, body mass index, body height and visceral 
adipose tissue (ICC0.96–1.0). Furthermore, PDFF repro-
ducibility was independent of CSA (ICC0.93–0.99). 
Conclusions: 
Quantification of skeletal muscle fat content and area by 
MRI using an anatomical landmark-based, manual skel-
etal muscle segmentation is highly reproducible.
Advances in knowledge: An anatomical landmark-based, 
manual skeletal muscle segmentation provides high 
reproducibility of skeletal muscle fat content and area 
and may therefore serve as a robust proxy for myostea-
tosis and sarcopenia in large cohort studies.
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INTRODUCTION
Skeletal muscle represents an essential organ system, deter-
mining the physical condition and serving locomotion, physical 
activity and mobility, but also playing a crucial role in  energy 
metabolism and hormone homeostasis.1,2 It may therefore serve 
as an ideal target for health preservation and/or improvement.3,4 
In fact, changes in skeletal muscle composition, for example, an 
increase in intra- and intermuscular fat defined as myosteatosis5 
or a decline in skeletal muscle mass and performance,6 are asso-
ciated with various chronic disease conditions, such as diabetes 
mellitus (DM) or sarcopenia.7–11 With more than 833 million 
people worldwide being affected by DM and its precursor stage 
prediabetes12 and an estimated prevalence of sarcopenia up to 
50% for patients aged 80 years and older,6 the socioeconomic 
impact of both entities is substantial but interactions are still not 
well understood.

Since skeletal muscle is a major target organ of insulin, recent 
data suggest that patients with DM are at high risk for skeletal 
muscle depletion.11 Specifically, Type 2 diabetes mellitus (T2DM) 
is associated with an increased prevalence of sarcopenia, defined 
as a decline in skeletal muscle mass associated with impaired 
mobility and physical disability,6 while myosteatosis has been 
identified as an effect modifier in DM.11,13–18 Despite these early 
data, it remains unclear to what extent ectopic lipid deposits in 
skeletal muscle contribute to the development and progression 
of insulin resistance and, conversely, how T2DM is associated 
with the successive loss of skeletal muscle mass, strength and 
function. Hence, large, longitudinal cohort studies are needed to 
gain profound insights into the pathophysiological relevance of 
myosteatosis and sarcopenia and their correlation with DM as 
potential diagnostic or prognostic biomarkers.

For this purpose MRI may be particularly suited to analyze 
skeletal muscle composition, considering its high soft tissue 
contrast, non-ionizing and non-invasive nature.19–22 The feasi-
bility of such an approach relies on a robust method for the quan-
tification of skeletal muscle biomarkers, such as fat content and 
mass. However, the reproducibility of the assessment of skeletal 
muscle fat content and area by MRI in a cohort setting remains 
unknown.

We therefore aimed to determine the reproducibility of the 
MR-based quantification of skeletal muscle fat content and area 
using an anatomical landmark-based, manual segmentation 
approach in a sample from the general population. Our hypoth-
esis was that such an approach will be robust and highly repro-
ducible and may therefore serve as a reference for future studies.

METHODS and Materials
Study design and population
Subjects were derived from the KORA-FF4 study (2013–2014, 
n = 1851), a 14-year follow-up study of the Cooperative Health 
Research in the Region of Augsburg (KORA) survey S4 (1999–
2001, n = 4261). The design of the KORA studies has been 
described in detail previously.23,24 In brief, the KORA study was 
designed as a case–control study embedded in a prospective, 
population-based cohort including participants with normal 

glucose tolerance, prediabetes and T2DM from the general 
population. The study was approved by the local institutional 
review board of the Ludwig-Maximilian-University Munich, 
and  written informed consent was obtained from all partici-
pants. Subjects underwent a whole-body MRI according to the 
following inclusion (willingness to undergo MRI examination, 
signed informed consent form) and exclusion criteria (age >72 
years, validated/self-reported history of stroke, myocardial 
infarction or revascularization, cardiac pacemaker or implant-
able defibrillator, cerebral aneurysm clip, neural stimulator, any 
type of ear implant, ocular foreign body, any implanted device, 
pregnant or breast-feeding female subjects, claustrophobia, 
allergy against gadolinium compounds, serum creatinine  
≥1.3 mg dl−1).

MR imaging protocol and data acquisition
MR examinations were performed in supine position on a 3-Tesla 
Magnetom Skyra (Siemens Healthineers, Erlangen, Germany) 
using an 18-channel body surface coil in combination with the 
table-mounted spine matrix coil. The complete imaging protocol 
as well as technical specifications have been described in detail 
elsewhere.24

The imaging protocol included a T2*-corrected, multi-echo 
3D-gradient-echo Dixon-based sequence (multi-echo Dixon), 
originally determined for liver fat quantification25,26 but also 
suited for the measurement of skeletal muscle fat content and 
area.19–22 This multi-echo Dixon method is based on a prototype 
VIBE sequence with the following parameters: time to repetition 
(TR) 8.90 ms, time to echo (TEs) opposed-phase 1.23 ms, 3.69 
ms and 6.15 ms, TEs in-phase 2.46 ms, 4.92 ms and 7.38 ms, flip 
angle 4°, readout echo bandwidth 1080 Hz/pixel, matrix 256 × 
256, slice thickness 4 mm. Data were acquired during a single 
breath-hold of 15 s. The post-processing algorithm using the 
Software LiverLab (Version VD13, Siemens Healthineers, Cary, 
USA) automatically calculated water- and fat-only images as 
DICOM files from the original data of the multi-echo acquisi-
tions. As chemical shift-based imaging, the obtained fat signal 
fraction maps are based on the signal ratio of fat to the summed 
signal of water and fat (proton-density fat fraction (PDFF)) and 
corrected for confounding effects of T1- and T2*-decay, quanti-
tatively coding the mean PDFF in degrees of grey values of each 
voxel (1 grey value = 0.1% fat content).25,26 Furthermore, for the 
correct location of L3 vertebra on axial slices, coronal two-point 
Dixon gradient-echo (GRE) sequences (TR 4.06 ms, TE 1.26 
ms and 2.49 ms, flip angle 9°, slice thickness 1.7 mm, isotropic 
in-plane resolution 1.7 mm) were used.

Skeletal muscle segmentation
To determine the interobserver reproducibility, two blinded 
observers (observer A and observer B) independently performed 
skeletal muscle segmentation of 50 randomly selected KORA-
data sets. For the assessment of intra-observer reproducibility, 
observer A repeated the segmentation of all 50 data sets in a 
random order at least 4 weeks after the first reading in order 
to reduce recall bias. All analyses were performed in a blinded 
manner, unaware of any information or clinical covariates of 
the subjects. Standard display settings were chosen to maximize 

http://birpublications.org/bjr


3 of 9 birpublications.org/bjr Br J Radiol;91:20180019

BJRFull paper: Reproducibility of skeletal muscle fat content and area by MRI

the contrast between skeletal muscle and surrounding tissue. If 
necessary, the observers made manual adjustments for the best 
image contrast. Both readers had full access to scroll through all 
image data sets.

Observer A and observer B both measured skeletal muscle fat 
content as mean PDFF in percent (%) and skeletal muscle area 
as muscle cross-sectional area (CSA) in square millimeters 
(mm2 ) of the right (R) and left (L) psoas major muscle (MPM), 
quadratus lumborum muscle (MQL), autochthonous back 
muscles (ABM, containing the erector spinae muscles and the 
spinotransverse muscles) and rectus abdominis muscle (MRA) 
using dedicated, commercially available Software (Osirix V8.5.1, 
Pixmeo SARL, Bernex, Switzerland and MITK V2015.5.2, 
German Cancer Research Center, Heidelberg, Germany, respec-
tively) on an offline workstation (Figures 1 and 2b). The validity 
of these methods has been demonstrated previously.19,20,27,28 The 
complete manual segmentation procedure of one KORA-data set 
measuring both PDFF and CSA took on average 10 min.

Segmentation was performed on one axial slice at the level of the 
lower endplate of L3 vertebra, since recent studies demonstrated 
that skeletal muscle CSA at level L3 is a reliable method for the 
determination of sarcopenia28 and quantification of skeletal 
muscle fat content at level L4 and L3 vertebra are good surrogates 
for the entire lumbar spine.29 The correct axial slice position was 
verified by identifying L4 vertebra by the iliac crest tangent sign 
on coronal images using cross-reference (Figure  2).30 If there 
were significant image artefacts limited to level L3 vertebra, the 
next possible, cranial slice without artifacts, was selected for skel-
etal muscle segmentation.

Each muscle compartment was segmented by a standardized and 
manual segmentation method on the selected axial slice. Regions 
of interest (ROIs) determining CSA were drawn exactly on the 
muscle boundaries, comprising the whole muscle area, whereas 
ROIs quantifying PDFF were drawn a few voxels smaller concen-
trically in order to avoid partial volume effects of surrounding 
adipose tissue. Dedicated and standardized anatomical 

Figure 1.  Skeletal muscle mass area by CSA. High (a) and low (b) skeletal muscle mass area as CSA by an anatomical land-
mark-based, manual segmentation method at level L3 vertebra. CSA, cross-sectional area.

Figure 2.  Determination of the correct axial slice position at the level of the lower endplate of L3 vertebra and skeletal muscle fat 
content by PDFF. Iliac crest tangent sign on coronal images, marking either L4 vertebra or L4/5 intervertebral disc and cross-ref-
erence to axial images for the identification of level L3 vertebra (a and b). Mean skeletal muscle fat content as mean PDFF in one 
ROI at level L3 vertebra (b). PDFF, proton-density fat fraction; ROI, region of interest.
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landmarks were used to define the boundaries of the segmented 
muscle compartments (Supplementary table 1).

Covariates
A comprehensive health assessment was performed prospec-
tively for all subjects collecting demographics and other cardio-
vascular risk factors. In this analysis, we included gender, age in 
years, body weight measured in kilograms (kg) and body height 
measured in centimeters (cm). The body mass index (BMI) was 
calculated as weight in kg divided by height in square meters 
(m2). Waist circumference was measured at the smallest abdom-
inal circumference or, in obese subjects, in the midpoint of the 
lowest rib and the upper margin of the iliac crest and hip circum-
ference was determined at the most protruding part of the hips 
to the nearest 1 mm. In addition, visceral and subcutaneous 
adipose tissue (VAT and SCAT) were segmented and quantified 
in cm2 by an automated algorithm based on fuzzy-clustering on 
one axial slice at the level of the umbilicus.31,32

Statistical analysis
Descriptive characteristics were expressed as mean ±  standard 
deviation (SD) for continuous variables and percentages for 
categorical variables. Inter- and intra-observer reproducibility 
was assessed using scatter plots with Pearson correlation coeffi-
cients and intraclass correlation coefficients (ICC) from two-way 
random-effects ANOVA33 as well as Bland–Altman plots with 
mean absolute differences ± SD and 95%  limits of agreement. 
In addition, relative differences between the two observers were 
calculated and presented as mean ± SD. An ICC value close to 
1 indicates excellent agreement between the two observers or 
observations. Analyses were repeated in subgroups (median 
divided) of age, gender, BMI, body height, VAT and CSA. All 
statistical analysis was performed using Stata (V14.1, Stata 
Corporation, College Station, USA).

RESULTS
Study population
A total of 50 randomly selected subjects from the entire 
KORA-MRI study population were included in this analysis 
(mean age 56.1 ± 8.8 years, 60.0% males, mean BMI 28.3 ± 
5.2). No subject was excluded due to impaired image quality. 

Segmentation had to be performed at level L2/3 vertebra in four 
subjects (8%) due to image artefacts limited to level L3. Demo-
graphics of the study population are provided in Table 1). For the 
assessment of inter- and intra-observer reproducibility of PDFF 
and CSA consequently a total of 1’200 measurements each were 
obtained.

Inter-observer reproducibility
The interobserver agreement of PDFF was excellent for all muscle 
compartments (ICC 0.94 to 1.0) (Table  2). Similarly, inter-ob-
server reproducibility of CSA was excellent for all included 
muscles (ICC 0.93 to 0.97) (Table 3). PDFF  and CSA measure-
ments were both highly correlated between the two separate 
measurements by observer A and B (r = 0.99, ICC 0.99 and r = 
0.99, ICC 0.98, respectively, Figures  3 and 4) with only minor 
mean absolute differences (mean absolute differences PDFF: 
−0.2 ± 0.5% and CSA: 31.0 ± 44.7 mm2, respectively). The mean 
variability was likewise very small for PDFF and CSA (mean rela-
tive difference PDFF: −2.6 ± 6.4% and CSA: 2.7±3.9%, respec-
tively) (Tables 2 and 3).

Intra-observer reproducibility
For all analyzed muscle compartments, intra-observer reproduc-
ibility was excellent regarding PDFF (ICC 0.96 to 1.0) and CSA 
(ICC 0.96 to 0.98) (Tables 2 and 3). PDFF and CSA measurements 
were highly correlated between the first and second reading by 
the same observer A (r = 1.00, ICC 1.00 each, Figures 5 and 6). 
The mean absolute and relative intra-observer differences were 
extremely small for both PDFF and CSA (mean absolute differ-
ences PDFF: 0.0±0.4% and CSA: 5.5 ± 25.3 mm2; mean relative 
differences PDFF: 0.4±3.8% and CSA: 0.5±2.3%; respectively) 
(Tables 2 and 3).

Effects of age, gender, BMI, body height, VAT and 
skeletal muscle mass on reproducibility
All agreement of PDFF and CSA was independent of age (PDFF: 
ICC 0.98 to 0.99 and CSA: ICC 0.97 to 1.0), gender (PDFF: ICC 
0.99 to 1.0 and CSA: ICC 0.96 to 0.99), BMI (PDFF: ICC 0.98 
to 1.0 and CSA: ICC 0.97 to 1.0), body height (PDFF: ICC 0.97 
to 1.0 and CSA: ICC 0.97 to 0.99) and VAT (PDFF: ICC 0.99 
to 1.0 and CSA: ICC 0.96 to 1.0) (Supplementary Table 1  and 

Table 1.  Demographics of the study population. Data is presented as mean ± standard deviation

Characteristics All subjects Female Male

N 50 20 30
Age (years) 56.1 ± 8.8 56.7 ± 9.5 55.8 ± 8.4

BMI (kg/m2) 28.3 ± 5.2 27.8 ± 6.4 28.5 ± 4.2

Body weight (kg) 83.8 ± 17.3 75.8 ± 18 89.2 ± 14.8

Body height (cm) 172.0 ± 9.3 165.1 ± 6.6 176.6 ± 7.8

Waist circumference (cm) 97.9 ± 14.5 90.1 ± 15.3 103.1 ± 11.5

Hip circumference (cm) 106.7 ± 10 107.4 ± 12.8 106.2 ± 7.7

VAT (cm2) 156.1 ± 95 100.8 ± 64.9 193.7 ± 94.6

SCAT (cm2) 290.4 ± 123.1 318.5 ± 154.4 271.4 ± 94.8

BMI, body mass index; VAT, visceral adipose tissue; SCAT, subcutaneous adipose tissue

http://birpublications.org/bjr
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Supplementary Table 3). The mean differences of PDFF and CSA 
were similar between younger subjects (<55 years), male gender, 
non-obese subjects (BMI <28.0 and VAT <148.4 cm2) or subjects 
with a smaller body height (<171.0 cm) (for all ICC > 0.96). 
Furthermore, reproducibility of PDFF was independent of CSA 
(ICC 0.93 to 0.99).

DISCUSSION
Given the substantial impact of DM in the context of demo-
graphic change and successively increasing prevalence as well as 
the highly relevant functional aspects and clinical significance 
of skeletal muscle, there is a rising need for the establishment 
of reliable and robust biomarkers for myosteatosis and sarco-
penia. Thus, we studied the reproducibility of the assessment 
of abdominal skeletal muscle fat content and area by MRI in a 

population-based sample. Our results indicate that both PDFF 
and CSA by MRI are highly reproducible using a standard-
ized, multi-echo Dixon-based, manual segmentation method. 
Measurement variabilities were independent of potential 
confounders, such as age, gender, BMI, body height and VAT as 
well as of each other.

Currently, several different methods are being used for the 
analysis of skeletal muscle composition, including CT, dual-en-
ergy X-ray absorptiometry, ultrasound or histopathology.34,35 
However, disadvantages are the application of ionizing radiation 
for X-ray-based methods or the invasiveness in biopsy-based 
approaches. Recent studies demonstrated that multi-echo Dixon-
based and spectroscopic fat fractions agree well, thus providing 
a valid and fast method for the quantification of skeletal muscle 

Table 2.  Inter- and intra-observer reproducibility of PDFF

Interobserver variability PDFF Intra-observer variability PDFF

ICC (95% CI) Difference (mean ± SD) ICC (95% CI) Difference (mean ± SD)

Absolute 
(%) Relative (%)

Absolute 
(%)

Relative 
(%)

Psoas major muscle (right) 0.94 (0.89;0.97) −0.3 ± 0.9 −3.7 ± 13.6 0.96 (0.93;0.98) 0.1 ± 0.8 1.4 ± 12.0

Psoas major muscle (left) 0.98 (0.97;0.99) −0.2 ± 0.6 −2.1 ± 9.3 0.98 (0.97;0.99) −0.1 ± 0.5 0.2 ± 9.3

Quadratus lumborum muscle (right) 0.97 (0.96;0.99) 0.1 ± 0.7 2.6 ± 16.7 0.98 (0.96;0.99) 0.1 ± 0.7 1.8 ± 14.7

Quadratus lumborum muscle (left) 0.94 (0.9;0.97) −0.1 ± 0.8 0.4 ± 17.6 0.98 (0.96;0.99) 0.1 ± 0.5 1.4 ± 10.7

Autochthonous back muscles (right) 0.98 (0.96;0.99) −0.6 ± 1.5 −3.4 ± 10.9 0.99 (0.98;0.99) −0.2 ± 1.2 −1.1 ± 7.2

Autochthonous back muscles (left) 0.99 (0.98;0.99) −0.3 ± 1.3 −2.4 ± 8.7 0.99 (0.99;1.0) 0.3 ± 1.0 1.9 ± 7.1

Rectus abdominis muscle (right) 1.0 (0.99;1.0) −0.4 ± 1.4 −5.9 ± 17.3 1.0 (0.99;1.0) 0.1 ± 1.5 −1.3 ± 10.8

Rectus abdominis muscle (left) 0.99 (0.98;0.99) −0.2 ± 1.4 −2.8 ± 14.4 0.99 (0.97;0.99) −0.2 ± 1.5 −0.1 ± 13.2

Mean skeletal muscle (bilaterally) 0.99 (0.98;1.0) −0.2 ± 0.5 −2.6 ± 6.4 1.0 (0.99;1.0) 0.0 ± 0.4 0.4 ± 3.8

CI, confidence interval; ICC, intraclass correlation coefficient; PDFF, proton-density fat fraction.

Table 3.  Inter- and intra-observer reproducibility of CSA

Interobserver variability CSA Intra-observer variability CSA

ICC
(95% CI) Difference (mean ± SD)

ICC
(95% CI)

Difference
(mean ± SD)

Absolute 
(mm2) Relative (%)

Absolute 
(mm2)

Relative 
(%)

Psoas major muscle (right) 0.93 (0.88;0.96) 19.5 ± 105.0 2.5 ± 8.6 0.98 (0.97;0.99) 2.4 ± 47.8 −0.1 ± 6.0

Psoas major muscle (left) 0.97 (0.94;0.98) 7.0 ± 66.8 0.6 ± 8.1 0.97 (0.95;0.98) 10.5 ± 60.9 0.6 ± 7.0

Quadratus lumborum muscle (right) 0.95 (0.92;0.97) 13.0 ± 59.2 2.6 ± 18.5 0.97 (0.96;0.99) 4.2 ± 44.9 1.0 ± 10.7

Quadratus lumborum muscle (left) 0.96 (0.93;0.98) 2.5 ± 49.4 1.7 ± 14.0 0.97 (0.94;0.98) −15.7 ± 40.8 −4.6 ± 11.1

Autochthonous back muscles (right) 0.97 (0.94;0.99) 58.3 ± 118 2.2 ± 5.1 0.98 (0.97;0.99) 2.8 ± 108.8 0.2 ± 4.4

Autochthonous back muscles (left) 0.97 (0.94;0.98) 33.3 ± 132.1 1.2 ± 5.4 0.98 (0.97;0.99) 22 ± 95.4 1.0 ± 3.5

Rectus abdominis muscle (right) 0.93 (0.57;0.98) 72.2 ± 70.0 10.7 ± 11.6 0.96 (0.94;0.98) 15.9 ± 74.8 3.2 ± 11.7

Rectus abdominis muscle (left) 0.95 (0.89;0.97) 41.9 ± 93.0 5.2 ± 12.3 0.98 (0.97;0.99) 1.8 ± 59.1 0.5 ± 9.3

Mean skeletal muscle (bilaterally) 0.98 (0.93;0.99) 31 ± 44.7 2.7 ± 3.9 1.0 (0.99;1.0) 5.5 ± 25.3 0.5 ± 2.3

CI, confidence interval; CSA, cross-sectional area; ICC, intraclass correlation coefficient;

http://birpublications.org/bjr
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fat content.20 Hence, chemical-shift MRI, as used in this study, 
is considered the contemporary standard for the evaluation of 
skeletal muscle composition, structure and mass providing reli-
able measurements also for minor changes.19–22 However, the 
reliability of an MRI-based assessment of skeletal muscle param-
eters in a larger cohort setting using a standardized approach 
based on distinct anatomical landmarks of the lumbar spine 
remains unknown.

We extend earlier observations of the high reproducibility of 
PDFF measurements in the supraspinatus muscle.19 In this study, 
Agten et al found that quantification of fat content in the supra-
spinatus muscle by multi-echo Dixon is a reliable method and 
is comparable to MR spectroscopy. Similar to our approach, their 
results indicate substantial to almost perfect inter- and intra-ob-
server agreement of PDFF  measurements (ICC 0.76 to 0.89). 
Their approach was similarly based on chemical-shift MRI and 
sample ROI PDFF quantification of the entire muscle CSA.

Furthermore, our results agree well with recent CT-based evalua-
tions by Jones et al, reporting good interobserver reproducibility 
of psoas muscle CSA as a reliable marker for sarcopenia using 
non-enhanced CT acquisitions (r2 = 0.97, 95% CI 0.89 to 0.98,  
p = 0.001), although the study population consisted of oncolog-
ical patients undergoing elective resection of colorectal carci-
noma.28 Our findings confirm prior results that an imaging-based 

assessment of skeletal muscle composition may be considered 
as a reliable biomarker and extend these observations to MRI, 
which may be particularly suited for asymptomatic subjects.

Regarding the assessment of skeletal muscle fat content, the 
applied anatomical landmark-based approach takes into account 
that extramyocellular-intrafascial adipose tissue may exert 
specific metabolic and structural functions and could potentially 
compromise the functional capacity of myocytes and muscle 
tissue.36 Thus, extramyocellular-extramyofascial adipose tissue 
adjacent to muscle tissue has to be separated accurately from 
intrafascial adipose tissue and should therefore be excluded from 
skeletal muscle composition analysis. Since recent studies have 
emphasized the functional properties of skeletal muscle and skel-
etal muscle adipose tissue as an endocrine organ, further studies 
will have to discriminate the different properties of intra- and 
intermyocellular-intrafascial lipids and adipose tissue regarding 
different metabolic and musculoskeletal disorders.

It is well known that abdominal skeletal muscle compartments 
differ regarding muscle fiber-type composition and function. 
Hence, it is important to include both predominantly oxidative, 
fiber-type l containing muscles, such as the autochthonous back 
muscles with their mainly postural function, and predominantly 
glycolytic, fiber-type llA containing muscles, such as the psoas 
major, with its dynamic function as a flexor of the hip joint.37,38 

Figure 3.  Interobserver correlation of PDFF. (a) Scatter plot of the PDFF inter-observer correlation demonstrating the linear cor-
relation between observer A and observer B (r = 0.99, ICC = 0.99). (b) Bland–Altman plot demonstrating a mean difference of 
−0.249 (CI −0.396 to −0.102). PDFF, proton-density fat fraction.

Figure 4.  Interobserver correlation of CSA. (a) Scatter plot of the CSA inter-observer correlation demonstrating the linear correla-
tion between observer A and observer B (r = 0.99, ICC = 0.98). (b) Bland–Altman plot demonstrating a mean difference of 30.959 
(CI 18.242 to 43.676). CSA, cross-sectional area.
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Since different muscle fiber-types exhibit different insulin sensi-
tivity and have a variable amount of fat content and T2DM is 
characterized by a decrease of oxidative type I and an increase 
of glycolytic Type II muscle fibers,39 further studies will have to 
focus on the composition of abdominal skeletal muscle compart-
ments and its DM-related change.

As a consequence, both PDFF and CSA as distinct skeletal 
muscle parameters may serve as reliable biomarkers for skeletal 
muscle fat content and area and their assessment may therefore 
be implemented also in large, population-based cohort studies. 
Two current examples are the German National Cohort40 and 
the imaging enhancement program of the UK Biobank.41 As part 
of those and other ongoing studies, the value of these biomarkers 
in a socioeconomic and potentially clinical context will have to 
be determined. Besides the potential risk-related value in healthy 
and asymptomatic subjects, these parameters might also be rele-
vant in distinct patient populations, for instance, in perioperative 
risk evaluation. However, while the method itself may be robust, 
its clinical implications will need to be determined. Furthermore, 
given the high prevalence of DM and sarcopenia, future research 
should analyze potential correlations, comorbidities and compli-
cations of both diseases based on the standardized approach 
evaluated in this study.

Our study has some limitations. First, this study is focused on the 
inter- and intra-observer agreement of skeletal muscle param-
eters determining observer and observing differences and not 
comparing the results to a gold standard, such as histopathology 
for skeletal muscle fat content or dual-energy X-ray absorpti-
ometry for skeletal muscle mass. However, former studies have 
demonstrated the validity of the PDFF and CSA  quantification 
methods used in this study.20,28 Second, our approach for the 
quantification of skeletal muscle fat content and area was based on 
manual segmentation. This may limit the application possibility, 
particularly with regard to very large cohort settings. Therefore, 
more advanced post-processing techniques implemented within 
image analysis pipelines, for example automatic or semiautomatic 
segmentation tools trained by a reference standard of quality-con-
trolled manual segmentation, will be necessary. Since manual 
segmentation is still considered the gold standard for segmenta-
tion approaches in general, segmentation data from this study may 
be used as training data to implement a reference standard.42,43 
Third, due to the design of this study, we did not specifically study 
subjects with established myosteatosis and/or sarcopenia, which 
may have introduced significant selection bias. However, since 
we included subjects from a population-based sample poten-
tially suffering from myosteatosis and/or sarcopenia as prevalent 
in the general population and while the reproducibility of their 

Figure 5.  Intra-observer correlation of PDFF. (a) Scatter plot of the PDFF intra-observer correlation demonstrating the linear cor-
relation between the first and second observing by observer A (r = 1.00, ICC 1.00). (b) Bland–Altman plot demonstrating a mean 
difference of 0.018 (CI −0.097 to 0.132). PDFF, proton-density fat fraction.

Figure 6.  Intra-observer correlation of CSA. (a) Scatter plot of the CSA intra-observer correlation demonstrating the linear corre-
lation between the first and second observing by observer A (r = 1.00, ICC = 1.00). (b) Bland–Altman plot demonstrating a mean 
difference of 5.490 (CI −1.702 to −12.682). CSA, cross-sectional area.
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