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Abstract1

We present a framework to model microbial transformations in chemostats and reten-2

tostats under transient or quasi-steady state conditions. The model accounts for transformation-3

induced isotope fractionation and mass-transfer across the cell membrane. It also verifies4

that the isotope fractionation ε can be evaluated as the difference of substrate-specific isotope5

ratios between inflow and outflow. We explicitly considered that the drop-wise feeding of6

substrate into the reactor at very low dilution rates leads to transient behavior of concentra-7

tions and transformation rates and use this information to validate conditions under which8

a quasi-steady state treatment is justified. We demonstrate the practicality of the code by9

modeling a chemostat experiment of atrazine degradation at low dilution/growth rates by10

the strain Arthrobacter aurescens TC1. Our results shed light on the interplay of processes11

that control biodegradation and isotope fractionation of contaminants at low (µg/l) concen-12

tration levels. With the help of the model, an estimate of the mass-transfer coefficient of13

atrazine through the cell membrane was achieved (0.0025s−1).14

Keywords: Chemostat and Retentostat, Cell Membrane, Transient and Quasi-steady15

State, Bioavailability, Isotope Fractionation16
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Introduction18

Organic chemicals such as pesticides, pharmaceuticals, or personal-care products are ubiqui-19

tously used and have increasingly been detected in surface water and groundwater1,2. Even20

though the concentrations are low (sub-micrograms-per-liter), levels are still high enough to be21

of potential concern3. For instance, atrazine concentrations investigated in this study are, al-22

though low (20-50 µg/l), still above threshold values for drinking water worldwide (0.1 µg/l)4,5.23

These trace organics have received increased attention as micropollutants6. While many of mi-24

cropollutants are biodegradable at high concentrations, their microbial degradation is observed25

to decrease at trace levels, down to a threshold at which natural attenuation appears to di-26

minish7. The question whether the reason is physiological adaptation of microorganisms (i.e.,27

down-regulation of catabolic enzymes in response to substrate scarcity8), or bioavailability lim-28

itation of substrate (i.e., rate-limiting mass transfer into microbial cells when enzyme kinetics29

is no longer zero-order9,10) has been a long-standing debate. An answer to this question may30

offer a new perspective on the behavior of microorganisms at low concentrations.31

Until now, it has been difficult to observe the onset of mass-transfer limitations directly.32

Even though the concept of bioavailability limitations is well-established10, so far it is uncertain33

at which exact concentrations such a mass-transfer restriction comes into play, and how this34

relates to physiological adaptation. Compound-specific isotope fractionation has been recently35

provided new opportunities in precisely detecting isotope effects due to enzymatic reaction11–13.36

Basically, the isotopes ratios of a micropollutant change during a biochemical reaction since37

molecules with heavy isotopes are transformed at a slightly different rate than those with light38

isotopes14–16. These changes, however, can only be observed if there is a rapid exchange of39

molecules within the cell interior at the enzyme level (bioavailable) with those outside the cell40
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(bulk) where samples are taken for analysis. The exchange rate between bioavailable and bulk41

domains is described by a linear model in which the mass-transfer coefficient of the cell membrane42

is included9,10,13. In presence of mass transfer limitations (i.e., when mass transfer coefficients43

are small), the slow exchange rate of isotopologues between these domains generates pools of44

different isotopic ratios across the exchanging interface (i.e., the cell membrane). At the scale of45

a cell, this means molecules diffuse into or out of the cell at a rate much slower than the rate at46

which enzymatic isotope effect occurs. The phenomenon has been usually referred to as masking47

of isotopic signatures meaning the measured isotopic fractionation at bulk domain is notably48

different than the actual, transformation-induced isotopic fractionation occurring at bioavailable49

domain (i.e., cell interior)12,13. As such, carbon and nitrogen isotope signatures provide direct50

evidence of mass-transfer limitations and have the potential to be used to quantify mass-transfer51

limiting coefficients.52

Previous studies examined the mass-transfer effects at relatively high concentration levels53

where bacteria were cultivated at sufficiently high substrate concentrations and then suddenly54

exposed to a low substrate concentration11,12. The drawback was that cells could not adapt55

to a specific concentration in batch experiments, obstructing the interpretation of measured56

concentrations and isotope ratios. Thus, to assess the degree of influence that mass-transfer57

limitations exert at steady low concentrations, an experimental system is required that contin-58

uously maintains the contaminant concentration at a low and environmentally-relevant level for59

a reasonably long time so that cells have enough time to adapt to low-energy conditions. This60

was beyond the reach of previously-conducted batch experiments involving atrazine14.61

A solution is offered by chemostats and retentostats that run at very low dilution rates. Here,62

substrate is continuously added and residual substrate and cells are continuously washed out63

from the bioreactor. Such chemostats are operated in a way that the essential growth rate equals64

the dilution rate so that biomass and residual concentrations remain constant within the reactor.65

While chemostat experiments have a long tradition in bioengineering17,18, few studies have used66

them to study isotope fractionation19,20. To our knowledge all preceding isotope studies in67

chemostat have measured isotope fractionation by taking the difference between substrate and68

product. This is particularly true for studies on photosynthesis which were run on nitrate69

limitation so that although mass transfer of carbon dioxide was addressed, bicarbonate was70

always present in great excess and was never the limiting substrate21,22. In contrast, none has71

determined isotope fractionation by relating isotope ratios of the same substrate from the feed72

and the outflow of a reactor. In an experimental study submitted along with this contribution23
73
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we therefore set out to study degradation of atrazine by the strain Arthrobacter aurescens TC174

in a chemostat at very low dilution rates (and thus low concentration levels) with the aim to75

pinpoint the onset of bioavailability limitation effects by compound-specific isotope analysis76

(CSIA).77

Application of CSIA can unravel the underlying dynamics if validated by a chemostat model78

that is able to account for the mechanisms of mass transfer and transformation-based isotopic79

fractionation at low dilution rates. Furthermore, the model allows the delineation of the inter-80

actions between these processes in a traceable manner and thus provides a platform to critically81

evaluate the experimental setup, guide the experimental approach, precheck possible pitfalls,82

and assist in quantification of the results. The first aspect is the usual concern associated with83

chemostats running at very low dilution rates where a drop-wise input may create discontinu-84

ities in substrate levels and result in adverse consequences. For instance, too-slow drip feeds85

may create ‘feast and famine’ conditions for microorganisms preventing adaptation to a certain86

condition24. As a consequence, the typical analyses of chemostats, which are based on the as-87

sumption of constant inflow conditions25, do not accurately resolve the change of concentrations88

and isotopic values in waiting times between two subsequent droplets. To overcome this issue,89

we present a chemostat/retentostat model that considers the transient behavior under rapid90

changes of boundary conditions (here addressed by a periodic inlet). The model then enabled us91

to illustrate the extent of influence that inlet discontinuities may have on the steady-state obser-92

vations. The second aspect is the new way in which degradation-associated isotope fractionation93

is evaluated in chemostats. Isotope fractionation has so far been calculated as a function of re-94

maining substrate in batch experiments according to the Rayleigh equation26,27. In chemostats,95

however, the substrate continuously enters and leaves the reactor, and the observed isotope frac-96

tionation must thus be derived from the difference between isotopic ratios of the same compound97

in inlet and outlet. This is again different from previous approaches which also considered the98

substrate in the inlet, but determined isotope fractionation by comparison to the product in99

the outlet. Using the model, we were able to confirm the validity of the experimental approach100

in the companion paper23. The third aspect is the inclusion of mass transfer across the cells’101

membrane (i.e., between the monitored bulk solution and the cell interior9) into the chemostat102

equations. It is worth noting that due to high stirring speeds in chemostat the effects of incom-103

plete mixing in the bulk phase are negligible so that the transfer through cell membrane remains104

as the only physical barrier. The model offers a platform to describe mass transfer through the105

cell wall and to derive tentative quantitative estimates on mass-transfer coefficients. The fourth106
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and final aspect is related to sensitivity and error propagation analyses of the model in order to107

understand the relationships between the uncertainty of input parameters and model estimates.108

Global sensitivity analysis further contributes to our understanding of how the variation in the109

model estimates can be apportioned to the variation in the input parameters. The model was110

then applied to the experimental study of atrazine degradation by Arthrobacter aurescens TC1111

at low concentrations, detailed in the companion paper23.112

The overall aim of this contribution is to introduce a comprehensive modeling tool in or-113

der to quantitatively analyze the interactions between the following processes: (1) mass trans-114

fer through the cell membrane, (2) enzymatic transformation, and (3) transformation-induced115

compound-specific isotope fractionation in chemostats/retentostats with (4) periodic input of116

substrate.117

Materials and Methods118

Model equations119

We consider the concentrations of light and heavy isotopologues of a substrate (lS and hS [ML−3]),120

and the biomass concentration (X[ML−3]) as dynamic state variables. Note that the dimensions121

of all variables are introduced by bracketed variables T , M , and L, respectively referring to the122

units of time, mass, and length. The turnover of substrate is described by Monod kinetics28
123

with competitive inhibition amongst the isotopologues, and is coupled to the input and output124

of substrate through the inflow and the outflow of the reactor, respectively. Biomass growth is125

assumed proportional to the substrate turnover via a yield factor. This leads to the following126

system of ordinary differential equations:127

d[lS]

dt
= rD([lSin] − [lS]) − qmax[X][lS]

[lS] + [hS] +Km

(1a)

d[hS]

dt
= rD([hSin] − [hS]) − αqmax[X][hS]

[lS] + [hS] +Km

(1b)

d[X]

dt
= qmax[X]Y

[lS] + α[hS]

[lS] + [hS] +Km

−m[X]Y − rD(1 − f)[X] (1c)

where rD[T−1] is the dilution rate coefficient (flow rate divided by the reactor volume), qmax[T−1]128

denotes the maximum specific conversion rate, Km[ML−3] is the half-saturation constant, m[T−1]129

is the maintenance term, α[−] indicates the isotopic fractionation factor, Y [−] is the yield co-130

efficient, and f [−] denotes the fraction of biomass filtered at the outflow, ranging between zero131

(biomass leaves the system at the reactor current concentration; chemostat) and one (complete132
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filtration of biomass thus no biomass discharges from the outlet; perfect retentostat). The133

maximum specific growth rate µmax[T−1] is related to qmax by µmax = Y (qmax −m)29,30.134

The chemostat equations accounting for the mass-transfer through the cell membrane are135

modified such that the concentrations outside the cells (S) differ from the concentrations inside136

the cells (Sbio). Thus, S and Sbio are referred to as the substrate concentrations in the bulk137

and bioavailable phases, respectively9,31,32. A linear-driving force model with the mass-transfer138

coefficient ktr[T
−1] was assumed to control the exchange between these two phases. Including139

such mass-transfer limitations, Eqs. (1a) to (1c) change as follows:140

d[lS]

dt
= rD([lSin] − [lS]) − ktr([

lS] − [lSbio]) (2a)

d[hS]

dt
= rD([hSin] − [hS]) − ktr([

hS] − [hSbio]) (2b)

d[lSbio]

dt
= +ktr([

lS] − [lSbio]) −
qmax[X][lSbio]

[lSbio] + [hSbio] +Km

(2c)

d[hSbio]

dt
= +ktr([

hS] − [hSbio]) −
αqmax[X][hSbio]

[lSbio] + [hSbio] +Km

(2d)

d[X]

dt
=
qmax[X]Y ([lSbio] + α[hSbio])

[lSbio] + [hSbio] +Km

−m[X]Y − rD(1 − f)[X] (2e)

in which the observable isotope fractionation in the bulk phase is affected by the transforma-141

tions inside the cell and the mass transfer between bulk and bioavailable phases. The initial142

concentrations for the substrate and biomass are indicated by Sini[ML−3] and Xini[ML−3].143

The isotope ratio of the heavy and the light isotopologues of the substrate is evaluated in the144

common δhS[‰] notation:145

δhS =
(hS/ lS

R
− 1
)

(3)

typically expressed in parts per thousand, where R is the reference isotope ratio of VPDB(Vienna146

Pee Dee Belemnite). The model is presented in a general form and in principle can be applied147

to any stable isotope element. In this study, we examined the carbon isotope effects of atrazine148

and thus hS and lS are respectively replaced by 13S and 12S, representing the concentrations149

of substrate isotopologues containing heavy (13C) and light (12C) carbon isotopes. As a result,150

δ13C notation replaces δhS and represents the observed isotopic signatures of carbon.151
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Model solution152

We solved the above systems of ordinary differential equations, ODE, (Eqs. (1a) to (1c) and153

Eqs. (2a) to (2e)) with the MATLAB ODE suite (e.g., the ode15s solver)33,34. To avoid un-154

intended numerical instabilities, the input pulses were smoothed using forth-order analytical155

expressions35. For smoothing the pulses, the user can choose the time period over which the156

pulse is smoothed, which may be interpreted as the mixing time in the system depending on157

agitation, droplet size, and reactor volume. A higher numerical stability is achieved when the158

smoothing intervals are larger. However, the smoothing interval should be substantially smaller159

than the interval between the pulses in order to avoid flattening the periodicity of the incom-160

ing droplets. Increasing the smoothing intervals will negate the very purpose of examining the161

droplet effect, as extreme smoothing would in principle be identical to having a continues feed162

(averaging the droplet volume over the time period and resulting in a constant feed). The163

smoothing type can be chosen between the following two polynomial spike functions:164

rD =
630t4(t/s− 1)4

s5
0 < t < s, rD = 0 t > s (4a)

rD =
256t4(t/s− 1)4

s4
0 < t < s, rD = 0 t > s (4b)

producing either a smoothed pulses with a constant area underneath (in case of Eq. 4a) or165

a pulse that is set to reach to a specific peak height (in case of Eq. 4b). t[T ] denotes the166

time variable which varies between zero and the time until the next droplet, s[T ] denotes the167

length of the smoothing interval. Although both approaches are available in the model, we used168

the first smoothing function Eq. (4a) as the other expression overestimates the introduction of169

mass into the system. We also skipped the maintenance term in the chemostat model since170

its effect on isotope signatures was found to be negligible (discussed in more details in Ehrl171

et al. 23). According to Pirt 30 , µmax = Y qmax when m is small enough to be treated as zero.172

The forthcoming sensitivity and uncertainty analyses then considers µmax as an input parameter173

instead of qmax. The parameter values are taken from the companion paper of Ehrl et al. 23 for174

degradation of atrazine by the strain Arthrobacter aurescens TC1 in chemostat, and are listed175

in Table 1.176

Model accuracy and stability177

The model is validated by comparing the results with the experiment23 and its accuracy is eval-178

uated through the comparison with the analytical model of Thullner et al. 13 . Although Eqs. (1)179
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and (2) are written in a general perspective and include essential terms such as maintenance180

energy, additional processes can still be introduced within the existing potentials of the model.181

For instance, the model allows introducing other degradation mechanisms other than Monod182

(or Michaelis-Menten) kinetics, e.g., at very small concentration levels ([S] << Km) using a183

first-order kinetics might describe the system behavior more effectively, or in cases where the184

concentrations of both reaction partners (electron donor and acceptor) become rate-limiting, a185

dual Monod kinetics can be introduced. A similar flexibility holds for changing the mechanism186

controlling the rate of exchange across the cell membrane, which is currently expressed by a187

linear term and can be substituted by more sophisticated nonlinear expressions.188

Use of MATLAB ODE suite as the internal solver increased model stability on handling rel-189

atively stiff problems. However, it should be noted that the model can still turn out numerically190

unstable if the smoothing interval of droplet is not sufficiently large with respect to the time191

period between droplets. As a rule of thumb, the smoothing interval should be around 15% of192

the period between droplets, that is, the time between each input cycle.193

Results and Discussions194

Model results195

Regarding the first question – the effect of discontinuities – Figs. 1 and 2 show that the model196

is well cable of capturing the transient behavior caused by drip-feeding of substrate (as it is197

perceived in the chemostats at very low dilution rates). The results confirm that the effects from198

a discontinuous input on concentrations and isotope compositions are small at the given dilution199

rate. Fig. 2 displays the same data as Fig. 1 over a short time period when dynamic steady200

state has been reached, and magnifies the recurrent fluctuations for better recognition of details.201

Under dynamic steady-state conditions the periodic input of droplets causes concentrations to202

fluctuate by 3% at most, which justifies the steady-state treatment adopted in the companion203

paper23.204

To address the second aspect - the evaluation of isotope fractionation from the inlet and205

the outlet of chemostat - the model was provided with the actual, enzymatic, intrinsic isotopic206

fractionation for degradation of atrazine by strain Arthrobacter aurescens TC1 ε13C = α− 1 =207

−5.4‰ as input parameter (see Table 1). This value had been determined in batch experiments208

with bacterial cultures degrading atrazine at high (mg/l) concentrations14,31 and with pure209

enzyme in the absence of bacterial cells16. In all of these cases, mass-transfer limitations are210

either absent or insignificant. Therefore, in the absence of a mass-transfer term (solving Eqs. (1a)211
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to (1c)), the model should predict that the carbon isotope signatures δ13C inside the chemostat212

differs from that in the inflow by almost the same enrichment factor ε13C of batch studies213

(ε13C = δ13Cinlet−δ13Coutlet = −5.4‰). Fig. 1 shows the simulated time series of concentrations214

and δ-values for this case where the concentration inside the cells equals the concentration in215

the bulk solution (Eqs. (1a) to (1c)). As shown, the obtained δ13C values at steady-state216

eventually approach the actual fractionation coefficient reported from the batch experiments217

(δ13C = 5.4‰)14,16, validating the method of calculating the evaluation of ε13C between the218

inlet and the outlet of chemostat experiments. ε13C has been traditionally determined as the219

difference between isotope values of an infinitely large reservoir of bicarbonate in the chemostat220

and the biomass formed21,22. The approach clearly does not work for our experiments for the221

following reasons. In previous studies, bicarbonate was present in excess and nitrate was the222

limiting source for growth whereas in our experiments the carbon-containing substrate (atrazine)223

is the limiting source and required to be depleted in order to mimic the environmentally-related224

conditions. Hence, the only way to determine epsilon is to measure it as the difference between225

atrazine in inflow and outflow (as theoretically derived by Hayes 36). In addition, the flow-226

through rate in a chemostat must be reasonably slower than the rate of degradation in order to227

be able to identify and measure the substrate decay, and to prevent overwriting the enzymatic228

isotope fractionation by isotope ratios of the inflow. Solving Eqs. (1a) and (1b) at steady-state229

and assuming that λapp[T
−1] = qmax[X]/([12S] + [13S] + Km) is the apparent first-order decay230

coefficient, the following equation can be derived:231

∆δ13C(‰) = δ13Coutlet − δ13Cinlet = −ε13C(‰) =
(1 − α)λapp
λapp + rD

(5)

which is analogous to Eq. (8) in Farquhar et al. 37 (see also the derivation in ‘Materials and232

Methods’ of Ehrl et al. 23). Thus, the difference between inflow and outflow would be expected233

to approach ε13C under realistic, sufficiently small dilution rates as it is also confirmed by the234

model.235

Regarding the third aspect – in order to assess how observable isotope fractionation is influ-236

enced by mass-transfer limitations – we applied the model to the experimental data obtained in237

chemostat experiments of our companion paper23. At high dilution rates (> 0.018hr−1) and as a238

result at high bulk concentrations (> 100µg/l), the measured difference between isotopic ratios239

in the inlet and the outlet perfectly matched the isotope fractionation from batch experiments,240

similar to our model predictions in the absence of mass transfer limiting term (see above). In241

contrast, Ehrl et al. 23 observed lower isotopic fractionation with decreasing chemostat dilution242
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rates. At a dilution rate of 0.009hr−1 an isotopic fractionation of ε13C = −2.2‰ was mea-243

sured which was noticeably smaller in magnitude than the previously reported values for this244

reaction. This revealed the importance of mass transfer through the cell membrane under low-245

energy conditions. To reproduce a dilution rate of 0.009hr−1 in our model, a periodic input of246

every 20 seconds was assumed with droplets of approximately 0.1ml into a chemostat with 2247

liters volume. Fig. 3 shows the concentration and isotope time-series for this case (solution of248

Eqs. (2a) to (2e)). By solving Eqs. (2a) to (2e), in which mass-transfer mechanisms are taken249

into account, the model was able to reproduce smaller δ13C values in the outlet (and, hence,250

smaller apparent isotope fractionation ε13C) when the exchange rate through the cell membrane251

was slowed by assigning low values of the mass-transfer coefficient ktr. In order to determine the252

value of ktr in the experiment, we used a trial and error fitting procedure. In this procedure, the253

value of ktr is constrained such that the late-time δ13C-values (at steady-state) equal the value254

observed in the experiment. At the dilution rate of 0.009hr−1 using ktr value of 0.0025s−1, we255

achieved an apparent isotopic enrichment value of ε13C = −2.2‰ which corresponds well to the256

reported value in Ehrl et al. 23 . Fig. 3 shows the concentration and isotope time-series for this257

case (solution of Eqs. (2a) to (2e)). Here, the simulated concentrations inside the cell Sbio were258

found to be only about 40% of the concentrations S outside the cell. Boosting the exchange rate259

between bulk and bioavailable domains through gradually increasing the value of mass-transfer260

coefficient ktr in the model increased the late-time δ13C-values and eventually reached the value261

of the actual, transformation-induced, intrinsic isotopic fractionation coefficient ε13C = −5.4‰262

(identical to the late-time δ13C-value in Fig. 1).263

The evaluation of the forth aspect - sensitivity of model estimates to the input parameters264

(Table 1) - is detailed as follows.265

Sensitivity and uncertainty analyses266

Uncertainty propagation analyses267

A Monte Carlo simulation was used to propagate the uncertainty originating from experimental268

and analytical variability of the parameters ktr, Km, µmax, and Sin onto concentrations and269

isotopic signatures. In order to reduce the total runtime of the Monte Carlo simulations, we270

reduced the walltime needed for simulating a single scenario to 7.5 seconds on a quad-cores Intel271

Core i5-4590 CPU at 3.30GHz with 16GB RAM by optimizing the code and performing parallel272

computations.273
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Eqs. (2a) to (2e) were solved for 50,000 randomly generated sets of parameters, which took274

about 105 hours walltime. In each realization, the parameters of Eqs. (2a) to (2e) were perturbed275

at random, scaled to the experimentally-obtained standard error. Mean values and standard de-276

viations were calculated from repeated replicates (237±57µg/l for Km, 0.11±0.02hr−1 for µmax,277

and 30000± 600µg/l for Sin). In case of ktr, since the value is not experimentally determined, a278

relative standard error of 20% was presumed (0.0025 ± 0.0005s−1). All parameters were drawn279

from normal distributions and no correlation was assumed between the input parameters.280

The Monte Carlo simulations showed probability distributions of the model outputs (δ13C,281

12S, 13S, 12Sbio,
13Sbio, and X) as the result of the input parameters variabilities. Fig. 4 shows282

the 16%-84% probability range of model outcomes which corresponds to ±1 standard deviation283

of a normal distribution. Table 2 lists the average and standard deviation of all model predictions284

at late time. There is a small offset between the mean output of the ensemble calculation and285

a single run using the mean input parameter values which can be attributed to the nonlinear286

dependence of model outputs on the parameters. Fig. 4 shows that the parameter uncertainty287

translates into a large uncertainty of model predictions, with coefficients of variation (also known288

as relative standard deviations) between 20% and 33% for solute concentrations and δ-values.289

Among all model predictions, biomass (X) was clearly the least affected by uncertainties .290

The 95% confidence interval of δ13C ≈ 2.17 ± 0.92‰ does not cover the value of δ13C =291

5.4‰ expected from the fractionation coefficient of the reaction14,16. This clearly illustrates292

the ability of the model to pinpoint the limitations of mass transfer across the cell membrane293

as the origin of masked isotope fractionation in chemostats at low dilution rates. As a result,294

the observed isotopic signatures (δ13C) are noticeably lower than the expected transformation-295

induced isotopic signatures. Sources of uncertainty exist that are not addressed by the Monte296

Carlo simulations, for example, the error in measuring the dilution rate or the uncertainties297

associated with the size of droplets. The error propagation of these factors is assumed to be298

insignificant and is partly lumped into the uncertainty of the inlet concentration (Sin).299

Local sensitivity analysis300

A tornado diagram is used here to depict the local sensitivity of the simulated δ13C-value at301

steady state with respect to the changes in the input parameters: ktr, Km, µmax, Sin, and the302

time between droplets 1/rD. To compare the relative importance of the above input parameters,303

we varied the value of one input parameter at a time by 20% while keeping all the other input304

parameters at their base values. As expected, the results (depicted in Fig. 5) show a strong305
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sensitivity towards the mass-transfer coefficient ktr in the chemostat model accounting for mass-306

transfer limitations Eqs. (2a) to (2e). The modeled isotope signatures shows a similar but weaker307

sensitivity to Sin and Km whereas variations of µmax and 1/rD inversely influence the values308

of δ13C noting the absolute sensitivity to µmax is on par with that to ktr. The results clearly309

indicate that the impact of physiological parameters (Km and µmax) are as significant as that310

of the physically motivated parameter (ktr).311

A similar sensitivity analysis was performed with the model neglecting mass-transfer limita-312

tions, Eqs. (1a) to (1c). Unlike the previous model, the simulated late-time δ13C-values showed313

no sensitivity to the changes of the input parameters Km, µmax, Sin and 1/rD (data not shown).314

This implies that in the presence of mass transfer limitations, the sensitivity of the observed315

δ13C-values even to other input parameters (e.g., Km and µmax) is affected by the magnitude316

of the mass-transfer coefficient ktr.317

Global sensitivity analysis318

We used the variance-based analysis of Sobol38 for global sensitivity analysis (GSA). The benefit319

of a global over local sensitivity analysis is that it accounts for the entire range of all parameter320

values rather than focusing on one parameter value at a time. As such, GSA offers a more321

robust solution in elucidating the impact of an individual parameter considering that all other322

parameters are also uncertain. To this end, a quasi Monte Carlo method (here, a Latin hypercube323

sequencing sampler) was employed to generate 60,000 sample scenarios that uniformly covered324

the space of input parameters. The First-order index (FOi) and the Total-order index (TOi)325

were then calculated similar to Pianosi et al. 39 and Sobol and Levitan 40 . FOi indicates the326

effect of an individual parameter variation alone on an output variable while TOi includes also327

the effects caused by the interactions of that parameter with all other parameters.328

The pie charts in Fig. 6 demonstrate the sensitivity of output variables: δ13C-values, biomass329

(X), bioavailable (Sbio) and bulk concentrations (S) to the input parameters Sin, µmax, Km, and330

ktr. The GSA confirms the relatively equal sensitivity of the δ13C-values to Km, µmax and ktr331

as previously estimated from the local sensitivity analysis (Fig. 5). Bulk concentration showed332

a relatively high sensitivity of about 50% to the ktr values which is in the range of the combined333

sensitivity to all other input parameters. Amongst the model predictions, bulk concentrations334

are affected the most by mass transfer followed by δ13C-values at the second place. To our335

surprise, the bioavailable concentrations showed no sensitivity to mass-transfer effects. The336

variation of Km showed a predominant effect on the variation of all predicted quantities except337
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biomass. In fact, biomass showed no sensitivity to variation of any input parameter. This might338

be due to the reason that in all scenarios the biomass concentration hardly changed with time339

(see Fig. 4).340

The TOi pie charts provide a measure on the importance of interactions (of any order)341

between the input parameters. As shown in Table 3, the total order indices TOi and the first-342

order indices FOi were almost identical, indicating that the interactions between parameters343

did not impose any significant effect on variability of the model predictions except for biomass344

(X). We extended our GSA for another 60,000 sample scenarios to the total amount of 120,000345

scenarios to check the consistency of the results and to see whether the sensitivity indices can346

be improved. Similar indices as those listed in Table 3 were calculated for all model outputs347

except for the biomass (data not shown). The inconsistency between biomass indices (obtained348

from 60,000 and 120,000 sample scenarios) indicates that the calculated sensitivity indices for349

biomass are possibly incorrect. This might have caused by numerical errors originating mainly350

from the negligible change of biomass with time.351

Temporal dynamics of biomass growth352

The model accounts for the temporal dynamics of biomass growth and washout in the chemostat353

system Eqs. (1c) and (2e). We assumed standard Monod kinetics28 in which biomass growth354

is proportional to the turnover rate. Growth depends only on the concentration of a single355

substrate, indicating that all other compounds required for growth are available in excess. The356

only removal term is described by washout via outflow. This is a reasonable assumption for a357

chemostat system, in which the loss due to washout is considerably greater than the biomass358

death rate. Maintenance terms are also not considered since the energy demand for maintenance359

is constant under quasi steady-state conditions. Hence, the maintenance effect is conveniently360

assumed to be subsumed in the yield factor (for an explicit treatment of maintenance energy361

see supporting information of Ehrl et al. 23). Furthermore, we did not consider a prescribed362

carrying capacity, or maximum biomass concentration, since the simulated biomass concentra-363

tion remained fairly low as a result of limited supply of substrate and continuous washout of364

cells. Such an assumption is not valid for a model of a perfect retentostat where washout of365

biomass is prohibited and as a result biomass growth must be balanced by the maintenance366

energy requirement, biomass decay, or reaching to the maximum carrying capacity.367

In Fig. 3, the biomass decreases at late times while substrate concentrations reaches steady368

state. This can be explained by the initial biomass concentration being higher than the steady-369
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state biomass which is controlled by the balance between bacterial growth and dilution rate.370

Here, a high initial biomass concentration mimics the conditions of an inoculum at high concen-371

tration levels.372

Comparison with the analytical model of Thullner et al. (2008)373

We compared our model to the analytical model of Thullner et al. 13 which estimates the observed374

isotopic fractionation factor α under steady-state conditions in relation to the intrinsic isotropic375

fractionation of the enzymatic reaction α̊,376

α = α̊
1 + T/2 +

√
a/ktr + T 2/4

1 + α̊
[
T/2 +

√
a/ktr + T 2/4

] (6)

where T = (a/ktr−S/Km−1) is a dimensionless term and a = µmax/Km is the specific affinity of377

the microorganism promoting the enzymatic reaction. For an arbitrary case of ktr = 0.002s−1,378

Km = 50µg/l, µmax = 0.027hr−1, Y = 0.036, Sini = 65µg/l, Xini = 1000µg/l, α̊ = 0.994379

and rD = 2.5e − 6s−1, the observed δ13C at steady-state was calculated by our model about380

2.64‰. Using Eq. (6), the apparent fractionation factor α was calculated as 0.99738 which yields381

the observed δ13C = 2.62‰. This means that the two models estimated similar observed vs.382

expected isotopic signatures. It is worth noting that unlike the analytical model13, the presented383

numerical model can determine the observed isotopic signatures also under transient conditions.384

Implications for natural systems385

The model validated the approach of isotope fractionation measurements between the outflow386

and the inflow of a chemostat where a steady, low, and environmentally-related concentration387

of a micropollutant is maintained for a time long enough to allow the adaptation of bacterial388

cultures. The model elucidates the role of mass-transfer limitations across the cell membrane389

in regulating the observed vs. expected compound-specific isotopic signatures in chemostats.390

In addition, our results confirm that slow mass transfer across the cell membrane can mask391

the true isotope fractionation of a chemical transformation. So far the differences between392

observed isotopic signatures from laboratory and field were attributed to other factors, such as393

leakage from other contaminant sources or hydrologically driven mechanisms (e.g., by transverse394

dispersion at plume fringes41). As shown here, such differences in isotope fractionation can also395

stem from bioavailability limitations and may even originate from mass-transfer limitations396

across the cell membrane. The effect from bioavailability limitations is much more pronounced397

at low concentrations, and therefore is of high relevance for many micro-pollutants of which398
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concentrations typically do not exceed micrograms-per-liter. Recognition and understanding of399

the interplay of bioavailability limitations with other existing processes thus enhance the overall400

interpretation of isotope signatures under field conditions.401

Under the influence of other processes the isotopic signatures show no dependency on enzy-402

matic reaction rates. Thus, one way to identify the masking of isotope signatures as the result403

of mass-transfer through a cell membrane is to focus on the fact that isotopic signatures are404

highly sensitive to enzymatic transformation rates in the presence of mass-transfer limitations405

(see the sensitivity of δ13C to µmax in presence of ktr). Therefore, two strains with different406

metabolic activities when feeding on a single substrate must exhibit different isotopic signatures407

under mass-transfer limitations, assuming both have an identical isotopic fractionation factor408

and similar cell membrane characteristics.409

Potential model applications410

The presented model improves the mechanistic understanding of contaminant degradation in411

microbial ecosystems. While the model in its current form is only applied to fully mixed reactors,412

it can be easily coupled to solute transport equations42–44 contributing to the development of413

models that more realistically describe fixed-bed reactors and natural subsurface systems.414

A specific practical aspect of our model is its capacity to calculate the membrane per-415

meability of a specific cell in conjugation with chemostat/batch experiments. The differences416

between the observed isotopic signatures (δ13C) in batch and chemostat experiments are linked417

to mass-transfer limitations through the cell membrane which is widely referred to as membrane418

permeability. The formulation on how to obtain the value of membrane permeability Papp[LT
−1]419

and the diffusion coefficient through the membrane Dmem[L2T−1] from the mass-transfer lim-420

iting coefficient ktr[T
−1] is presented and discussed by Ehrl et al. 23 . According to the model421

results, Atrazine permeation through the cell wall of Arth. aurescens TC1 was approximated422

as Papp = 3.5 × 10−5ms−1 and Dmem = 1.9 × 10−16m2s−1, which are close to the values re-423

ported for a typical range of small organic molecules45–47. While different techniques are used424

in pharmaceutical studies to determine the membrane permeability, the present model provides425

an alternative way of estimating it.426

Sensitivity analysis of the model enables users to inspect the influence of different physical427

and physiological parameters on the observable isotopic signature before performing the exper-428

iments. The results provide clarity into the specific features influencing isotopic signatures in429

chemo- and retentostats. The modeling framework used in this study allows for a delineation of430
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features such as: (i) biodegradation dynamics of a contaminant, (ii) metabolic activity of the mi-431

crobial degrader, (iii) the role of bioavailability limitations and typical mass-transfer restrictions432

through a cell’s membrane, and (iv) whether the interplay between these mechanisms is respon-433

sible for observing uncommon isotopic signatures at low concentration levels. As shown above,434

these results have relevant implications for both theory building and practical application.435
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Tables543

Table 1: Model solution. Model parameter values taken from Ehrl et al. 23 .

Reactor volume (V ) 2000ml
Dilution rate (rD) 0.009hr−1

Average droplet size (Vd) 0.1ml
Average time between droplets (td) 20s

Atrazine concentration at the inlet (Sin) 30000µg/l
Maximum specific conversion rate (qmax) 6.01hr−1

Half-saturation constant (Km) 237µg/l
Yield factor (Y ) 0.018

Isotopic fractionation factor (α) 0.9946
Initial atrazine concentration in reactor (Sini) 65µg/l

Initial concentration of biomass in reactor (Xini) 550µg/l
Fraction of biomass retained from chemostat outflow (f) 0
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Table 2: Uncertainty analysis. The estimated average and standard error of output parameters
calculated from Monte Carlo analyses of 50000 randomly generated sample scenarios based
on the error variability of input parameters (Km = 237 ± 57µg/l, µmax = 0.11 ± 0.02hr−1,
Sin = 30000 ± 600µg/l, and ktr = 0.0025 ± 0.0005s−1).

δ13C ‰ 12S(µg/l) 13S(µg/l) 12Sbio(µg/l) 13Sbio(µg/l) X(µg/l)
Model run with

mean input parameters 2.21 50.72 0.57 20.75 0.23 549.82
Monte Carlo simulations 2.17±0.47 52.89±10.25 0.59±0.12 21.60±7.18 0.24±0.08 549.77±0.31

Table 3: Global sensitivity analysis. The First-order index (FOi) and the Total-order index
(TOi) of the output parameters (δ13C-values, X, Sbio, and S) in respect to the input parameters
(Sin, µmax, Km, and ktr). The higher the value, the more impact the input variability exerts on
the variance of the output parameter. Note that both heavy and light isotopologues showed a
similar sensitivity trend in bulk and bioavailable domains.

FOi TOi

δ13C X Sbio S δ13C X Sbio S

Sin .0014 0 .0152 .0377 0 .01119 .0049 .0165
µmax .2706 0 .4153 .2663 .2658 .2217 .4108 .2559
Km .4010 0 .5737 .3584 .4052 .3194 .5914 .3690
ktr .3294 0 .0114 .5780 .3276 .1208 0 .5531
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Figure 1: Solution of Eqs. (1a) to (1c) (in the absence of mass-transfer limitations across the
cell membrane) for the following set of parameters: Sin = 30000µg/l, µmax = 0.11hr−1, Km =
237µg/l, Y = 0.018, α = 0.9946, Sini = 65µg/l, Xini = 550µg/l, and rD = 0.009hr−1. For better
illustration of the droplet spikes, the dilution rates together with the changes of concentration,
biomass, and δ13C at steady-state are shown over a short time span (100s) in Fig. 2. Although the
concentrations of the substrate isotopologues decrease monotonically, the slight shift of timing
between the light and heavy isotopologues cause a non-monotonic behavior of the isotope ratios.
As a result, the values of δ13C exceed slightly above the final value between times 500s and
1000s.
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Figure 2: Solution of Eqs. (1a) to (1c) at steady-state. The figure is a close-up snapshot of the
last 100 seconds in Fig. 1 at which the system has reached steady-state. Based on size of droplet
(0.1ml), volume of chemostat (2l), and the dilution rate (rD = 0.009hr−1) the droplet frequency
is calculated as one drop per every 20 seconds. The smoothing interval is assumed 5 seconds. For
this setup, the results at steady-state are averaged as δ13C = 5.4±0.2‰, 12S = 20.66±0.6µg/l,
X = 550.74 ± 0.01µg/l.
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Figure 3: Solution of Eqs. (2a) to (2e) (in the presence of mass-transfer limitations across the
cell membrane) for the set of parameter values in Fig. 1 and ktr = 0.0025s−1. Note that due
to mass-transfer limitations the observed δ13C = 2.2‰ at steady-state notably reduced from
5.4‰ in Fig. 1. It is worth mentioning that inside cells (i.e., at the bioavailable domain) the
δ13C is equal to the expected value of 5.4‰ (data not shown).
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Figure 4: Uncertainty analysis using Monte Carlo simulation. The 68% confidence intervals are
shown for all the output parameters, from top to bottom, isotopic signature, biomass concen-
tration, bioavailable and bulk substrate concentrations (for both heavy and light isotopologues
respectively). Note that the perturbations resulting from the periodic inlet are more visible at
the profiles for bulk concentrations and δ13C-values.
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