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Single-cell RNA-seq denoising using a deep count
autoencoder
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Single-cell RNA sequencing (scRNA-seq) has enabled researchers to study gene expression

at a cellular resolution. However, noise due to amplification and dropout may obstruct

analyses, so scalable denoising methods for increasingly large but sparse scRNA-seq data are

needed. We propose a deep count autoencoder network (DCA) to denoise scRNA-seq

datasets. DCA takes the count distribution, overdispersion and sparsity of the data into

account using a negative binomial noise model with or without zero-inflation, and nonlinear

gene-gene dependencies are captured. Our method scales linearly with the number of cells

and can, therefore, be applied to datasets of millions of cells. We demonstrate that DCA

denoising improves a diverse set of typical scRNA-seq data analyses using simulated and real

datasets. DCA outperforms existing methods for data imputation in quality and speed,

enhancing biological discovery.
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Advances in single-cell transcriptomics have enabled
researchers to discover novel celltypes1,2, study complex
differentiation and developmental trajectories3–5 and

improve understanding of human disease1,2,6.
Despite improvements in measuring technologies, various

technical factors, including amplification bias, cell cycle effects7,
library size differences8 and especially low RNA capture rate9 lead
to substantial noise in scRNA-seq experiments. Recent droplet-
based scRNA-seq technologies can profile up to millions of cells
in a single experiment10–12. These technologies are particularly
sparse due to relatively shallow sequencing13. Overall, these
technical factors introduce substantial noise, which may corrupt
the underlying biological signal and obstruct analysis14.

The low RNA capture rate leads to failure of detection of an
expressed gene resulting in a “false” zero count observation,
defined as dropout event. It is important to note the distinction
between “false” and “true” zero counts. True zero counts repre-
sent the lack of expression of a gene in a specific celltype, thus
true celltype-specific expression. Therefore, not all zeros in
scRNA-seq data can be considered missing values. In statistics,
missing data values are typically imputed. In this process missing
values are substituted for values either randomly or by adapting
to the data structure, to improve statistical inference or model-
ing15. Due to the non-trivial distinction between true and false
zero counts, classical imputation methods with defined missing
values may not be suitable for scRNA-seq data.

The concept of denoising is commonly used to delineate signal
from noise in imaging16. Denoising enhances image quality by
suppressing or removing noise in raw images. We assume that the
data originates from a noiseless data manifold, representing the
underlying biological processes and/or cellular states17. However,
measurement techniques like imaging or sequencing generate a
corrupted representation of this manifold (Fig. 1a).

A number of scRNA-seq specific imputation or denoising
methods exist18–22. These approaches rely on using the correla-
tion structure of single-cell gene expression data to infer “cor-
rected” gene expression values by leveraging information on
similarities between cells and/or genes. For example, current
approaches for scRNA-seq specific imputation include scIm-
pute22, which defines likely dropout values using a mixture model
and subsequently substitutes only the likely dropout values.
MAGIC20 and SAVER21, on the other hand, denoise single-cell
gene expression data and generate a denoised output for each
gene and cell entry. However, these methods may fail to account
for non-linearity or the count structure in the data. Furthermore,
with the increasing size of scRNA-seq datasets13, methods need to
scale to up to millions of cells and existing denoising methods are
unable to process datasets of this magnitude.

An autoencoder is an artificial neural network which learns an
efficient compression of data in an unsupervised fashion by
minimizing the error between the compressed and subsequently
reconstructed data set versus the original one. Generalizing linear
approaches such as principal component analysis, it is commonly
used for dimension reduction23 (see Methods for the detailed
description of autoencoders). Since the compression forces the
autoencoder to learn only the essential latent features, the
reconstruction ignores non-essential sources of variation such as
random noise24 (Fig. 1a). A number of recent studies describe
applications of autoencoders in molecular biology25–29.

To solve denoising and imputation tasks in scRNA-seq data in
one step, we extend the typical autoencoder approach and adapt it
towards noise models applicable to sparse count data. To that
end, we developed a deep learning based autoencoder with spe-
cialized loss functions targeted towards scRNA-seq data, the so-
called “deep count autoencoder” (DCA). The trick is to define the
reconstruction error as the likelihood of the distribution of the

noise model instead of reconstructing the input data itself
(Fig. 1b). During training, DCA learns gene-specific distribution
parameters by minimizing the reconstruction error in an unsu-
pervised manner. Due to the compression, DCA shares infor-
mation across features, and thereby accounts for gene-gene
dependencies. The deep learning framework (by default three
hidden layers with 64, 32, 64 neurons) of DCA enables the cap-
turing of the complexity and non-linearity in scRNA-seq data.
Thirdly, the autoencoder framework is highly scalable and DCA
can be applied to data sets of up to millions of cells. To increase
speed even further DCA is parallelizable via graphical processing
units (GPU).

One of the main advantages of DCA is that the user only needs
to specify the noise model. Existing scRNA-seq methods are
based on various distributional assumptions, including zero-
inflated negative binomial models30,31. However, Chen et al.32

proposed that zero-inflation is less likely in unique molecular
identifier (UMI) based compared to read based scRNA-seq
technologies. Therefore, to provide maximal flexibility, DCA
implements a selection of scRNA-seq specific noise models
including negative binomial distribution with (ZINB) and with-
out zero-inflation (NB). For example, using the ZINB noise
model, DCA learns gene-specific parameters mean, dispersion
and dropout probability based on the input gene expression data.
The inferred mean parameter of the distribution represents the
denoised reconstruction and the output of DCA (Fig. 1b).

We extensively evaluate our approach with competing methods
using simulated and real datasets. Altogether, we demonstrate
that DCA shows high scalability and DCA denoising enhances
biological discovery. The approach is implemented in Python and
as a command line tool, publicly available at https://github.com/
theislab/dca. Alternatively, Scanpy33 users can directly use the
“dca” method in the preprocessing package[https://scanpy.
readthedocs.io/en/latest/api/index.html#imputation].

Results
Count noise model is necessary to denoise scRNA-seq data. As
a proof of principle and to explore the properties of our approach,
we applied DCA to simulated scRNA-seq data generated using
Splatter34. Both count data with and without dropout are avail-
able, which allows quantification of denoising using ground truth.
We simulated two data sets with 200 genes and (1) two celltypes
(2000 cells in total) and (2) six celltypes (2000 cells in total). For
the two and six celltype simulations 63 and 35% of data values
were set to zero, respectively. Dropout simulation probabilities
are conditioned on mean gene expression, such that lowly
expressed genes have a higher likelihood of dropout compared to
highly expressed genes34.

To guide the user’s choice of the appropriate noise model, we
propose to examine the relationship between the gene-wise mean
and empirical dropout rate calculated for cells from the same
cluster or cell type. By conducting a likelihood ratio test between
the NB and ZINB fits the user can determine whether zero-
inflation is present and which distribution to select for the DCA
noise model parameter. For the simulation data, the ZINB
distribution showed higher likelihood compared to NB distribu-
tion (Supplementary Fig. 1A). Therefore, we used the ZINB noise
model for DCA denoising.

In our simulation results dropout adds substantial noise,
obscuring celltype identities. Expectedly, after denoising using
DCA the original celltypes can be recovered (Fig. 2a, b). To test
whether a count-based loss function is necessary, we compared
DCA to a typical autoencoder with a mean squared error (MSE)
loss function using log-transformed count data. The MSE based
autoencoder was unable to recover the celltypes, indicating that
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the specialized count loss function is necessary for scRNA-seq
data. Confirmatory results were observed in the more complex six
group simulation (Fig. 2c, d, Supplementary Fig. 2A & B).

One advantage of simulated data is the ability to perform a
large variety of evaluations, including the assessment of potential
overimputation. Overimputation in denoising methods manifests
itself by introducing spurious correlations, falsely generating
correlations between genes. The simulations contain two sets of
genes which 1) show differential expression (DE) between
celltypes, i.e. marker genes, and 2) which show no DE, i.e.
housekeeper genes. Spurious correlations could falsely change
housekeeper genes into marker genes. The DE genes drive the
PCA, whereas the non-DE genes are expected to show no effect
on the PCA. Therefore, we performed PCA on the denoised data
using the subset of only non-DE genes (housekeepers) as input.
After DCA denoising, celltype identities were not recovered,
indicating that the denoising process did not introduce spurious
correlations and is robust to overimputing (Supplementary
Fig. 2C & D).

To test if DCA is capable of distinguishing true “celltype
specific” from false “dropout” zero counts, we denoised the two
group simulation data using hyperparameter settings that
regularize for model complexity (see “Methods” section for
details). Since the dropout effect is added on top of the
simulation, the ground truth for each zero count is known. After
DCA denoising we investigated the distribution of the inferred
dropout probabilities as captured in the π parameter (Supple-
mentary Fig. 2E, Fig. 1b). The inferred dropout probability for
“dropout” zeros was much higher compared to “celltype specific”

zeros, demonstrating the ability of DCA to discern zero counts
(Supplementary Fig. 2F).

DCA captures cell population structure in real data. Complex
scRNA-seq datasets, such as those generated from a whole tissue,
may show large cellular heterogeneity. Therefore, denoising
methods must be able to capture the cell population structure and
use cell population specific parameters for the denoising process.
To test whether DCA was able to capture cell population struc-
ture in real data we denoised scRNA-seq data of 68,579 peripheral
blood mononuclear cells12 and 1,000 highly variable genes (92%
zeros) (Fig. 3a). NB and ZINB model fits showed comparable
goodness-of-fit based on likelihood ratio test (Supplementary
Fig. 1B). In this situation, we advise using the NB noise model,
since it is less complex and hence is easier to fit. For this analysis
only, we restricted the autoencoder bottleneck layer to two neu-
rons and visualized the activations of these two neurons for each
cell in a two-dimensional scatter plot (Fig. 3b). When overlaying
the original celltype information12, celltype-specific clustering
was observed. Furthermore, known celltype marker genes showed
cluster-specific expression in the two-dimensional bottleneck
visualization (Fig. 3c–f), indicating that DCA captures the data
manifold in real data and consequently cell population structure.

To investigate whether DCA is also able to capture a
continuous phenotype, we performed analogous analysis using
scRNA-seq data from continuous blood differentiation35. When
visualizing the two-neuron bottleneck layer, the two differentia-
tion trajectories towards megakaryocyte–erythroid progenitors
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Fig. 1 DCA denoises scRNA-seq data by learning the underlying true zero-noise data manifold using an autoencoder framework. a Depicts a schematic of
the denoising process adapted from Goodfellow et al.24. Red arrows illustrate how a corruption process, i.e. measurement noise including dropout events,
moves data points xj away from the data manifold (black line). The autoencoder is trained to denoise the data by mapping measurement-corrupted data
points ~xi back onto the data manifold (green arrows). Filled blue dots represent corrupted data points. Empty blue points represent the data points without
noise. b Shows the autoencoder with a ZINB loss function. Input is the original count matrix (pink rectangle; gene by cells matrix, with dark blue indicating
zero counts) with six genes (pink nodes) for illustration purposes. The blue nodes depict the mean of the negative binomial distribution which is the main
output of the method representing denoised data, whereas the green and red nodes represent the other two parameters of the ZINB distribution, namely
dispersion and dropout. Note that output nodes for mean, dispersion and dropout also consist of six genes which match six input genes. The matrix
highlighted in blue shows the mean value for all cells which denotes the denoised expression. and the mean matrix of the negative binomial component
represents the denoised output (blue rectangle). Input counts, mean, dispersion and dropout probabilities are denoted as x, μ, θ and π, respectively
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(MEP) and granulocyte-macrophage progenitors (GMP) were
revealed (Fig. 3g). Additionally, diffusion pseudotime (DPT) was
calculated based on the 1) two-neuron bottleneck coordinates
(Fig. 3h) and 2) alternatively on the gene expression PCA
coordinates as is suggested in the standard DPT workflow3. We
observed a strong correlation between the pseudotime values
derived from the two manifolds, indicating that the DCA
bottleneck layer can capture a continuous phenotype (Fig. 3i).
Overall, these results demonstrate that DCA captures meaningful
biological information. Therefore, DCA can derive cell popula-
tion specific denoising parameters in an unsupervised fashion.
Furthermore, the low-dimensional DCA representation can be
used for downstream analyses, such as pseudotemporal ordering.

Denoising recovers time-course patterns upon noise induction.
Next, we evaluated DCA by performing a systematic comparison
with MAGIC20, SAVER21 and scImpute22 (Supplementary
Table 1). We adapted the evaluation approach from van Dijk

et al.20 and analyzed real bulk transcriptomics data from a
developmental C. elegans time course experiment36 after simu-
lating single-cell specific noise. Bulk contains less noise than
single-cell transcriptomics data37 and can thus aid the evaluation
of single-cell denoising methods by providing a good ground
truth model. Gene expression was measured from 206 devel-
opmentally synchronized young adults over a twelve-hour period
(Fig. 4a). Single-cell specific noise was added in silico by gene-
wise subtracting values drawn from the exponential distribution
such that 80% of values were zeros20 (Fig. 4b). DCA denoising
recovered original time course gene expression pattern while
removing single-cell specific noise (Fig. 4c). To systematically
evaluate the four methods, we tested which method would best
recover the top 500 genes most strongly associated with devel-
opment in the original data without noise. DCA demonstrated
the strongest recovery of these genes, outperforming the other
methods (Fig. 4d). Gene-level expression without, with noise
and after DCA denoising for key developmental genes tbx-36 and
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his-8 is depicted in Fig. 4e, f, g, respectively. Expression data
derived from denoising using MAGIC, SAVER and scImpute for
these two genes is displayed in Supplementary Fig. 4. tbx-36 and
his-8 represent transcription factor and histone gene classes,
respectively, which are known to show opposing expression
patterns during C.elegans development38.

Denoising improves differential expression analysis. Motivated
by the scRNA-seq denoising evaluation metrics proposed by Li
et al.22, we compared differential expression analysis results
between bulk and scRNA-seq data from the same experiment.
Chu et al39. generated bulk and scRNA-seq data from H1 human
embryonic stem cells (H1) differentiated into definitive endoderm
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cells (DEC). The authors used a read-based scRNA-seq technol-
ogy. Correspondingly, the examination of the mean and empirical
dropout rate revealed that the data followed a ZINB distribution
(Supplementary Fig. 1C). Therefore, we denoised the 1000 most
highly variable genes using DCA with ZINB noise model. Next,
we performed differential expression analysis comparing H1 to
DEC of the bulk and scRNA-seq data independently using
DESeq2, which models gene expression based on the NB dis-
tribution without zero inflation40. After DCA denoising, 4 outlier
genes (Fig. 5a, red dots), showing a high discrepancy between
bulk and single-cell derived log fold changes, are corrected in the
denoised data. LEFTY1 is a key gene in the development of the
endoderm41,42 and shows high expression in DEC compared to
H1 in the bulk data (Fig. 5c). After DCA denoising, the median
expression level of LEFTY1 in DEC is shifted higher, more closely
reflecting the observation in the bulk data (Fig. 5d, e).

Next, we systematically compared the four denoising methods
for robustness using a bootstrapping approach. 20 random cells

were sampled from H1 and DEC populations one hundred times
and differential expression analysis using DESeq2 performed.
When comparing the estimated log fold changes across all
bootstrap iterations, DCA showed the highest correspondence
with bulk log fold changes (Fig. 5f), indicating increased
agreement between the DCA denoised and purified bulk data
manifolds.

Denoising increases protein and RNA co-expression. CITE-seq
enables simultaneous measurement of protein and RNA levels at
cellular resolution. Per-cell protein levels are higher than mRNA
levels for the corresponding genes and therefore less prone to
dropout events43. Therefore, by using cell surface marker protein
expressions as ‘ground truth’, denoising of mRNA levels can be
evaluated. Stoeckius et al.43 used this CITE-seq method to profile
cord blood mononuclear cells and identified major immunolo-
gical celltypes (Fig. 6a). The original RNA count data was
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denoised using all four methods and evaluated. For DCA
denoising the NB noise model was selected as the fits for NB and
ZINB showed comparable goodness-of-fit (Supplementary
Fig. 1E). Figure 6b shows tSNE visualization of the data colored
by the expression levels of proteins CD3, CD11c, CD56 and
corresponding RNAs CD3E, ITGAX, NCAM1 by column,
respectively. The rows correspond to the protein expression
levels, RNA expression levels derived from the original and DCA
denoised data. Visualizations for additional protein-mRNA pairs
and other methods can be found in Supplementary Fig. 5 and 6,
respectively. For example, the CD3 protein is expressed in 99.9%
of T cells. The corresponding RNA CD3E, however, is only
detected in 80% of T cells in the original count data. After
denoising using DCA, CD3E is expressed in 99.9% of all T cells
(Fig. 6c). Some slight discrepancies between the protein and
denoised expression can be observed. For example, in the
denoised data ITGAX shows expression in the natural killer cells
(NK) cell cluster while the corresponding CD11c protein levels
are very low. Checking data from the website of the Immunolo-
gical Genome project (immgen.com) confirmed expression of
ITGAX in NK cells, indicating that the denoised data for this gene
reflects better agreement with known biology which may be
obscured in the CITE-seq protein data due to some unknown
technical reasons. To statistically evaluate the denoising methods
we performed co-expression analysis using Spearman correlation
for all eight available protein-mRNA pairs across all cells. DCA
showed the highest median correlation coefficient, indicating that
denoising increases protein and RNA co-expression (Fig. 6d).

DCA runtime scales linearly with the number of cells. As the
number of cells profiled in a single experiment is increasing, it is
essential that scRNA-seq methods show good scalability. To
assess the scalability of the four methods, we analyzed the

currently largest scRNA-seq data set, consisting of 1.3 million
mouse brain cells, from 10X Genomics. The 1.3 million cell data
matrix was downsampled to 100, 1,000, 2,000, 5,000, 10,000 and
100,000 cells and 1000 highly variable genes. Each subsampled
matrix was denoised and the runtime measured (Fig. 7). The
runtime of DCA scaled linearly with the number of cells (slope=
0.66 for a linear fit on DCA points in log-log scale). While it took
DCA minutes to denoise 100,000 cells, the other methods took
hours. Therefore, DCA possesses a considerable speed advantage
over the competing methods.

Denoising enables discovery of subtle cellular phenotypes.
After having evaluated DCA against competing methods, we
tested if DCA denoising could enhance biological discovery which
is impossible or more challenging to obtain without denoising.
Stoeckius et al43. highlight the potential for integrated and mul-
timodal analyses to enhance the discovery of cellular phenotypes,
particularly when differentiating between cell populations with
subtle transcriptomic differences. The authors observed an
opposing gradient of CD56 and CD16 protein levels within the
transcriptomically derived NK cell cluster (Fig. 8a, b). Indeed,
unsupervised clustering using Gaussian mixture model on the
CD16 and CD56 protein expression levels revealed two sub-
populations of cells (Fig. 8c). The corresponding RNAs NCAM1
and FCGR3A, however, contained high levels of dropout
obscuring the protein derived sub-population structure (Fig. 8d).
After denoising, the two sub-populations of NK cells become
visually more clearly evident based on DCA denoised NCAM1
and FCGR3A RNA expression levels (Fig. 8e). To assess the
agreement between the protein-derived sub-population structure
and the expression data, we calculated the silhouette coefficients
based on the Euclidean distance of the expression derived from
the protein, original and denoised data (Average Silhouette
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Fig. 5 DCA increases correspondence between single-cell and bulk differential expression analysis. Scatterplots depict the estimated log fold changes for
each gene derived from differential expression analysis using bulk and original scRNA-seq count matrix (a), DCA denoised count matrix (b). Grey
horizontal and vertical lines indicate zero log fold change. Black line indicates identity line. Points are colored by the absolute difference between log fold
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widths: 0.47, 0.17, 0.58, respectively), which demonstrated higher
correspondence between the protein and denoised compared to
the original RNA data. Therefore, DCA denoising enabled the
extraction of information which was exclusively contained in the
CITE-seq proteins, demonstrating the ability to enable the dis-
covery of subtle cellular phenotypes.

Denoising increases correlation structure of key regulators.
Next, we tested if denoising enhances discovery of regulatory
relationships for well-known transcription factors in blood
development44. As previously mentioned, in Paul et al.35 the
authors describe the transcriptional differentiation landscape of
blood development into MEP and GMP (Fig. 9a, b). After
denoising, a set of well-known MEP and GMP regulators45 show
enhanced regulatory correlations (Fig. 9c, d), for example, the
anticorrelation between Pu.1 and Gata1 increases (Fig. 9e, f).
These two transcription factors are important regulators in blood
development and known to inhibit each other46. This regulatory
relationship is identified in denoised data also in cells with
zero expression for either gene in the original data, demonstrating
the ability of DCA to extract meaningful information from
otherwise non-informative zero count values (Supplementary
Fig. 5). Overall, these results demonstrate that DCA enhances
the modeling of gene regulatory correlations, and we expect
future network inference methods to use denoising as a first
preprocessing step.

Evaluation of hyperparameter selection. The choice of the
noise model represents the only parameter the user has to
specify. As previously mentioned, we describe an approach to
guide the user in the selection of the noise model. Additionally,
our DCA framework provides a large set of hyperparameters
for tuning the model. To assess the impact of hyperparameter
choice on the performance of DCA and to provide guidance to
users we conducted the following analyses. We denoised the
two group simulation data varying the size of the bottleneck
layer. We tested five different bottleneck layer sizes (4, 8, 16, 32
and 64 neurons) and performed DCA denoising five times per
size. During each iteration the final reconstruction error was
saved, PCA performed on the denoised output and the Sil-
houette coefficient assessing the celltype clustering structure
was calculated. Low reconstruction error indicates a good
hyperparameter configuration, while high Silhouette coefficient
indicates a good separation between the celltypes. The recon-
struction error (Fig. 10a) and silhouette coefficient (Fig. 10b)
show the minimum and maximum values at a bottleneck layer
size of 32 neurons, respectively. Selecting too low or high
dimensional bottleneck layer sizes decreases the performance
of DCA as measured in the ability to separate the two simu-
lated celltypes (Fig. 10c). Analogous results were obtained
when applying this analysis scheme to real data. We denoised
the Zheng et al.12 data varying the bottleneck layer config-
uration as described above and calculated the Silhouette coef-
ficient based on the Euclidean distance of the principal
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Fig. 6 DCA increases protein and RNA co-expression. a depicts tSNE visualization of transcriptomic profiles of cord blood mononuclear cells from
Stoeckius et al.43. Cells are colored by major immunological celltypes. b contains tSNE visualizations colored by protein expression (first row), RNA
expression derived from the original (second row) and DCA denoised data (third row). Columns correspond to CD3 (first column), CD11c (second
column), CD56 (third column) proteins and corresponding RNAs CD3E, ITGAX and NCAM1. c shows the distribution of expression values for CD3 protein
(blue), original (green) and DCA denoised (pink) CD3E RNA in T cells. Spearman correlation coefficients for the eight protein-RNA pairs across all cells for
the original and denoised data are plotted in d
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components and the original celltype labels from Zheng et al.12

(Fig. 10d, e). The agreement between the DCA intrinsic
reconstruction error and the downstream evaluation in both
simulated and read data indicates that the reconstruction error
can be used to guide hyperparameter selection. Therefore,
DCA implements an automated hyperparameter search which
identifies the set of hyperparameters that minimizes the
reconstruction error.

Discussion
One of the fundamental challenges in scRNA-seq analysis is
technical variation. Recent research has shown that accounting
for technical variation improves downstream analysis7,47–49 such
as uncovering the cell differentiation structure, identification of
highly variable genes, and clustering. Furthermore, some
denoising/imputation methods have been implemented in
scRNA-seq workbenches such as Granatum50, indicating that it is
an important, frequently used processing or smoothing step e.g.
for visualization.

Here, we introduce a robust and fast autoencoder-based
denoising method tailored to scRNA-seq datasets, which repre-
sents one of the first applications of deep learning to scRNA-seq
data. We demonstrate that denoising scRNA-seq data can remove
technical variation improving five possible downstream analyses,
namely clustering, time course modeling, differential expression,
protein-RNA co-expression and pseudotime analyses. Further-
more, we show that DCA is highly scalable to datasets with up to
millions of cells.

The evaluation of denoising is difficult because the definition of
a ground truth can be challenging for real data. We, therefore,
described a diverse set of evaluation scenarios, which may allow
systematic assessment of other denoising techniques in the future.
Furthermore, in order to avoid bias in comparisons, we adapted
evaluation approaches and used corresponding data from com-
peting methods for evaluation.

Note that in general, it may be difficult to determine when
denoising improves scRNA-seq data. As expected, we observe
increased gene-gene correlation after denoising; while in
our examples this enriched for desired regulatory dependen-
cies, this may also lead to overimputation in case of inadequate
hyperparameter choices such as too low-dimensional bottle-
neck layer and hence data manifold. To alleviate overfitting
and overimputation, a general and not yet extensively
treated issue of imputation methods, we implemented a
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number of regularization methods, including dropout,
encoder-specific and overall L1 and L2 regularization. This is
required especially when training on data sets with limited
sample size. DCA also allows users to conduct a hyperpara-
meter search to find the optimal set of parameters for
denoising to avoid poor generalization due to overfitting.
However, we would like to point out that hyperparameters
were not fine-tuned for any of the analyses described in the
manuscript. Additionally, DCA enables parallelization using
GPUs.

The proposed method can be easily integrated into existing
workflows; in particular, it supports h5ad-formatted HDF5 files

(https://github.com/theislab/anndata) and the Python API is
compatible with the Scanpy33 package.

Methods
Autoencoders. Artificial neural networks were shown to outperform traditional
approaches as they learn complex structure in the data to predict an outcome51,. A
specialization is an “autoencoder” when no outcome information is available. An
autoencoder learns to predict input data using three layers: an input layer, a hidden
(“bottleneck”) layer and an output layer23. It is characterized by the fact that both
input and output layers are of the same size (i.e. same number of genes) and the
bottleneck layer is of much lower dimensionality. By adjusting the weights of the
neural network, the autoencoder learns in an unsupervised manner how to efficiently
compress and subsequently reconstruct the data using typically MSE loss function.
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Since the compression forces the autoencoder to learn only the essential latent fea-
tures, the reconstruction ignores non-essential sources of variation such as random
noise (Fig. 1a). Therefore, the compressed representation reflects the high dimensional
ambient data space in significantly lower dimensionality and captures the underlying
true data manifold. For example, in a data set where snapshots of differentiating blood
cells exist, the manifold captures the continuum of differentiation phenotypes17 in a
zero-noise scenario. For an analogy, principal component analysis (PCA) can be
interpreted as a linear autoencoder with MSE loss function. Reconstruction of the data
with the first two principal components corresponds to the output of a linear auto-
encoder with a two-dimensional bottleneck layer.

Noise model. The ZINB distribution models highly sparse and overdispersed
count data. The ZINB mixture model consists of the following two components: (1)
a point mass at zero which represents excess zero values in the data and (2) a
negative binomial component representing the count distribution. For scRNA-seq
data, the point mass at zero may capture dropout events while the negative
binomial component of the distribution represents the process of sampling reads
from underlying molecules.

The ZINB distribution is parameterized with mean and dispersion parameters
of the negative binomial component (μ and θ) and the mixture coefficient that
represents the weight of the point mass (π):

NB x; μ; θð Þ ¼ Γ x þ θð Þ
Γ θð Þ

θ

θ þ μ

� �θ μ

θ þ μ

� �x

ð1Þ

ZINB x; π; μ; θð Þ ¼ πδ0 xð Þ þ 1� πð ÞNB x; μ; θð Þ ð2Þ

Architecture and training. Here we use the autoencoder framework to estimate
three parameters of ZINB distribution conditioned on the input data for each gene.
Therefore, unlike traditional autoencoders, our model also estimates dropout (π)
and dispersion (θ) parameters in addition to the mean (μ). Each module corre-
sponds to a parameter of the ZINB distribution, given as μ, θ and π. In this setting,
the size of the input layer and three output layers corresponding to these para-
meters have the same number of features (genes). However, unlike typical auto-
encoders, there are three output layers instead of one, representing for each gene
the three parameters (μ, θ, π) that make up the gene-specific loss function to
compare to the original input of this gene. For an analogy, in binary classifiers, the
output layer is interpreted as logistic regression using the features extracted from
the previous layers. Similarly, the output layer in our approach can be interpreted
as ZINB regression where predictors are new representations of cells.

The formulation of the architecture is given below:

E ¼ ReLU �XWEð Þ
B ¼ ReLU EWBð Þ
D ¼ ReLU BWDð Þ
�M ¼ exp DWμ

� �
Π ¼ sigmoid DWπð Þ
Θ ¼ exp DWθð Þ;

ð3Þ

where E, B and D represent the encoder, bottleneck and decoder layers,
respectively. In this formulation, X

�
represents library size, log and z score

normalized expression matrix, where rows and columns correspond to cells and
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Fig. 10 ReconstructionTraining error correlates with DCA performance and can guide hyperparameter selection. a, b show the distribution of the
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celltypes. d, e show the distribution of the reconstruction error and Silhouette coefficients when applying analogous analysis to the Zheng et al.12 data
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genes, respectively. Size factors for every cell, si, is calculated as the total number of
counts per cell divided by the median of total counts per cell. X

�
is defined as:

�X ¼ zscoreðlogðdiagðsiÞ�1X þ 1ÞÞ ð4Þ

where X and "zscore" represent the raw count matrix and z-score normalization.
Output activations are shown here in matrix form as �M, Θ and ∏. Although the

mini-batch stochastic gradient descent is used for optimization, for clarity we
depict the matrices of size n×p where n and p represent the number of cells and
genes, respectively.

The activation function of the mean and dispersion output layers is exponential
since the mean and dispersion parameters are always non-negative. The third
output ∏ estimates the dropout probability for every element of the input. The
activation function of this layer is sigmoid as ∏ values represent the dropout
probabilities and are therefore limited to the range between zero and one. The
activation function of the three output layers is an inverse canonical link function
of a ZINB regression model in the context of generalized linear models.

The loss function represents the likelihood of the ZINB distribution:

Π̂ ; M̂; Θ̂ ¼ argmaxΠ;M;ΘZINB X;Π;M;Θð Þ

¼ argmaxΠ;M;Θ

Yn
i¼1

Yp
j¼1

ZINBðxij; πij; μij; θijÞ;
ð5Þ

where xij represents the elements in the raw count matrix X, i and j represent cell
and gene indices and n and p represent the number of cells and genes.M represents
the mean matrix multiplied by the size factors that are calculated before the
training:

M ¼ diag sið ÞM� ; ð6Þ

which keeps the hidden representation of cells and the optimization process
independent of library size differences.

Furthermore, our model contains a tunable zero-inflation regularization
parameter that acts as a prior on the weight of the dropout process. This is achieved
using the ridge prior on the dropout probabilities and zero inflation (∏ parameter):

Π̂ ; M̂; Θ̂ ¼ argminΠ;M;ΘNLLZINB X;Π;M;Θð Þ þ λ Πk k2F

¼ argminΠ;M;Θ

Xn
i¼1

Xp
j¼1

NLLZINBðxij; πij; μij; θijÞ þ λπ2
ij;

ð7Þ

where NLLZINB function represents the negative log likelihood of ZINB
distribution.

To increase flexibility, we provide implementations of NB, ZINB, Poisson and
MSE noise models. Furthermore, users are also allowed to choose whether the
dispersion parameter is conditioned on the input. While n x p dispersion matrix is
estimated from the data in the conditional dispersion (default option), the
alternative option estimates an independent dispersion parameter per gene.

Hyperparameter search. Hyperparameter search allows users to find optimal λ
value for a given data set along with other hyperparameters like hidden layer
configuration, type of activation function, and the strength of L1/L2 regularization
on the parameters. For the hyperparameter search, DCA is trained with one
thousand hyperparameter configurations sampled from specified ranges for each
hyperparameter and the hyperparameter configuration with the lowest recon-
struction error is selected. Tree-structured Parzen Estimator (TPE) method
implemented in hyperopt52 is used as the optimization method.

Zero inflation analysis. To select a suitable noise model, we fit NB and ZINB
models to the mean and empirical dropout rate dependence by minimizing the
binary cross entropy (BCE) between the observed and predicted dropout rates. For
the NB fit, the dispersion parameter is optimized, while for the ZINB model, the
zero-inflation parameter (π) is modelled as an affine transformation of the
observed mean. Therefore, in addition to the dispersion, two more parameters, the
slope and the offset are jointly optimized to minimize the BCE. Finally, log-
likelihood ratio test is performed using the difference between the negative BCE
values of model fits.

Denoising. The denoised matrix is generated by replacing the original count values
with the mean of the negative binomial component ( �M matrix in Equation 3) as
predicted in the output layer. This matrix represents the denoised and library size
normalized expression matrix, the final output of the method. Intuitively, our
approach can be interpreted as a two-step process. First, the data is summarized by
extracting lower dimensional hidden features that are useful for denoising the data
as well as identifying and correcting dropout zeros. Then, a ZINB regression is
fitted using these new hidden features. However, these two steps are performed
simultaneously during the training.

Implementation. DCA is implemented in Python 3 using Keras53 and its Ten-
sorFlow54 backend. We used RMSProp for optimization with learning rate 0.001.
Learning rate is multiplied by 0.1 if validation loss does not improve for 20 epochs.
The training stops after no improvement in validation loss for 25 epochs. Gradient
values are clipped to 5 and the batch size is set to 32 for all datasets. All hidden
layers except for the bottleneck consist of 64 neurons. The bottleneck has 32
neurons. Training on CPU or GPU is supported using Keras and TensorFlow.

The hyperparameter search is implemented using hyperopt and kopt Python
packages (https://github.com/Avsecz/kopt).

Simulated scRNA-seq data. Simulated datasets were generated using the Splatter
R package34. For the two group simulation the following parameters were used in
the splatSimulate() R function: groupCells = 2, nGenes = 200, dropout.present =
TRUE, dropout.shape -1, dropout.mid = 5. For the six group simulation the fol-
lowing parameters were used in the splatSimulate() R function: groupCells = 6,
nGenes = 200, dropout.present = TRUE, dropout.shape -1, dropout.mid = 1.

68k peripheral blood mononuclear cell experiment. Single-cell gene expression
count matrix and celltype labels from Zheng et al. were downloaded from http://
www.github.com/10XGenomics/single-cell-3prime-paper. Since CD4+ and CD8+
subtype clusters are highly overlapping, they are combined into coarse groups.
tSNE coordinates were obtained by reproducing the code from single-cell-3prime-
paper repository. For the population structure analysis (Fig. 3), DCA was run using
the following parameter: -s 16,2,16. For the hyperparameter search, various bot-
tleneck layer sizes are compared using -s 64,i,64, where i represents the bottleneck
size being tested.

MAGIC. MAGIC (version 0.1.0) was downloaded from https://github.com/
pkathail/magic. MAGIC was run using default parameters specified as 20 for the
numbers of principal components, 6 for the parameter t for the power of the
Markov affinity matrix, 30 the number of nearest neighbors, 10 the autotune
parameter and 99th percentile to use for scaling.

scImpute. scImpute (version 0.0.5) was downloaded from https://github.com/
Vivianstats/scImpute. For the C. elegans development experiment, the Chu et al39.
definitive endoderm differentiation experiment, the CITE-seq cord blood mono-
nuclear cells experiment and the scalability analysis, kCluster= 1, kCluster =2,
kCluster= 13 and kCluster= 2 parameters were used, respectively.

SAVER. SAVER (version 0.3.0) was downloaded from https://github.com/
mohuangx/SAVER. SAVER was run using default parameters specified as 300 for
the maximum number of genes used in the prediction, 50 for the number of
lambda to calculate in cross-validation and 5 for the number of folds used in cross-
validation. For the scalability analysis, SAVER was run using the R package
doParallel with 24 cores.

DCA. For the two and six group simulation data, C. elegans development and the
Chu et al.39 definitive endoderm differentiation experiments the DCA default
parameters were used. For the zero-count analysis, DCA was run using the --ridge
0.005 hyperparameter. This hyperparameter penalizes model complexity by
shrinking inferred dropout probabilities (π). For the CITE-seq cord blood mono-
nuclear cells experiment, Paul et al. early blood development experiment and the
68k peripheral blood mononuclear cell experiment following parameters were used
--type nb.

C. elegans development experiment. Francesconi et al36. data set contained
206 samples covering a 12-hour time-course. Similar to the evaluation proposed
van Dijk et al20., expression values were exponentiated to create a count dis-
tribution and subsequently single-cell noise was added in silico by subtracting
gene-specific artificial noise from each gene. Gene-specific artificial noise was
generated using the exponential function where the mean was calculated as the
gene expression median multiplied by five. Any negative values were set to zero so
that on average 80% of the values were zero. Pearson correlation was calculated
between the expression level of each gene and time course to identify top 500
development genes.

Definitive endoderm differentiation experiment. The gene expression data from
Chu et al.39 was restricted to single cells and bulk samples from H1 and DEC using
the provided annotation and the 1000 most highly variable genes. Differential
expression analysis was performed using the R package DESeq2 (version 1.14.1).
DESeq2 models gene expression based on a negative binomial distribution without
zero-inflation. To retain count structure, denoised data for all methods was
rounded prior to analysis. The dispersion was estimated using “mean” for the
fitType parameter. To assess the robustness of the results, bootstrapping analysis
was conducted. During each of 100 iterations, 20 cells from the H1 and DEC cells
were randomly selected and differential expression analysis performed as described
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above. Next, concordance was evaluated using the Pearson correlation between the
estimated fold changes derived from the single-cell bootstrap and bulk data.

CITE-seq cord blood mononuclear cells experiment. The Seurat R package was
used to perform the analysis. Following the instructions of the authors43 data were
subset to 8,005 human cells by removing cells with less than 90% human UMI
counts. Next, RNA data were normalized, highly variables genes were identified
and expression data was scaled. First 13 principal components were calculated and
used for clustering and tSNE visualization. A total of 13 clusters were identified.
The genesCLR method was used for normalization of the protein data. For
denoising, gene expression data was restricted to the top 5000 highly variable genes.
Co-expression for eight known marker proteins (CD3, CD19, CD4, CD8, CD56,
CD16, CD11c, CD14) and corresponding mRNAs (CD3E, CD19, CD4, CD8A,
NCAM1, FCGR3A, ITGAX, CD14) was assessed using Spearman correlation on the
scaled expression data across all 8,005 cells. It is important to note, that the cor-
relation is calculated across all cells and not within a single celltype. Therefore, the
correlation coefficient will capture the presence and absence of protein and mRNA
more so than a direct linear dependency between the expression levels of the two.

NK subset analysis. Stoeckius et al43. data were subset to 906 NK cells. Next,
protein and RNA expression data were scaled. Using CD16 and CD56 protein
expression levels, cells were clustered with the Mclust() function from the R mclust
package and two mixture components. To quantitatively assess the correspondence
between protein derived sub-populations and mRNA expression levels, the Sil-
houette coefficient was calculated. The Silhouette coefficient ranges from -1 to 1
and values close to zero indicate random clustering with regards to the specified
indicator.

Blood regulator analysis. Paul et al. blood differentiation data with 2730 cells and
3451 informative genes are used for the analysis. After log transformation with a
pseudo-count of one, the kNN graph is constructed using the “scanpy.api.pp.
neighbors” function. Diffusion map, diffusion pseudotime (DPT) and four diffusion
pseudotime groups are computed with “scanpy.api.tl.dpt(adata, n_branchings=1)”.
Pseudotime estimates of the two DPT groups corresponding to MEP and GMP
branches are scaled between [0, 1] and [0, -1] in order to show the branching more
distinctly. DCA is run with default parameters and Pearson correlation coefficients
between marker genes are calculated with “numpy.corrcoef” function. For the 2-
neuron bottleneck analysis, DCA was run using the following parameter: -s 16,2,16.

Scalability analysis. First, cells and genes with zero expression are removed from
the count matrix. Next, the top 1000 highly variable genes are selected using
“filter_genes_dispersion” function of Scanpy with n_top_genes=1000 argument.
The 1.3 million cell data matrix was downsampled to 100, 1000, 2000, 5000, 10,000
and 100,000 cells and these 1000 highly variable genes. Each subsampled matrix
was denoised using the four methods and the runtimes measured. Scalability
analysis was performed on a server with two Intel Xeon E5-2620 2.40 GHz CPUs.
NVIDIA GeForce GTX TITAN X is used for denoising datasets on GPU with
DCA.

Code availability. DCA, including usage tutorial and code to reproduce the main
figures in the manuscript, can be downloaded from https://github.com/theislab/
dca.

Data availability
The data sets analysed during the current study are publicly available. Bulk microarray
gene expression of developing C.elegans embryos was downloaded the supplementary
material of Francesconi et al36. Chu et al.39 single-cell and bulk RNA-seq data for
definitive endoderm differentiation experiment are available at the Gene Expression
Omnibus (GEO) under accession code GSE75748. Single-cell protein and RNA raw
count expression matrices for CITE-seq cord blood mononuclear cells experiment are
available at GEO under accession code GSE100866. Paul et al. blood differentiation
data including the celltype annotations are obtained via “scanpy.api.datasets.paul15()”
function of Scanpy Python package. 1.3 million mouse brain cell data were
downloaded from https://support.10xgenomics.com/single-cell-gene-expression/
datasets/1.3.0/1M_neurons. 68k PBMC data from Zheng et al.12 is downloaded from
http://www.github.com/10XGenomics/single-cell-3prime-paper.
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