
 

 1 

Large-Scale Biology article 1 

 2 

The systems architecture of molecular memory in poplar after abiotic stress 3 

 4 

Elisabeth Georgii1, Karl Kugler2, Matthias Pfeifer2, Elisa Vanzo3, Katja Block3, Malgorzata A. 5 

Domagalska4, Werner Jud3,6, Hamada AbdElgawad4, Han Asard4, Richard Reinhardt5, Armin 6 

Hansel6, Manuel Spannagl2, Anton R. Schäffner1, Klaus Palme7, Klaus F.X. Mayer2,8*, Jörg-7 

Peter Schnitzler3* 8 

 9 

1 Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research 10 

Center for Environmental Health, 85764 Neuherberg, Germany. 11 

2 Plant Genome and Systems Biology, Helmholtz Zentrum München, German Research 12 

Center for Environmental Health, 85764 Neuherberg, Germany. 13 

3 Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research 14 

Center for Environmental Health, 85764 Neuherberg, Germany. 15 

4 Laboratory for Integrated Molecular Plant Research, University of Antwerp, 2020 Antwerp, 16 

Belgium. 17 

5 Max Planck Genome Centre Cologne, Max Planck Institute for Plant Breeding Research, 18 

50829 Köln, Germany. 19 

6 Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, 20 

Austria. 21 

7 Institute of Biology II/Molecular Plant Physiology, Faculty of Biology, BIOSS Centre for 22 

Biological Signalling Studies, Centre for Biological Systems Analysis, 79104 Freiburg, 23 

Germany. 24 

8 TUM School of Life Sciences, Technical University Munich, Weihenstephan, Germany. 25 

 26 

* Corresponding authors:  27 

Jörg-Peter Schnitzler, Tel: +49-89-31872413, jp.schnitzler@helmholtz-muenchen.de;  28 

Klaus F.X. Mayer, Tel: +49-89-31873584, k.mayer@helmholtz-muenchen.de. 29 

 30 

 31 

 32 

 33 



 

 2 

Title: The systems architecture of molecular memory in poplar after abiotic stress 34 

Short title: Systems architecture of molecular memory 35 

 36 

The author responsible for distribution of materials integral to the findings presented in this 37 

article in accordance with the policy described in the Instructions for Authors 38 

(www.plantcell.org) is: Jörg-Peter Schnitzler (jp.schnitzler@helmholtz-muenchen.de).  39 



 

 3 

ABSTRACT  40 

 41 

Throughout the temperate zones, plants face combined drought and heat spells in increasing 42 

frequency and intensity. We compared periodic (intermittent, i.e. high-frequency) versus 43 

chronic (continuous, i.e. high-intensity) drought-heat stress scenarios in Gray poplar (Populus 44 

x canescens) plants for phenotypic and transcriptomic effects during stress and recovery. 45 

Post-recovery photosynthetic productivity after stress exceeded the performance of poplar 46 

trees without stress experience. We analyzed the molecular basis of this stress-related 47 

memory phenotype and investigated gene expression responses across five major tree 48 

compartments including organs and wood tissues. For each of these tissue samples, 49 

transcriptomic changes induced by the two stress scenarios were highly similar during the 50 

stress phase but strikingly divergent after recovery. Characteristic molecular response 51 

patterns were found across tissues but involved different genes in each tissue. Only a small 52 

fraction of genes showed similar stress and recovery expression profiles across all tissues, 53 

among them protein phosphatases of type 2C, the LATE EMBRYOGENESIS ABUNDANT 54 

PROTEIN 4-5 genes and orthologs to the Arabidopsis thaliana transcription factor 55 

HOMEOBOX LEUCINE-ZIPPER PROTEIN 7. Predicted transcription factor regulatory 56 

networks for these genes suggest that a complex interplay of common and tissue-specific 57 

components contributes to the coordination of post-recovery responses to stress in woody 58 

plants.  59 

 60 

 61 

INTRODUCTION 62 

 63 

Climate change increases the frequency and intensity of extreme events such as heat waves 64 

and drought (IPCC, 2014). Plants, as sessile organisms, and in particular long-living trees, 65 

have evolved flexible mechanisms to cope with environmental stresses (Harfouche et al., 66 

2014). Poplar is a widely used model in tree research that combines moderate genome size, 67 

a complete genome reference, fast growth, rapid maturation and wide geographic distribution 68 

with economic relevance in wood and biomass production (Taylor, 2002; Tuskan et al., 2006). 69 

It is also suitable for transcriptome studies across a variety of tissues. For instance, co-70 

expression patterns underlying cambial growth and wood formation have been investigated 71 

by sampling multiple sections across tree trunks (Sundell et al., 2017). Various physiological 72 
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changes have been observed in plants in response to abiotic stresses. Drought limits the root 73 

water uptake and results in a reduction of transpiration and photosynthesis, which can have 74 

severe effects on growth and yield (Aroca et al., 2012; Osakabe et al., 2014). These 75 

processes are mediated by well-known molecular responses of cells to drought, frequently 76 

triggered by the plant hormone abscisic acid (ABA) (Osakabe et al., 2014; Shinozaki and 77 

Yamaguchi-Shinozaki, 2007). In addition to ABA-responsive element-binding (AREB/ABF) 78 

transcription factors, members of the no apical meristem, Arabidopsis transcription activation 79 

factor and cup-shaped cotyledon (NAC) and dehydration-responsive element-binding (DREB) 80 

transcription factor families orchestrate pronounced gene expression changes upon drought 81 

stress, as demonstrated in Arabidopsis and crop species (Nakashima et al., 2014).  82 

Stress exposure alters gene expression also beyond the duration of the stress phase, forming 83 

a molecular "memory" (Crisp et al., 2016; Fleta-Soriano and Munne-Bosch, 2016). A well-84 

studied effect of stress-related memory is enhanced tolerance towards subsequent stress 85 

events, reflected by response differences between the first and subsequent stress challenges 86 

(Ding et al., 2012; Ding et al., 2013; Liu et al., 2016). This "primed response" is characterized 87 

by gene expression changes inducing damage protection, growth regulation, osmotic 88 

readjustment and coordination of hormone crosstalk (Ding et al., 2013). Such an expression 89 

memory can also involve chromatin remodeling through histone modifications (Lämke et al., 90 

2016; Sani et al., 2013). Phenotypically, plants primed by drought stress have shown a higher 91 

photosynthesis rate during subsequent stress periods than non-primed plants (Wang et al., 92 

2014). Even in the absence of a further stress challenge, plant performance can have signs of 93 

a stress-related memory after successful stress recovery, significantly differing from untreated 94 

control plants (Hagedorn et al., 2016; Xu et al., 2010). The molecular basis of this post-95 

recovery phenotype is still largely unexplored. The present study focuses on gene expression 96 

changes during stress and after recovery in a woody plant species. In particular, we 97 

investigated expression characteristics of stress-related memory, which we define in the 98 

context of this work as a post-recovery steady state in stress-treated trees that is distinct from 99 

non-treated trees. Our analysis not only contrasts stress scenarios that differ in frequency and 100 

intensity but also compares responses in different tissues of poplar trees. 101 

Simulating predicted regional climate conditions (IPCC, 2014) by applying simultaneous 102 

drought and heat spells at elevated atmospheric carbon dioxide (CO2) concentrations 103 

expected in 2050, we explored how Gray poplars (Populus x canescens) that have recovered 104 
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from drought-heat stress differ from non-treated plants. We characterized the stress response 105 

and the stress-related post-recovery memory regarding leaf photosynthesis phenotypes and 106 

transcriptional responses of young (“sink”) and mature (“source”) leaves (Vanzo et al., 2015), 107 

phloem-bark, developing xylem and roots. Two stress scenarios of equal total duration were 108 

compared to contrast periodic, intermittent stress (PS) with chronic, continuous stress (CS).  109 

The post-recovery effects of abiotic stress we observed at the transcriptome level extend the 110 

so far established concept of a molecular memory after stress exposure. While previous work 111 

has analyzed gene expression changes in response to recurrent versus initial stress 112 

challenges, our analysis additionally investigates stress-induced shifts in steady state after 113 

recovery, i.e., before a new stress challenge. Still, the aspect of recurrent versus one-time 114 

stress is covered by the two stress scenarios, which are compared to control scenarios not 115 

only at the end of the stress phase but also after recovery. The multifactorial study sheds new 116 

light on the regulatory architecture of memory-related gene expression networks after 117 

different climatic challenges and across multiple tree organs and tissues.  118 

 119 

RESULTS  120 

 121 

Impact of drought-heat stress periods on post-recovery photosynthetic performance 122 

To get a systems level view on stress response and recovery in a woody plant species, we 123 

subjected groups of Gray poplar (Populus x canescens) trees to one of four climate scenarios 124 

and collected transcriptome samples from five tree compartments (organs and wood tissues) 125 

at two subsequent time points (Fig. 1). In addition, phenotypic measurements of leaf 126 

photosynthesis were recorded on attached leaves (Fig. 1A). The experiment was performed 127 

in climate chambers under highly controlled conditions, including a chronic drought and heat 128 

stress scenario at elevated CO2 levels (CS scenario), a periodic drought and heat stress 129 

scenario at elevated CO2 levels with two intermediate recovery periods (PS scenario), a 130 

control scenario at elevated CO2 levels (EC scenario) and a control scenario at ambient CO2 131 

levels (AC scenario) (Vanzo et al., 2015). AC represents the current temperate climate as a 132 

reference point, which allowed us to estimate the effects of predicted future climate scenarios 133 

(EC, CS and PS). The stress phase of 22 days was followed by a recovery period of one 134 
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week at irrigation and temperature conditions that were equal to those for control plants 135 

(Methods). Phenotypic photosynthetic performance of mature leaves was assessed using gas 136 

exchange measurements (Jud et al., 2016; Vanzo et al., 2015). During the stress phase, the 137 

net CO2 assimilation rate of leaves was significantly decreased for CS-treated poplar trees 138 

compared to the corresponding EC control trees (p.adj=0.0347). PS-treated trees showed 139 

intermediate levels (Fig. 1B). The same response pattern was found for the transpiration rate 140 

(Fig. 1C) and stomatal conductance (Fig. 1D). For all three physiological parameters, AC and 141 

EC controls were not significantly different. At the end of the recovery phase, the leaf 142 

transpiration rate and stomatal conductance of stress-treated trees reached similar levels as 143 

for the control trees, suggesting that the trees indeed had recovered from the combined 144 

drought and heat spells (Fig. 1C-D). The recovery of the physiological phenotype is also 145 

confirmed by the clear separation between stress phase and recovery measurements for 146 

each stress treatment and physiological parameter (Fig. 1B-D). Remarkably, the leaf net CO2 147 

assimilation rate of PS- and CS-treated trees was not only recovered but significantly higher 148 

than in AC trees (p.adj=0.0089 and p.adj=0.0388, respectively), with intermediate levels for 149 

EC trees (Fig. 1B). Evaluating continuous net ecosystem exchange measurements 150 

throughout the entire experiment (Vanzo et al., 2015), both PS- and CS-treatments led to a 151 

significant increase of the daily rates of canopy level C gain from photosynthesis during the 152 

second half of the recovery phase (days 26 to 29), in comparison with the control scenarios 153 

(Fig. 1E).  154 

 155 

Shared effects between transcriptomic and phenotypic data 156 

We integrated photosynthetic gas exchange data with RNA-seq data of mature leaves by 157 

regularized canonical correlation analysis (Le Cao et al., 2009) (Methods). RNA-seq reads 158 

were mapped to the Populus trichocarpa reference genome (Sundell et al., 2017; Tuskan et 159 

al., 2006). Both data types shared major stress and recovery effects, reflected by the first and 160 

second correlated component, respectively (Fig. 1F). For component one, the most 161 

representative phenotypic variable is the ratio between net CO2 assimilation rate and stomatal 162 

conductance (Pearson correlation -0.96). The leaf transpiration rate showed a correlation of 163 

0.95 with component one, consistent with the stomatal closure upon drought stress (Osakabe 164 

et al., 2014). The dominating genes for component one also have known stress response 165 
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functions. Among the top ten genes up-regulated in stress (correlation < -0.95), six genes 166 

were annotated as heat shock proteins (Potri.012G022400, Potri.010G195700, 167 

Potri.013G089200, Potri.017G130700, Potri.010G088600, Potri.010G053400), potentially 168 

acting as chaperones in protein folding. This could indicate a response to elevated leaf 169 

temperature caused by heat and lack of transpiration cooling (Kotak et al., 2007). Indeed, the 170 

mean temperature of mature leaves in the experiment increased to more than 35°C during PS 171 

and CS, whereas it ranged between 27°C and 30°C after recovery and for controls (see Fig. 172 

S4 of Vanzo et al., 2015). Considering all 589 genes that were up-regulated under PS and CS 173 

in mature leaves (log2(fold change)>1, p.adj<0.05; Table S1), protein folding is also the top 174 

enriched Gene Ontology (GO) category (p.adj=5.64e-9; Table S2). At the same time, the top 175 

down-regulated variables associated with component one included a MYB (myeloblastosis) 176 

transcription factor (Potri.002G260000), a peroxidase (Potri.016G132666) and a glutaredoxin 177 

gene (Potri.014G134300), indicating changes in transcriptional regulation and stress 178 

signaling. Oxidoreductase, peroxidase and transcription factor activity functions were also 179 

significantly enriched among the genes down-regulated in mature leaves by both stresses, 180 

and along with them many other processes including protein phosphorylation, cell wall 181 

modification, proteolysis, transmembrane transport, cell division and defense response (Table 182 

S3). The recovery phase mature leaf samples are indistinguishable from control samples with 183 

respect to component one, suggesting the disappearance of major stress characteristics and 184 

thus successful recovery. 185 

The second component linking phenotypic and gene expression data points to differences 186 

between recovery phase samples and untreated samples (Fig. 1F). Component two is 187 

characterized by an increased mean net CO2 assimilation rate in the recovery samples 188 

(Pearson correlation 0.77), consistent with the phenotypic data analysis (Fig. 1B). Individual 189 

genes did not correlate significantly with component two, and the up-regulated genes shared 190 

by both stress treatments after recovery were not enriched for specific functions (Table S4). 191 

Nucleotide binding and ATPase activity for transmembrane movement were enriched among 192 

the down-regulated genes of both stress treatments but much more pronounced for CS 193 

(Table S5). PS-specific up-regulation was enriched for stress response genes (e.g. the heat 194 

shock protein Potri.004G073600, Table S4). Many genes were up-regulated only for one 195 

stress treatment type, for instance the putatively photosynthesis-associated plastocyanin-like 196 

domain gene Potri.001G332200 was only up-regulated for PS (Table S1, Fig. 2). This 197 
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indicates that post-recovery transcriptomes of PS and CS in mature leaves share more 198 

subtle, multivariate effects. 199 

 200 

Systemic and tissue-specific stress responses 201 

In addition to the mature leaf data described so far, we also obtained RNA-seq 202 

measurements from young leaves, phloem-bark, developing xylem and fine roots. This 203 

provides a comprehensive systems-level view on the transcriptional responses occurring 204 

during stress application and after recovery (Fig. 2). To simplify figure keys and description, 205 

the term "tissue" hereafter refers to exactly this set of organs and tissues. The predominant 206 

gene expression variation across biological samples was attributable to distinct tissue 207 

characteristics (Fig. 2A). Whole-tree gene expression profiles concatenating profiles of tissue 208 

samples from the same tree clearly separate PS and CS stress phase trees from controls and 209 

recovery phase trees (Fig. 2B). In all tissues, PS and CS evoked very similar transcriptomic 210 

responses relative to EC. Both for up- and down-regulated genes (abs(log2 fold change)>1, 211 

p.adj<0.05), the observed overlap between the stress types was always larger than one or 212 

both of the stress type-specific fractions, suggesting that both scenarios evoke similar 213 

molecular stress responses in the tree (Fig. 2C, top panel). Among all tissues, the largest 214 

overlap between the two stress types was found in the developing xylem, indicating 215 

pronounced changes in the upward transport system of the plant. Significantly enriched GO 216 

functions (p.adj<0.05) among the up-regulated genes that overlap between PS and CS xylem 217 

samples include oxidoreductase activity, transcription factor activity, transporter activity and 218 

response to stress. In the root, genes encoding recognition proteins (e.g. lectin, glycoprotein) 219 

and ATPases were activated by both stress types, whereas common stress responses in 220 

phloem-bark and leaves were dominated by protein folding processes (Table S2). In total 221 

three genes were found to be up-regulated for each stress scenario in each tissue: 222 

Potri.T044100 (one of two co-orthologs of the TCP (TEOSINTE BRANCHED 1, CYCLOIDEA, 223 

PCF) family transcription factors AT5G41030 and AT3G27010), Potri.008G133200 (one of 224 

two co-orthologs of the O-glycosyl hydrolase AT2G01630) and Potri.001G293000 (not 225 

annotated).  226 

Regarding the down-regulated genes in both stress types, the developing xylem showed 227 

many enriched processes, such as translation, microtubule-based movement, DNA 228 
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replication, carbohydrate metabolic process, cell wall, electron transfer activity and 229 

transmembrane transport, suggesting a down-regulation of cell division and growth (Table 230 

S3). Similarly, roots showed significant down-regulation of nucleosome, cell wall, electron 231 

transfer activity and carbohydrate metabolic process genes. For phloem-bark we also 232 

observed a significant transcriptional decrease of cell wall modification, microtubule-based 233 

movement and carbohydrate metabolic process. In addition, a strong reduction of proteolysis 234 

and response to oxidative stress was found in this tissue. The same was observed for down-235 

regulated genes in young leaves, with an additional enrichment in fatty acid biosynthetic 236 

process, transmembrane transport, DNA replication and response to auxin. Along with the 237 

observations in mature leaves (see above), we can conclude that both stress treatments, CS 238 

as well as PS, had similar effects, leading to down-regulation of growth-related processes 239 

across all tissues. 240 

However, we also found differences between PS and CS. In leaf and root tissues, PS induced 241 

more gene expression changes than CS, whereas the CS response was more pronounced 242 

than the PS response in xylem and phloem-bark tissues. The PS-specific up-regulated genes 243 

detected in root are enriched for ATPases acting as transporters. This up-regulation might be 244 

at least partially attributable to priming effects, since PS plants had experienced their third 245 

stress phase whereas CS plants were still in their first stress challenge at d22 (Fig. 1A). CS-246 

specific up-regulated genes in developing xylem are enriched for ATPase activity and 247 

photosystem II functions. This gene expression up-regulation is consistent with previous 248 

observations that stem photosynthesis using internal CO2 from respiration may play a role in 249 

young poplar plants especially during drought stress (Bloemen et al., 2016), although light 250 

penetration through the bark is limited (Pfanz et al., 2002). The CS-specific up-regulation of 251 

photosystem genes may reflect the slightly more severe water deficiency during CS (shoot 252 

midday water potential (ψmd) -1.52±0.10 MPa) relative to PS (ψmd -1.27±0.05 MPa) and 253 

controls (EC: ψmd -0.97±0.07 MPa, AC: -0.97±0.04 MPa), increasing the need for C 254 

assimilation via a pathway that does not lead to further dehydration promoted by open 255 

stomata. CS-specific down-regulated genes in developing xylem are enriched for 256 

endoplasmatic reticulum and intracellular protein transport (Table S3). The gene regulations 257 

in the developing xylem illustrate the tissue specificity of stress responses, with a high 258 

similarity between periodic and chronic stress as well as stress-specific enhancement of 259 

processes. 260 
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 261 

Post-recovery characteristics of stress-treated trees 262 

After one week of recovery from the periodic or chronic stress, respectively, the total number 263 

of differentially regulated genes relative to the EC control plants was lower than at the end of 264 

the stress phase across all poplar tissues (Fig. 2C). This suggests that the transcriptomes 265 

had left the stress state and approached the state of control plants again. The stress recovery 266 

was physiologically confirmed by measurements of gas exchange (Fig. 1C-D) and shoot 267 

water potentials, which had recovered to -0.72±0.10 MPa and -0.93±0.07 MPa in PS and CS, 268 

respectively (compare previous paragraph, Methods). In contrast to the stress phase 269 

observations, fewer differentially expressed genes were shared between PS and CS than 270 

were specifically up- or down-regulated in one of the two stress scenarios (Fig. 2C, bottom 271 

panel). This divergence between stress types during the recovery phase indicates that most 272 

stress-activated genes are no longer induced and that the recurrence or the duration of 273 

drought-heat stress alter the post-recovery processes of plants. In all tissues except mature 274 

leaves PS induced more recovery-phase up-regulated genes than CS.  275 

The largest number of PS up-regulated genes occurred in young (sink) leaves (Vanzo et al., 276 

2015), followed by mature (source) leaves. In young leaves, the gene expression up-277 

regulation at recovery from PS was dominated by oxidation-reduction, coenzyme binding, 278 

hexosyl transferase and carbohydrate metabolic process GO terms (Table S4). The re-279 

induction of carbohydrate metabolism gene expression after its decrease during stress (see 280 

above) indicates the reactivation of growth processes in young leaves. CS-specific expression 281 

patterns were characterized by a down-regulation of genes involved in unfolded protein 282 

binding, protein folding and response to stress for young leaves and down-regulation of 283 

oxidoreductase activity for phloem, indicative of stress recovery (Table S5). In contrast, for 284 

post-recovery mature leaves, PS-specific enrichment indicated continued activity of several 285 

stress response genes, e.g. with functions as heat shock protein (Potri.004G073600) or 286 

drought-related late embryogenesis abundant protein (Potri.010G012100). Also transcription 287 

factors showed a PS-specific transcriptional up-regulation in post-recovery mature leaves, 288 

e.g. Potri.006G221500, one of six poplar co-orthologs of Arabidopsis MYB123 involved in 289 

anthocyanin and pro-anthocyanidin biosynthesis. In agreement with that, anthocyanin levels 290 

of poplar leaves at the post-recovery time point were higher for PS than for EC and CS 291 
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(Vanzo et al., 2015). Transporter activity tended to be up-regulated in young leaves 292 

(p.adj=0.06) including many aquaporin genes (Potri.001G235300, Potri.009G005400, 293 

Potri.009G013900, Potri.009G027200), some of which were also up-regulated in other post-294 

recovery tissues (phloem, mature leaves) of PS or CS trees and could be an indication of 295 

drought decline (Table S1). 296 

Biochemical data that monitored the antioxidative system in mature leaves also confirm the 297 

recovery from the stressed state (Table S6), matching the gene expression response profiles 298 

(Fig. 2C). Leaves of PS-treated trees exhibited a significant decrease of relative reduced 299 

ascorbate content during the stress phase (p.adj=0.0347), indicating increased scavenging of 300 

reactive oxygen species (AbdElgawad et al., 2016). In contrast, all stress-treated and control 301 

trees displayed similar leaf levels of relative reduced ascorbate at the end of the recovery 302 

phase (Fig. 2D). In addition, we compared the treatment-related expression responses 303 

between post-recovery and stress-phase tissue samples to assess how much the molecular 304 

processes in each tissue differ between the two phases. Interestingly, the fraction of post-305 

recovery up-regulated genes that already showed up-regulation during the stress phase 306 

varied widely among tissues, ranging from 58% in xylem to 7% in young leaves for PS and 307 

from 69% in xylem to 6% in mature leaves for CS (Fig. 2E). This suggests that for some 308 

tissues molecular processes after recovery resemble molecular processes during stress, 309 

whereas for other tissues post-recovery and stress responses are largely different. For 310 

instance, ATPases and transport functions played a major role in developing xylem during 311 

both phases, whereas for young leaves carbohydrate metabolism was down-regulated during 312 

stress (both PS and CS) and up-regulated after recovery.  313 

Among different tissues, gene expression response patterns showed only little overlap (Fig. 314 

3). During the recovery phase, we did not find any differentially expressed gene that 315 

responded across all tissues, neither in PS nor in CS. Nevertheless, the five tissues shared 316 

similar characteristic stress and post-recovery expression profiles that involved distinct co-317 

expression modules in each tissue (Fig. 4, Methods, Table S7). Interestingly, more than half 318 

of these characteristic profiles exhibited a pronounced difference between stress-exposed 319 

plants and non-treated plants at the end of the recovery phase, indicative of stress-related 320 

memory (Fig. 4, bottom). For example, young and mature leaf modules in the memory 321 

community C12 contained the glutathione-S-transferase Potri.019G130566, which protects 322 

against oxidative damage, and the esterase Potri.017G062300 with highest similarity to an 323 
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Arabidopsis gene involved in maintaining the integrity of photosynthetic membranes during 324 

abiotic stress (Lippold et al., 2012). Only for a small fraction of genes, PS and CS showed 325 

similar cross-tissue memory response patterns (Fig. 5A, Fig. 2C). Among the different tissues, 326 

the most pronounced agreement was found for young and mature leaves. The observed 327 

divergence between PS and CS was not due to the fold change threshold (abs(log2 fold 328 

change)>1); there were very few genes that satisfied the significance threshold (p.adj<0.05) 329 

but not the fold change threshold (Fig. S1). Differences between PS and CS expression levels 330 

were consistent with the control-based comparisons (Fig. 5B).  331 

The co-analysis of spatially apart tissues allowed insights into the complexity of coordinated 332 

whole-plant long-term responses to periodically occurring stress. Strikingly, the stress and 333 

recovery profiles of individual genes along the different trees were not conserved across 334 

tissues (Fig. 6). Only for 0.2% of the genes, the expression of the same gene correlated well 335 

across all tissues (Fig. 6A). The largest number of self-correlated genes was found between 336 

young and mature leaves, reflecting functional similarity of these compartments (Fig. 6B). 337 

Furthermore, 995 genes were self-correlated between phloem and xylem. Among them, 338 

functions in oxidation-reduction processes, carbohydrate and protein metabolic processes as 339 

well as transmembrane transport and microtubule-based processes were abundant. The 340 

genes with the strongest self-correlation across all tissues included a large proportion of 341 

genes that exhibited a significant post-recovery memory pattern in PS (Fig. 6A, Table S1). 342 

The top five genes among them were the transcription factors HOMEOBOX-LEUCINE 343 

ZIPPER PROTEIN 7 (HB7) co-ortholog 1(of4) (Potri.014G103000) and HB7 co-ortholog 344 

3(of4) (Potri.001G083700) as well as GLUTAREDOXIN C1 co-ortholog 2(of2) 345 

(Potri.012G082800) and two clade A protein phosphatases of the 2C family (PP2Cs), the 346 

HIGHLY ABA-INDUCED 1 (HAI1) ortholog (Potri.009G037300) and Potri.001G092100. In 347 

Arabidopsis thaliana, HB7 is transcriptionally induced by ABA and positively regulates PP2C 348 

gene expression (Valdés et al., 2012). 349 

 350 

Transcription factors associated with stress-related memory 351 

Transcription factors (TFs) are key regulators at the top level of the molecular hierarchy. 352 

Since several memory genes showed similar stress and post-recovery responses across all 353 

tissues (Fig. 6A), we were interested whether there exist common regulatory mechanisms 354 
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among different tissues that may play a role in stress-related memory. We used our gene 355 

expression data from each tissue to infer regulatory relationships between known TFs 356 

(Berardini et al., 2015; Jin et al., 2014) and these 17 self-correlated memory genes, resulting 357 

in a gene regulatory network for each tissue (Fig. 7, Methods). Each of these tissue-specific 358 

networks has one main connected component or forms a single connected component, 359 

indicating that the self-correlated memory genes (Fig. 7A, gray nodes) share common top 360 

candidates of regulatory TFs (which were computationally inferred for each gene by choosing 361 

the top five expression predictors, Methods). The majority of candidate TFs were tissue-362 

specific (Fig. 7A, white nodes), but a considerable fraction co-occurred across two up to four 363 

tissues. In particular, young and mature leaves shared ten candidate TFs. Edges also were 364 

shared across tissues, meaning that a specific TF was found in several tissues among the top 365 

five candidate regulators for a specific memory gene (Fig. 7A, colored edges; Fig. 7B). A 366 

relationship between HB7 co-ortholog 1(of4) (Potri.014G103000) and HB7 co-ortholog 3(of4) 367 

(Potri.001G083700) was predicted in all tissues except mature leaves. In the co-expression 368 

analysis, both of them fell into the tissue-specific co-expression modules of community C2, 369 

which was characterized by pronounced stress response during PS and CS (Fig. 4, Table 370 

S7). After recovery, a significant 20-fold PS up-regulation of HB7 co-ortholog 3(of4) gene 371 

expression was observed for both xylem and mature leaves as well as a 200-fold PS up-372 

regulation of the HB7 co-ortholog 1(of4) gene for the xylem. In contrast, CS trees did not 373 

show significant changes in the expression of these genes relative to control trees (Table S1). 374 

The two HB7 TFs were also central in the sense that together they covered all putative 375 

targets (non-TF memory genes) of their subnetwork and their removal would disconnect the 376 

network into several parts (Fig. 7B). The HB7 TFs are members of the homeodomain leucine 377 

zipper (HDZIP) family. In Arabidopsis, HB7 has been associated with drought stress response 378 

as well as reduced cell elongation in leaves and in the inflorescence stem (Hjellström et al., 379 

2003; Söderman et al., 1996). HB7 has also been identified as a drought stress memory gene 380 

that showed a stronger up-regulation at the third stress experience than after a single 381 

incidence (Ding et al., 2013). Under non-stress conditions, HB7 overexpression has been 382 

related to an increase in chlorophyll content and photosynthesis rate (Re et al., 2014), 383 

consistent with our physiological observations at the recovery phase. 384 

The expression of the HB7 co-ortholog 1(of4) (Potri.014G103000) gene itself is putatively 385 

related to the expression of the TFs Potri.006G138900, which was found to be a co-predictor 386 
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with Potri.001G083700 for several putative target genes, and Potri.002G125400 (Fig. 7B). 387 

Potri.002G125400 is annotated as ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING 388 

FACTOR 2 (ABF2) co-ortholog 1(of2). Arabidopsis ABF2 is known to enhance drought 389 

tolerance (Nakashima et al., 2014). Potri.006G138900 is a member of the ethylene response 390 

factor/ APETALA2 (ERF/AP2) TF family. The closest Arabidopsis ortholog in its evolutionary 391 

family, PTHR31985:SF77 (Mi et al., 2017), is AT5G21960, which belongs to the DREB 392 

subfamily A-5 with established functions in drought stress response (Singh and Laxmi, 2015). 393 

In poplar, the Potri.006G138900 gene has been reported to be induced by four different types 394 

of osmotic stresses (Yao et al., 2017). In our data, significant up-regulation of this gene was 395 

only observed for PS and not for CS. In Arabidopsis, RELATED TO AP2 1 (RAP2.1), a 396 

prominent member of the DREB gene subfamily A-5, is also more induced after repeated 397 

application of dehydration stress (Ding et al., 2013). RAP2.1 acts as a negative regulator of 398 

RD/COR (RESPONSIVE TO DESICCATION/ COLD-REGULATED) genes (Dong and Liu, 399 

2010). Poplar RAP2.1 Potri.014G025200 and the other poplar DREB TF having Arabidopsis 400 

RAP2.1 as the closest match were significantly up-regulated in xylem both during PS and CS. 401 

Consistently, the COR413 gene Potri.007G033801 was significantly down-regulated under 402 

these conditions.  403 

A relationship between two (TEOSINTE BRANCHED 1, CYCLODEA, PROLIFERATING 404 

CELL FACTORS (TCP) family TFs was inferred in young and mature leaves (Fig. 7B, Table 405 

S8). Both TFs, Potri.013G119400 and Potri.019G091300, are most similar to the Arabidopsis 406 

TF TCP4. Gene expression of Potri.013G119400 was significantly down-regulated after 407 

recovery from PS both in young and mature leaves compared with untreated controls. During 408 

PS and CS, both TFs were transcriptionally down-regulated in young and mature leaves 409 

(Table S1). In the remaining tissues, the expression patterns of the two TFs diverged from 410 

each other. For the developing xylem, Potri.013G119400 was down-regulated but 411 

Potri.019G091300 was up-regulated. The putative leaf target, Potri.010G230366, does not 412 

have a known function, but expression was also strongly up-regulated in the developing 413 

xylem for PS and CS, and more than 50-fold after recovery from PS. Potri.013G119400 gene 414 

expression was also down-regulated in phloem and roots, whereas there was no change for 415 

Potri.019G091300. TCP4 has been associated with cell elongation in hypocotyls and leaf 416 

morphogenesis (Challa et al., 2016). The differential regulation across tissues during stress 417 

and recovery in Gray poplar may reflect different cell growth dynamics. While water deficiency 418 
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generally suppresses growth in above-ground poplar tissues, xylem structure and secondary 419 

cell wall formation play a central role in avoiding drought damage and are highly regulated 420 

(Paul et al., 2018; Sun et al., 2017). 421 

 422 

Common and tissue-specific processes in stress-related memory 423 

To further elucidate and compare stress-related memory processes taking place in individual 424 

poplar tissues, we investigated the regulatory networks for mature leaves and developing 425 

xylem (Fig. 8). These were the two tissues where the HB7 TFs, the top correlated genes 426 

within and across tissues (Fig. 7B, Fig. 6A), showed the strongest post-recovery memory 427 

response (Table S1). For each tissue network, we specifically focused on TFs that were 428 

computationally associated with more than one putative target as predictor of gene 429 

expression (Fig. 8A). Among the targets that were included in the core networks of both 430 

mature leaves and developing xylem, we found two PP2Cs (the HAI1 ortholog 431 

(Potri.009G037300) and an HAI3-related PP2C, Potri.001G092100), the two LATE 432 

EMBRYOGENESIS ABUNDANT PROTEIN 4-5 (LEA 4-5) co-orthologs and a gene of 433 

unknown function with an almost 100-fold up-regulation in PS and a more than 150-fold up-434 

regulation after PS recovery in mature leaves (Potri.004G044300), whose closest Arabidopsis 435 

match has been reported to be induced by ABA in guard cells (Leonhardt et al., 2004). Also 436 

the two PP2Cs and the LEA 4-5 co-orthologs were up-regulated both in PS and after PS 437 

recovery for mature leaves (Fig. 8A). Poplar LEA4-5 protein levels have been observed to be 438 

highly increased for osmoprotection in drought stress conditions (Abraham et al., 2018). In 439 

Arabidopsis, LEA4-5 transcript and protein levels showed the largest response to ABA and 440 

salt stress within the LEA4 group (Olvera-Carrillo et al., 2010).  441 

PP2Cs act as negative regulators of ABA signaling and hamper stomatal closure, as 442 

demonstrated for example by protein interactions of the PP2C HYPERSENSITIVE TO ABA 1 443 

(HAB1) in Populus euphratica and the PP2C ABA-INSENSITIVE 1 (ABI1) in Populus 444 

trichocarpa as well as transgenic overexpression in Arabidopsis (Chen et al., 2015; Yu et al., 445 

2016). In Arabidopsis, the PP2C HAI1 (SAG113; AT5G59220) prevents stomatal closure 446 

during leaf senescence and its promoter is directly targeted by a NAC TF (NAC029, AtNAP; 447 

AT1G69490) (Zhang and Gan, 2012). In the mature leaf regulatory network inferred from our 448 

data, expression of the HAI1 ortholog (Potri.009G037300) was not only associated with 449 
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expression of the HB7 TFs (Potri.014G103000, Potri.001G083700) but also with expression 450 

of the NAC TF Potri.011G123300 and the MYB family TFs Potri.010G193000 and 451 

Potri.003G100100, which belong to different ortholog groups (Fig. 8A). The association 452 

between the latter three genes and the HAI1 ortholog was not detected in developing xylem. 453 

In fact, the Pearson correlation coefficients in developing xylem were 0.61, 0.30 and 0.26, 454 

respectively, in contrast to the highly significant values in mature leaves (0.94, 0.91 and 0.93). 455 

The gene Potri.011G123300 belongs to the NAC TF family due to its NAM (no apical 456 

meristem) domain; it is a member of the NAC019-related subfamily of orthologs, 457 

PTHR31719:SF82 (Mi et al., 2017). NAC TFs, and in particular the three Arabidopsis 458 

members of that subfamily, NAC019, NAC055 and NAC072, are known to be of central 459 

importance in drought signal transduction via the ABA-dependent pathway (Singh and Laxmi, 460 

2015; Tran et al., 2004). Gene expression of the MYB TF Potri.010G193000 is negatively 461 

correlated with the wood saccharification potential in poplar, which decreases with drought 462 

(Wildhagen et al., 2018). Consistent with this observation, our expression data showed an up-463 

regulation of Potri.010G193000 gene expression under stress. The same pattern was 464 

observed for mature leaves and in the case of PS even persisted after recovery. Furthermore, 465 

Potri.010G193000 is in general co-expressed with Potri.007G085700, the TF gene TGACG 466 

SEQUENCE-SPECIFIC BINDING PROTEIN 1 (TGA1) (Wildhagen et al., 2018). Interestingly, 467 

several Arabidopsis orthologs of inferred regulators of HAI1 in mature poplar leaves were 468 

connected via experimental and literature-curated protein-protein interaction data 469 

(Arabidopsis Interactome Mapping Consortium, 2011; Berardini et al., 2015; Yazaki et al., 470 

2016), including TGA1 (Fig. 8B). The TCP4 orthologs discussed above (Potri.019G091300, 471 

Potri.013G119400) were strongly transcriptionally anti-correlated with the HB7 co-ortholog 472 

Potri.001G083700, which was found as a central predictor for the two PP2Cs and both LEA4-473 

5 orthologs in mature leaves.  474 

In developing xylem, the HB7 co-ortholog Potri.001G083700 was also associated with these 475 

PP2Cs and LEA4-5 orthologs, which have known physiological functions related to drought. 476 

In both tissues, Potri.001G083700 gene expression continued to be up-regulated after PS 477 

recovery. In addition, the core networks of xylem and mature leaves shared the putative 478 

target GLUTAREDOXIN C1 (GRXC1) co-ortholog 2(of2) (Potri.012G082800), showing post-479 

recovery PS up-regulation in both tissues. With respect to abiotic stress, GRXC1 has roles in 480 

signaling and oxidative stress tolerance (Li, 2014). Another shared putative target was 481 
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Potri.002G117800, one of two NADH DEHYDROGENASE (UBIQUINONE) FE-S PROTEIN 4 482 

(NDUFS4) genes that are involved in the mitochondrial electron transfer chain and have been 483 

associated with thermotolerance in Arabidopsis (Kim et al., 2012). With respect to additional 484 

TFs, the xylem network showed several differences to the network from mature leaves (Fig. 485 

8A). The ERF/AP2 DREB TF Potri.006G138900 (see also previous section) was a large hub 486 

in addition to the HB7 TF Potri.001G083700, which formed a central hub in both tissues. The 487 

BHLH18-related TF Potri.009G081400 (BASIC HELIX-LOOP-HELIX 18) was unique to the 488 

xylem network, associated with GRX1, LEA4-5 and both PP2Cs and still significantly up-489 

regulated after PS recovery. A xylem-specific putative regulator of both HB7 TFs was the 490 

BHLH TF Potri.014G111400, one of three PHYTOCHROME-INTERACTING FACTOR 3 491 

(PIF3) genes. Arabidopsis PIF3 promotes hypocotyl elongation (Soy et al., 2012; Zhong et al., 492 

2012). In summary, our data suggest that common TFs such as HB7, in particular the central 493 

hub gene Potri.001G083700, work together with tissue-specific TFs to coordinate stress and 494 

post-recovery processes in different tissues. 495 

 496 

DISCUSSION 497 

Although drought stress is one of the major threats to plant growth, it is well-known that plants 498 

having endured stress can show better photosynthetic performance than non-exposed plants 499 

both under subsequent stress (Wang et al., 2014) and under well-watered conditions 500 

(Hagedorn et al., 2016), which may even lead to over-compensating plant growth (Xu et al., 501 

2010). We investigated Gray poplar trees that had experienced three weeks of drought-heat 502 

stress. After one week of recovery, we observed not only a complete reconstitution of 503 

transpiration and photosynthetic capacity along with a relaxation of water potentials but also 504 

an increased rate of carbon gain compared to non-stressed controls, both for a periodic and a 505 

chronic stress scenario. Transcriptomic analyses across five different organs and tissues 506 

revealed cellular processes occurring in response to combined drought and heat stress and 507 

after recovery. Post-recovery expression patterns showed significant differences to non-508 

treated poplar trees and also between the two stress scenarios, although the PS and CS 509 

responses had been highly similar at the end of the stress phase. This observation 510 

substantiates the hypothesis that stress exposure influences the physiological state of a plant 511 

even after recovery and that this long-term response varies according to the frequency or 512 
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duration of stress intervals. This memory phenomenon of trees occurring already a few days 513 

after the stress ceased hints at powerful molecular mechanisms, which potentially could also 514 

make a difference in plant fitness across multiple successive years. Such a life-cycle 515 

investigation was outside the scope of the current study. However, the results show that such 516 

a long-term investigation might be highly valuable when carefully designed.  517 

Similar expression patterns in response to stress and after recovery were found throughout 518 

the tree. However, they were implemented by distinct genes in each tissue. Only a small 519 

number of genes showed a consistent response profile across all tissues. Apart from genes 520 

encoding signaling components and enzymes like PP2Cs and GRXC1 or proteins with 521 

structural function like the LEA4-5 hydrophilins (Battaglia et al., 2008), this set of genes with 522 

putatively ubiquitous function contained several TFs, most prominently two HB7 TFs that also 523 

showed a PS-related post-recovery up-regulation. HB7 contains a homeodomain and a 524 

leucine zipper motif. This protein architecture indicates that the TF forms dimers (Ariel et al., 525 

2007). TF homo- or heterodimerization as well as multimerization allow for a high degree of 526 

regulatory fine-tuning in gene expression. We therefore speculate that TF complexes might 527 

play a role in shaping stress and post-recovery regulation of gene expression in the tissue-528 

specific context (Fig. 8B). Protein-protein interaction data from the model system Arabidopsis 529 

thaliana suggest that HB7 and some TFs from the NAC019 and MYB TF families with leaf-530 

specific responses in poplar (best Arabidopsis matches AT4G27410 and AT5G05790, 531 

respectively) may all associate with TGA1 and a set of ZHD (zinc-finger homeodomain) TFs, 532 

which were expressed in all poplar tissues according to our dataset. Another putative 533 

interactor of TGA1, the only HEAT STRESS TRANSCRIPTION FACTOR C-1 (HSFC1) TF in 534 

poplar (Potri.T137400), was predicted as a regulator of the HB7 co-ortholog 535 

Potri.001G083700 and the two PP2Cs in phloem-bark (Table S8). The family of ZHD TFs has 536 

been shown to act as heterodimers playing a crucial role in floral development (Tan and Irish, 537 

2006) as well as ABA response (Wang et al., 2011) in Arabidopsis. Co-expression of the 538 

NAC019 family gene AT4G27410 and ZHD11 strongly induces the expression of EARLY 539 

RESPONSIVE TO DEHYDRATION STRESS 1, which is up-regulated by drought through the 540 

ABA-independent pathway (Tran et al., 2007). 541 

Combined action of several TFs putatively regulates the expression of target genes. The up-542 

regulation of PP2Cs in mature poplar leaves observed in our study is consistent with the 543 

positive regulatory role of HB7 in PP2C expression reported for Arabidopsis (Valdés et al., 544 
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2012). Furthermore, NAC TFs regulate the PP2C HAI1 (Zhang and Gan, 2012) and other 545 

drought tolerance genes (Singh and Laxmi, 2015; Tran et al., 2004). PP2Cs inactivate SNF1-546 

related protein kinases of type 2 (SnRK2s) that are positive regulators of ABA signaling, 547 

stomatal closure and chlorophyll degradation (Fujii et al., 2011; Gao et al., 2016; Kulik et al., 548 

2011; Nakashima et al., 2009; Valdés et al., 2012). Consistently, HB7 overexpression leads to 549 

an increased chlorophyll content and a higher photosynthesis rate (Re et al., 2014). 550 

Moreover, different PP2Cs interact with the photosynthetic machinery (Fuchs et al., 2013; 551 

Samol et al., 2012), and photosynthesis genes are up-regulated in snrk2 triple mutants 552 

(Nakashima et al., 2009), proposing a relationship between PP2Cs and photosynthesis. 553 

Translating these findings to poplar, the model would explain an improved photosynthesis of 554 

recovered poplar trees after periodic stress (Fig. 8C). Chlorophyll content estimates did not 555 

show differences to the controls (Vanzo et al., 2015) but were done non-invasively in contrast 556 

to the Arabidopsis studies (Gao et al., 2016; Re et al., 2014). The increase of ABA levels 557 

during drought stress inhibits enzyme activity of clade A PP2Cs like HAI1 and HAI3 via 558 

interacting ABA receptors (Dupeux et al., 2011; Tischer et al., 2017). Due to this mechanism, 559 

leaf stomata can close during drought to prevent excessive water loss (Fig. 8C). For poplar, 560 

stress-induced stomatal closure was confirmed by our measurements of transpiration and 561 

stomatal conductance.  Protein-protein interactions of PP2Cs with a SnRK2 kinase and 562 

pyrabactin resistance-like ABA receptors and their effect on leaf stomatal closure in 563 

transgenic plants have been shown for several poplar species (Chen et al., 2015; Yu et al., 564 

2016), yielding evidence on the potential role of PP2Cs in poplar leaves during and after 565 

stress. Apart from that, PP2Cs may also be involved in chromatin remodeling and the 566 

establishment of an epigenetic memory after stress (Asensi-Fabado et al., 2017). 567 

The system-wide gene expression rearrangement after stress recovery might also contribute 568 

to the improved tolerance against future stresses described previously (Crisp et al., 2016; 569 

Hilker et al., 2016; Wang et al., 2014). In Arabidopsis, HB7 and LEA4-5, prominent memory-570 

related genes from our study, are more strongly induced at repeated dehydration stress 571 

challenges than at the first stress challenge (Ding et al., 2013). Complementing such studies 572 

on recurrence-dependent changes in stress responses, our data provide a comprehensive 573 

view on stress-related molecular memory under non-stress, post-recovery conditions. The 574 

increased base levels of HB7 and LEA4-5 gene expression after stress recovery could 575 

potentially explain the higher levels at subsequent stress challenges. Consistent with such a 576 
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model, the periodic stress response was greater than the chronic stress response in leaves 577 

and the post-recovery base level increase was only significant for periodic stress and not for 578 

chronic stress, suggesting a gradual base level increase along with several stress 579 

experiences. The same trend was observed in the photosynthesis data. A better 580 

understanding of the molecular changes, their timing and their impact on the performance of 581 

plants is instrumental in providing guidelines for resource-efficient agroforestry water 582 

management and in breeding of crop and tree cultivars that are genetically equipped for 583 

climate change scenarios. The present evaluation indicates that transcription factors as 584 

central switches of a molecular memory may be important mediators of plant fitness in 585 

persistent adaptation to recurrent abiotic stress. The biological hypotheses generated by our 586 

comprehensive data acquisition and integration pave the way for detailed mechanistic studies 587 

that will provide deeper insights into memory-related molecular processes in plants. 588 

 589 

MATERIALS AND METHODS 590 

 591 

Plant material 592 

The experiments were performed with wild-type plants of Gray poplar (Populus x canescens 593 

[INRA clone 7171-B4]; syn. Populus tremula x Populus alba). Plantlets were amplified by 594 

micro-propagation under sterile conditions (Leple et al., 1992) and raised for five weeks in 595 

2.2-L pots on a sandy soil (1:1 [v/v] silica sand and Fruhstorfer Einheitserde, initially mixed 596 

with slow-release fertilizers: Triabon [Compo] and Osmocote [Scotts Miracle-Gro], 1:1, 10 g L-597 

1 soil; every two weeks fertilized with 0.1% [w/v] Hakaphos Grün [Compo]) in the greenhouse 598 

(16/8 h photoperiodicity with supplemental lighting, 200-240 μmol photons m-2 s-1 at the 599 

canopy level, photosynthetically active radiation [PAR]; day/ night temperature 22 °C/ 18 °C; 600 

and an ambient mean CO2 concentration of 380 μL L-1). Then the plants were moved to 601 

phytotron chambers to simulate specific climate scenarios. Within each chamber, 12 plants 602 

were cultivated together in a gas-tight sub-chamber made of acrylic glass (about 1 m3), which 603 

enabled online analysis of canopy gas exchange (Vanzo et al., 2015). 604 

 605 
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Simulated climate conditions and harvesting schedule 606 

The future climate scenarios simulated in our experiments comprised elevated CO2 (EC) and 607 

two abiotic stress scenarios under elevated CO2, periodic drought-heat stress (PS) and 608 

chronic drought-heat stress (CS). Before starting the abiotic stress scenarios, plants were 609 

cultivated for 25 days in the phytotron chambers at control conditions (daily maximum air 610 

temperature of 27°C, 50% relative air humidity) with either ambient (380 μL L-1) or elevated 611 

(500 μL L-1) CO2. The CO2 concentrations in all scenarios followed natural occurring diurnal 612 

variations. The elevated CO2 environment in the EC, PS and CS scenarios was created by 613 

injection of pure CO2 (+ 120 µL L-1) into the air stream of the ambient CO2. In the chronic 614 

stress treatment, irrigation was gradually reduced for 22 days, down to 70% reduction 615 

compared with the controls. The periodic stress treatment included three cycles of reduced 616 

irrigation (50%, 60% and 70% reduction compared to controls), each one lasting for six days; 617 

between the cycles, there were recovery periods lasting two days. In both stress scenarios, 618 

the daily maximum air temperature was set to 33°C during periods with reduced irrigation. 619 

Non-invasive gas exchange measurements were made continuously; destructive harvests of 620 

six plants per chamber were performed at the end of the stress phase and after one week of 621 

recovery (Vanzo et al., 2015). Mid-day shoot water potentials (ψmd) were determined at each 622 

sampling date (n=6 plants per treatment, mean ± se) using a Scholander pressure chamber 623 

(Scholander et al., 1965). In chronically and periodically stress-treated plants ψmd was more 624 

negative (-1.52±0.10 and -1.27±0.05 MPa, respectively) compared to a ψmd of -0.97±0.04 625 

MPa in AC and of -0.97±0.07 MPa in EC shoots. At recovery ψmd went back to -0.72±0.10 626 

and -0.93±0.07 MPa in PS and CS, respectively, reaching comparable values as the 627 

untreated controls in AC (-0.77±0.07 MPa) and EC (-0.90±0.06 MPa). 628 

 629 

Gas exchange measurements 630 

Leaf-level gas exchange measurements were performed using two GFS-3000 instruments 631 

(Walz, Germany) with an 8 cm2 clip-on-type cuvette on attached leaves (no. 9 from the apex) 632 

of four biological replicates under standard conditions (30°C, 1000 μmol photons m-2 s-1, and 633 

air humidity of 10,000 μL L-1). The cuvette was flushed with synthetic air having the CO2 634 

concentration of the respective growth condition. For each climate chamber, CO2 and water 635 

concentrations in the ambient air were measured every 20 min with two infrared gas 636 



 

 22 

analyzers (Rosemount 100/4P, Walz, Germany) from the outlet of the gas-tight sub-chamber 637 

with the plants. Inlet air was also measured every 20 min. From the difference between the 638 

outlet and inlet concentrations of each sub-chamber, the whole plant (canopy) net CO2 639 

exchange and evapotranspiration were calculated according to the equation of von 640 

Caemmerer and Farquhar (von Caemmerer and Farquhar, 1981). These fluxes of CO2 and 641 

water were then normalized using the canopy leaf area estimation of every given day (Jud et 642 

al., 2016; Vanzo et al., 2015). 643 

 644 

Organ and tissue sampling 645 

Plants were harvested at noon at the last day of stress treatment and seven days later at the 646 

end of the recovery period. Leaves (young leaves n. 4-6, mature leaves n. 9-12 counting from 647 

the apex, respectively) were immediately frozen in liquid N2. A stem segment of 10 cm was 648 

cut 10 cm above the stem base and immediately frozen in liquid N2. The roots were washed 649 

three times in water, carefully dabbed with filter paper and then also frozen in liquid N2. All 650 

material was stored at -80 °C until homogenization. Homogenization of plant materials was 651 

performed under liquid N2 with mortar and pestle. The bark containing the phloem tissue was 652 

removed from the stem section with a scalpel. Young developing xylem tissue was obtained 653 

by scraping off the first 1-2 mm of the hardwood section. The homogenized material of mature 654 

leaves was used both for biochemical analysis and RNA extraction, all other material only for 655 

RNA extraction. Although leaf and root samples are mixtures of several tissues, the different 656 

plant materials are referred to as tissues throughout this work. 657 

 658 

Biochemical measurements of the antioxidative system 659 

Enzyme activities and molecular antioxidant levels from four biological replicates were 660 

determined as previously described (AbdElgawad et al., 2016). Molecular antioxidants were 661 

quantified by HPLC, after extraction of frozen plant material in hexane (tocopherols) or in ice-662 

cold meta-phosphoric acid (ascorbate, glutathione). Enzyme activities for superoxide 663 

dismutase, peroxidase, catalase, ascorbate peroxidase, glutathione peroxidase, glutathione 664 

reductase, dehydroascorbate reductase, and monodehydroascorbate reductase were 665 
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determined using a micro-plate reader after extraction of frozen plant material in potassium 666 

phosphate buffer supplemented with protease inhibitors. 667 

 668 

RNA-seq analysis 669 

RNA extraction was performed as described by Bi et al. (Bi et al., 2015). Total RNA was 670 

extracted from 50 mg frozen tissue using the Aurum Total RNA Mini kit (Bio-Rad, Germany) 671 

following the manufacturer’s instructions. The RNA concentration was quantified using a 672 

NanoDrop 1000 photometer (NanoDrop, Peqlab GmbH, Erlangen, Germany). The 260/230 673 

and 260/280 ratios were in the range of 1.90 to 2.67 (mean 2.21) and 1.94 to 2.45 (mean 674 

2.12), respectively. RNA integrity was confirmed by an Agilent Bioanalyzer 2100 (Agilent 675 

Technologies, USA). For each specific combination of environmental condition, time point and 676 

tissue, RNA samples from three biological replicates were analyzed by Illumina sequencing 677 

(100 bp single reads, HiSeq 2500, Illumina, Inc., San Diego, CA, USA) of mRNA libraries 678 

(NEBNext Ultra directional RNA library prep Kit Illumina, New England Biolabs, Inc., Ipswich, 679 

MA, USA), yielding RNA-seq reads for 120 samples in total. The biological replicates are 680 

samples from different individual trees grown under the same condition and harvested at the 681 

same time. For each tree, samples from all five tissues were sequenced, except for two cases 682 

where RNA extraction from the initial sample failed (260/230 ratio 0.42 and 1.4, respectively) 683 

and samples from additional trees had to be taken as replacement: AC recovery root sample 684 

replicate 1 and PS stress xylem sample replicate 3 (Table S9). RNA-seq reads were aligned 685 

against the repeat-masked version of the Populus trichocarpa reference genome (assembly 686 

version v3.0) (Tuskan et al., 2006) using TopHat2 (Kim et al., 2013). To account for the 687 

evolutionary distance between Gray poplar and the used reference genome, different 688 

alignment stringency levels were tested. For that purpose, three different sequencing libraries 689 

were randomly selected and RNA-seq reads mapped against the reference genome allowing 690 

from two up to six mapping errors per read (Fig. S2). About 70% of the RNA-seq reads were 691 

aligned when allowing a maximum of five errors in the read alignments, which is relatively 692 

similar to RNA-seq analysis in other plants (International Barley Genome Sequencing 693 

Consortium et al., 2012). Due to the relatively constant proportion of uniquely mapped reads 694 

for the considered error levels (Fig. S2B), we continued the analysis with the maximum 695 

threshold of five errors (Fig. S3).  696 
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Based on the read alignments and the P. trichocarpa annotation version v3.1 at the 697 

Phytozome platform (Goodstein et al., 2012; Tuskan et al., 2006), TPM gene expression 698 

levels were calculated using StringTie version 1.3.4 (Pertea et al., 2015). The biological 699 

replicates showed high Pearson correlation coefficients (computed by the cor function in R 700 

version 3.5.0 (R Core Team, 2018)) except for one single case (Fig. S4), which was excluded 701 

from further analysis. Differentially expressed genes between PS or CS and EC groups were 702 

identified by the R package DESeq2 version 1.20.0 (Love et al., 2014) using the script 703 

provided at http://ccb.jhu.edu/software/stringtie/dl/prepDE.py. Gene annotation including 704 

functional description and Gene Ontology (GO) terms were retrieved from the Populus 705 

trichocarpa reference annotation version v3.1 at the Phytozome platform (Goodstein et al., 706 

2012; Tuskan et al., 2006). GO enrichment analysis for categories with at least fifty genes 707 

was performed in R version 3.5.0 (R Core Team, 2018) using fisher.test and multiple testing 708 

correction by p.adjust using the false discovery rate (FDR) method.  709 

 710 

Co-expression network analysis 711 

The co-expression network analysis focused on the environmental conditions with elevated 712 

CO2 levels, omitting the AC (ambient CO2) condition. For each tissue, log2(TPM+1)-713 

transformed gene expression levels were averaged for each condition and time point and 714 

genes were filtered for a minimum coefficient of variation of 0.3 (Fig. S5). Individual co-715 

expression modules for each tissue were determined using the R packages WGCNA version 716 

1.64-1, flashClust version 1.01-2 and dynamicTreeCut version 1.63-1 (Langfelder and 717 

Horvath, 2008, 2012; Langfelder et al., 2008). The parameters were set to "hybrid signed" 718 

network, "average" agglomeration, split sensitivity 1 and a minimum cluster size of 50. Then 719 

the module eigengenes (Langfelder and Horvath, 2007), characteristic expression profiles of 720 

modules, were clustered across all tissues into communities, according to their correlation. 721 

This step was performed using again flashClust and dynamicTreeCut ("average" 722 

agglomeration, deep split set to true and a minimum cluster size of 2). Communities that 723 

contain modules from all five tissues were visualized with the tkplot and plot functions in the R 724 

package igraph version 1.2.2 (Csardi and Nepusz, 2006). The corresponding heatmaps were 725 

plotted using the R packages pheatmap version 1.0.10, gridExtra version 2.3 and ggplot2 726 

version 2.2.1 (Auguie, 2017; Kolde, 2018; Wickham, 2009). 727 
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 728 

Between-tissue correlations and gene regulatory network analysis 729 

To investigate tissue-specific regulation of universally responding genes, we first determined 730 

individual genes that behaved similarly in all the tissues and then predicted their regulation by 731 

transcription factors (TFs) using the RNA-seq data. In the first step, gene-gene correlations 732 

across individual trees from all treatment groups were computed using the cor function in R 733 

version 3.5.0 on the log2(TPM+1)-transformed gene expression data (R Core Team, 2018). In 734 

particular, correlation values of the same gene across all pairs of tissues were recorded and 735 

the 17 genes with a median greater than 0.8 and significant post-recovery difference to 736 

controls in at least one tissue (abs(log2 fold change)>1 and p.adj<0.05 according to the 737 

DESeq2 analysis) were selected as query genes for further analysis. Since observations for 738 

these genes were quite complete (less than twenty values with expression level zero in the 739 

whole dataset with 119 samples), we focused the regulatory network analysis on genes with 740 

at most twenty zero values. TF family annotation for Populus trichocarpa and Arabidopsis 741 

thaliana was downloaded from PlantTFDB (Jin et al., 2014) on 03.09.2018. Poplar genes 742 

were included as candidate TFs in the analysis if they themselves as well as their best 743 

Arabidopsis match according to the Phytozome annotation v3.1 (Goodstein et al., 2012; 744 

Tuskan et al., 2006) were both classified as TFs, resulting in 1346 candidates. For each query 745 

gene, the top regulatory candidates were determined from the gene expression data of each 746 

tissue separately using the R package GENIE3 version 1.2.1 (Aibar et al., 2017; Huynh-Thu 747 

et al., 2010). Networks were drawn with the R package igraph version 1.2.2 (Csardi and 748 

Nepusz, 2006). For visualization purposes, the top five candidates are shown for each query 749 

gene. 750 

 751 

Protein-protein interaction analysis 752 

Experimental and literature-curated protein-protein interaction data for Arabidopsis thaliana 753 

were obtained from datasets of interactome publications and from the TairProteinInteraction 754 

file (time stamp: 2011-08-23) at The Arabidopsis Information Resource (Arabidopsis 755 

Interactome Mapping Consortium., 2011; Berardini et al., 2015; Yazaki et al., 2016) and 756 

compiled into a single network. The network was visualized with Graphviz version 2.36 757 
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(Gansner and North, 2000). Due to the prominent transcriptional stress-related memory 758 

response observed for the HB7 TF Potri.001G083700 and its predicted target, the HAI1 759 

ortholog Potri.009G037300, combined with the known physiological role of HAI1 in 760 

Arabidopsis thaliana leaves and the dimerization motif of HB7, we investigated the 761 

interactomes of Arabidopsis orthologs for all TFs that were predicted to regulate 762 

Potri.009G037300 in mature leaves and showed a significant differential expression in PS vs. 763 

EC after recovery. The subnetwork connecting AT2G46680 (HB7) and AT4G27410 (closest 764 

match from the NAC019 orthology group) was evident from visual inspection of the network, 765 

and the connection to the MYB TF AT5G05790 was found computationally by neighborhood 766 

intersection. All three TFs did not have any other interactions than the ones shown in the 767 

subnetwork (Fig. 8B).  768 

 769 

Further statistical analysis 770 

Treatment group comparisons for the gas exchange and antioxidant data were performed 771 

using the R package dunn.test with the FDR method "bh" as a post-hoc Dunn's test after 772 

application of the Kruskal-Wallis test using kruskal.test in R version 3.5.0 (R Core Team, 773 

2018). Dimension reduction for data visualization was also done in R. To show common 774 

variation between the gas exchange data (eight parameters) and the log2(TPM+1)-775 

transformed gene expression data in mature leaves, we selected the hundred most varying 776 

genes and applied regularized canonical correlation analysis using the rcc function from the 777 

mixOmics package version 6.3.2 (Gonzalez et al., 2011; Le Cao et al., 2009) and an 778 

analytical estimate of the regularization parameter (Schäfer and Strimmer, 2005). Principal 779 

component analysis of the whole gene expression dataset was performed with the prcomp 780 

function in R version 3.5.0 (R Core Team, 2018). Ellipses for 75% confidence levels were 781 

constructed from the expression data using the dataEllipse function of the R package car 782 

version 3.0-2 (Fox and Weisberg, 2011). Venn diagrams for differentially expressed genes 783 

(abs(log2 fold change)>1 and p.adj<0.05 according to the DESeq2 analysis) were created 784 

with the R package venn version 1.7 (Dusa, 2018), and the gene-wise expression heatmap 785 

was generated with the heatmap.2 function of the gplots R package version 3.0.1 (Warnes et 786 

al., 2016). 787 

 788 
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Accession numbers 789 

The RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 790 

(https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6121). R scripts for the data 791 

analysis are available at https://github.com/georgii-helmholtz/samm. 792 
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Figure 1. Effect of climatic stress on post-recovery photosynthetic performance of poplar trees. (A) The 3D 
experimental design to investigate climate response of P. ⨉ canescens trees regarding memory aspects and 
systemic effects. Plants from four environmental conditions including ambient CO2 control (AC), enhanced 
CO2 control (EC), periodic drought-heat stress (PS) and chronic drought-heat stress (CS) are examined both 
at the end of a 22-day stress phase (S) and after one week of recovery (R). At the day of the stress 
treatment start (d0), plants are 8.5 weeks old and already 25 days under AC and EC control climates. For 
fully developed leaves, both phenotypic and transcriptomic measurements are available, the four other 
tissues are covered only by transcriptomic data. (B-D) Comparison of leaf-level gas exchange rates (leaf no. 
9 from the apex) across environmental conditions (Kruskal-Wallis test with posthoc Dunn’s test, Benjamini-
Hochberg adjustment, p.adj<0.05). (E) Carbon gain determined by online gas exchange analysis for the gas-
tight sub-chamber of each environmental condition. The slope (shown by circles) is estimated from the last 
four measurements (day 26 to day 29; Kruskal-Wallis test with posthoc Dunn’s test, Benjamini-Hochberg 
adjustment, p.adj<0.05). (F) Projection on the top two components from canonical correlation analysis 
between gas exchange data and log2(TPM+1)-transformed per-gene RNA-seq data of the hundred most 
varying genes in mature leaves across the four conditions and two treatment phases. Each data point 
represents the mean of biological replicates for the given group; due to destructive harvesting, stress phase 
RNA-seq measurements were obtained from different biological samples than the continuous gas exchange 
measurements. Ellipses mark 0.75 confidence levels estimated from the replicates. 
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Figure 2. System-wide comparison of poplar gene expression at stress, recovery and control conditions. (A) 
Projection on top two components from principal component analysis of log2(TPM+1)-transformed per-gene 
RNA-seq data from all samples across four climate conditions, two treatment phases, five different tissues 
and three biological replicates per group. Data points are colored by tissue (LE1: young leaves, LE2: mature 
leaves, PHL: phloem, XYL: xylem, ROO: root). (B) Principal component analysis of poplar trees with 
complete RNA-seq measurements from all five tissues, concatenating all tissue measurements from the 
same tree (Methods). Ellipses mark the 0.75 confidence contour for stressed trees and all other trees (AC: 
ambient CO2, EC: enhanced CO2, PS: periodic stress, CS: chronic stress; S: stress phase, R: recovery 
phase). (C) Differentially expressed genes overlapping between periodic (PS) and chronic stress treatment 
(CS) or unique to each stress type. Differential expression was determined relative to untreated EC controls, 
for each tissue and treatment phase separately (fold change > 2, p.adj < 0.05). The dashed box shows a 
zoom-in for the three bottommost groups. (D) Comparison of antioxidant levels in mature leaves across 
environmental conditions (Kruskal-Wallis test with posthoc Dunn’s test, Benjamini-Hochberg adjustment, 
p.adj<0.05). The y axis gives the percentage of functional, reduced ascorbate relative to total ascorbate 
(oxidized and reduced forms). (E) Stress-recovery overlap of up-regulated genes. For each tissue, the 
percentage of stress phase down- or up-regulation of genes up-regulated in the recovery phase relative to 
control plants is given (fold change > 2, p.adj < 0.05). 
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Figure 3. Tissue overlap of differentially expressed poplar genes during stress and recovery phases. Each 
Venn diagram gives the number of up- or down-regulated genes for a specific treatment type and a specific 
phase in comparison to untreated controls (LE1: young leaves, LE2: mature leaves, PHL: phloem, XYL: 
xylem, ROO: root; PS: periodic stress, CS: chronic stress; S: stress phase, R: recovery phase). 
  



Figure 4. Characteristic poplar gene expression profiles across stress, recovery and control conditions 
shared by all tissues. Each network node represents a co-expression module of a specific tissue (Methods) 
indicated by the respective node color (identical code to Fig. 2A) and the prefix of the node label (LE1: young 
leaves, LE2: mature leaves, PHL: phloem, XYL: xylem, ROO: root). Subsequent numbers in the node label 
identify the module within each tissue in decreasing order of the module size, which is indicated by node 
size. Each module is represented by its eigengene profile, which is the first principal component oriented 
according to average expression. The correlation of module eigengenes was used to cluster modules into 
communities (Methods). The figure shows all communities that contain modules from all five tissues together 
with heatmaps of the corresponding eigengenes. Communities are marked by gray polygons and C 
identifiers (decreasing shades of gray with increasing identifier numbers). For correlation values > 0.7, edges 
are depicted between module nodes and the edge width represents the correlation strength. The heatmaps 
with background shading exhibit a pronounced difference between stress-exposed plants and non-treated 
plants at the end of the recovery phase for at least one stress type, indicative of stress-related memory (EC: 
elevated CO2 control, CS: chronic stress, PS: periodic stress; S: stress phase, R: recovery phase). 
Community C9 putatively represents age-related changes that only occur in non-stressed plants. 
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Figure 5. Gene expression memory after recovery from periodic vs. chronic stress. (A) Poplar genes with cross-
tissue memory responses, i.e. transcriptional up- or down-regulation in post-recovery stress relative to 
enhanced CO2 (EC) control samples. The heatmap shows periodic stress (PS) and chronic stress (CS) 
expression patterns of all genes with PS memory response in at least two tissues (LE1: young leaves, LE2: 
mature leaves, PHL: phloem, XYL: xylem, ROO: root, R: recovery phase, S: stress phase). (B) Direct PS (R) vs. 
CS (R) comparison of differentially expressed recovery genes determined relative to EC control (see A and Fig. 
2C). For each tissue, volcano plots show the distribution of overlapping and stress type-specific differential 
genes (left: down-regulation, right: up-regulation), taking adjusted p-values and fold changes from the direct 
comparison. Volcano plots for the respective PS vs. EC and CS vs. EC comparisons are available in Fig. S1. 



     A  B 

Figure 6. Expression self-correlation of genes across tissues based on fully sampled individual trees. (A) 
The genes with the strongest self-correlation across all tissues. Among them are many genes with periodic 
stress memory expression pattern in at least one tissue, marked in black and annotated from top to bottom 
(letters a-q). (B) Heatmap showing the number of genes with self-correlation > 0.8 between individual tissues 
(LE1: young leaves, LE2: mature leaves, PHL: phloem, XYL: xylem, ROO: root).  
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Figure 7. Gene regulatory networks of stress-related multi-tissue memory genes. (A) Tissue-specific 
transcription factor networks around self-correlated genes (gray nodes, labeled by letter code from Fig. 6A). 
For each tissue network, colored nodes and edges indicate their co-occurrence across several tissue 
networks (see color key). If nodes or edges occur only in one additional tissue (except the currently 
considered tissue indicated in the box at the top left of each network), they have the characteristic color of 
that additional tissue. For example, ten transcription factors occur only in the networks of both young and 
mature leaves (dark green and light green nodes in the first and second network, respectively). Likewise, 
nodes q and o are connected to the same transcription factor in these networks (dark green and light green 
edges in the first and second network, respectively). (B) Regulatory relationships co-occuring across tissues. 
The edge width is proportional to the number of tissues where a specific regulatory relationship was found. 
Transcription factor nodes are colored according to their transcription factor family. 
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Figure 8. Predicted regulatory stress-related memory processes in mature leaves (LE2) and developing xylem 
(XYL). (A) Core regulatory networks obtained by iteratively removing single-edge nodes from expression-based 
regulatory network predictions (Fig. 7A). Node label colors refer to periodic stress-related expression patterns. 
Function annotation is shown for selected nodes discussed in the main text. Potri.010G193000 is a co-ortholog 
of the Arabidopsis thaliana MYB transcription factor AT5G05790, here abbreviated as MYB. (B) Model of 
possible transcription factor complex formation in stress-related memory derived from protein-protein interaction 
data in Arabidopsis thaliana. Gene names are taken from the orthology information in Phytozome. For some 
ZHD ortholog groups, different Arabidopsis genes (marked by an Arabidopsis ZHD identifier after the slash) 
constitute the best BLASTP matches of poplar genes. (C) Model suggesting physiological role of protein 
phosphatases of type 2C (PP2Cs) and regulatory transcription factors in mature leaves during and after periodic 
stress. 
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