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Abstract 
 
Trauma or infection can result in tissue damage, which needs to be repaired in a 
well-orchestrated manner to restore tissue function and homeostasis. Lipid 
mediators derived from arachidonic acid (termed eicosanoids) play central and 
versatile roles in the regulation of tissue repair. Here, I summarize the current 
state-of the-art regarding the functional activities of eicosanoids in tissue repair 
responses during homeostasis and disease. I also describe how eicosanoids are 
produced during tissue damage and repair in a time- cell- and tissue-dependent 
fashion. In particular, recent insights into the roles of eicosanoids in epithelial 
barrier repair are reviewed. Furthermore, the distinct roles of different 
eicosanoids in settings of pathological tissue repair such as chronic wounds, 
scarring or fibrosis are discussed. Finally, an outlook is provided on how 
eicosanoids may be targeted by future therapeutic strategies to achieve 
physiological tissue repair and prevent scarring and loss of tissue function in 
various disease contexts. 
 
Introduction 
 
Eicosanoids (είκοσι (greek) =20) are metabolites of polyunsaturated fatty acids 
(PUFAs) with 20 carbon atoms. Amongst the eicosanoids, metabolites of the ω-6 
PUFA arachidonic acid (AA) are particularly potent signaling molecules with 
important roles in inflammation and immunity (for a recent review see1). Together 
with their immunological functions, eicosanoids are versatile mediators of tissue 
repair. Depending on the time after injury and the tissue microenvironment, 
eicosanoids can either promote or suppress healing responses (Table 1).  
In order to fullfill these distinct functions, eicosanoid synthesis occurs in a time-
dependent fashion during the different phases of tissue repair (Figure 1). The first 
days after injury are refered to as the «inflammatory phase», which is 
characterized by the infiltration of neutrophils and monocytes/ macrophages. 
Eicosanoids such as leukotrienes (LTs) and thromboxane A2 (TXA2) contribute to 
the recruitment and activation of these cells (Figure 1).2,3 Activated wound 
macrophages produce chemokines, eicosanoids (e.g. PGE2) and growth factors, 
thus promoting the migration and proliferation of fibroblasts. This phase of tissue 
repair is therfore called the «proliferative phase». In response to growth factors 
(e.g. TGFβI), fibroblasts differentiate into myofibroblasts and upregulate the 
production of extracellular matrix (ECM) components such as collagen. Newly 
deposited ECM then undergoes structural «remodeling» and the inflammatory 
response is terminated (e.g. by the action of lipoxin A4 (LXA4)), thus resulting in 
«resolution» and the formation of new functional tissue. 
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This review aims to provide an overview of the roles of eicosanoids in 
physiological as well as pathogenic situations of tissue repair. As eicosanoids 
produced via the cyclooxygenase (COX) pathway (prostanoids) play particularly 
important roles in tissue repair, these mediators will be discussed in detail and 
with a focus on recent insights into their involvement in the repair of epithelial 
barriers.4,5 
Total and conditional knock-outs of eicosanoid pathway components in mice 
have provided detailed mechanistic insights into the contribution of individual 
metabolites and receptors to tissue repair. These studies showed that COX 
metabolites (e.g. prostaglandin E2) can accelerate repair, whilst LTs produced via 
the 5-lipoxygenase (5-LOX) pathway can impair tissue repair and instead cause 
aberrant inflammation and tissue (Table 1).4–7 In contrast to the detrimental role 
of pro-inflammatory 5-LOX metabolites, anti-inflammatory metabolites of 12/15-
LOX (e.g. LXA4) can reduce inflammation and promote tissue repair.8 Similarly, 
anti-inflammatory derivatives of ω-3 PUFAs (e.g. resolvins), also termed 
«specialized pro-resolving mediators (SPMs)», have recently been implicated in 
tissue repair.9–11 Indeed, the local application of lipoxins or resolvins to damaged 
tissues could restore tissue integrity and prevent inflammatory damage, 
particularly in settings of epithelial barrier repair. Similar beneficial effects on 
barrier repair have also been reported for PGE2, which promoted healing of 
chemotherapy-induced mucosal lesions in human cancer patients and was 
recently identified as a key factor in intestinal tissue repair. 5,12  
Thus, although targeting eicosanoid pathways in tissue repair is not a new idea, 
we are only now beginning to understand the complexity of eicosanoid-mediated 
effects in tissue repair. Recent mechanistic insights into the eicosanoid-driven 
modulation of repair responses should foster the development of new and more 
precise therapeutic strategies for conditions with impaired or aberrant tissue 
repair in human patients. 
 
Biosynthesis of eicosanoids during tissue damage and repair 
To achieve rapid healing without scar formation or aberrant inflammation, the 
synthesis of eicosanoids needs to be controlled in a time- and tissue-dependent 
fashion. Upon tissue damage, AA is released from cellular membranes by the 
action of cytosolic phospholipase A2 (cPLA2) and is thus made available for the 
subsequent conversion into a wide array of bioactive metabolites.  
By the action of COX enzymes, which are the mechanistic targets of 
nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, AA is converted 
into prostaglandin (PG) H2, the precursor of all bioactive prostanoids (Figure 2) 
(for a more detailed review of eicosanoid synthesis pathways see 1). Prostanoids 
have highly diverse roles in pain, fewer and inflammation and they control 
hemostasis and vascular tone. The production of each individual prostanoid 
depends on terminal synthases, which are differentially expressed by different 
cell types and in different tissues. After trauma, activated platelets release TXA2 
by the action of thromboxane synthase, whilst prostacyclin (PGI2) is released 
from endothelial cells, which express prostacyclin synthase (Figure 2). Tissue 
damage also results in the release of PGE2 from stromal cells or cells of the 
myeloid lineage, which unpregulate microsomal prostaglandin E synthase-1 
(mPGES-1).13 Mast cells, which are also activated during trauma, express 
prostaglandin D synthase and thus release PGD2 upon challenge.14  
As an alternative to the COX pathway, AA can be metabolized via LOX 
enzymes, giving rise to hydroxyeicosatetraenoic acids (HETEs), LTs or lipoxins. 
Together with myeloid cells, which can release large amounts of LTs upon 
cellular damage, epithelial cells have been implicated more recently in the 
production of LTs in settings of inflammation and tissue remodelling, particularly 
in the lung.15 In the intestine, LT biosynthetic enzymes are also expressed by 
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(epithelial) tuft cells (also called brush cells), which have recently been implicated 
in the induction of type 2 immune responses.16 In addition to 5-LOX, the 
synthesis of bioactive LTs (LTB4 and cysteinyl LTs (cysLTs, LTC4, LTD4, LTE4)) 
requires the enzymes LTA4 hydrolase (LTA4H) and LTC4 synthase (LTC4S). 
During injury, LT-biosynthetic enzymes are induced, resulting in increased levels 
of both LTB4 and cysLTs in damaged tissues such as the lung or skin.17 In 
addition to the COX and 5-LOX pathways, AA can be metabolized by 12- or 15-
LOX enzymes, which are expressed by multiple cell types including myeloid cells 
and stromal cells. 12-/15-LOX metabolites, which are produced during tissue 
damage and repair include 12- and 15-HETE as well as anti-inflammatory LXs.8 
Of note, mice express a 12-/15-LOX enzyme, which preferentially synthesizes 
12-HETE, whilst the homologous enzyme in humans (15-LOX 1) mainly produces 
15-HETE.18 During tissue repair, LOX and COX enzymes do not only produce 
AA-derived eicosanoids, but also metabolize ω-3 PUFAs (e.g. DHA, and EPA) 
into anti-inflammatory SPMs.19  
Another group of enzymes, involved in the metabolism of ω-3 and ω-6 PUFAs in 
settings of tissue repair is the cytochrome P450 (CYP) pathway, which is 
particularly abundant in endothelial cells.20 CYPs, convert AA into 
epoxyeicosathetraenoic acids (EETs), which have long been recognized for their 
vascular activities, but have only more recently been implicated in tissue repair.20 
In summary, tissue damage results in the release of multiple eicosanoids with 
diverse roles in tissue repair and inflammation, which will be discussed in detail in 
the following sections. 
 
Roles of eicosanoids in tissue repair 
 
Thromboxane - a critical mediator of haemostasis and early phases of 
tissue repair 
After tissue injury, bleeding has to be stopped and the open wound needs to be 
closed quickly in order to avoid contamination with external microbes. An 
important process during this initial phase of tissue repair is the activation and 
aggregation of platelets. The COX metabolite thromboxane A2 (TXA2), which is 
synthesized by activated platelets acts in an autocrine fashion to trigger the 
irreversible aggregation of platelets.21 Indeed, defects in TXA2 receptor (TP) 
signalling have been linked to bleeding disorders in humans and TP deficient 
mice show prolonged bleeding and delayed platelet aggregation.22 In addition to 
its autocrine roles in haemostasis, TXA2 has been reported to promote the 
recruitment of macrophages and fibroblasts, which contribute to tissue repair by 
secreting growth factors and extracellular matrix (ECM) components.21 Thus, in a 
model of acute toxic liver injury, TP receptor signaling was responsible for timely 
tissue regeneration.3,23 
In summary, TXA2 is produced immediately after tissue damage and provides a 
critical link between haemostasis and the subsequent inflammatory phase of 
tissue repair (Figure 1). 
Initially considered as a mere by-product of TX synthesis, 12-hydroxy-
heptadecatrienoic acid (12-HHT) has more recently been shown to be critically 
involved in tissue repair responses. By binding to the low affinity receptor for 
LTB4 (BLT2), 12-HHT can induce the migration of keratinocytes and thereby 
promote skin wound healing.24 Moreover, in a rat model of diabetes, 
administration of a BLT2 agonist promoted the release of growth factors (TGFβ1 
and basic fibroblast growth factor) from keratinocytes, thus accelerating fibroblast 
proliferation and wound closure.25 In line with its roles in skin wound healing, 12-
HHT has also implicated in tissue repair in the eye as mice treated with NSAIDs 
showed impaired corneal healing, which could be rescued by administration of 
12-HHT.26 Taken together, the thromboxane synthesis pathway provides critical 
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signals for tissue repair responses particularly during the first 24 hrs after tissue 
injury. 
 
Leukotriene B4 - an early mediator of the inflammatory phase after injury 
During the initial phase of tissue repair, which is mainly aimed at sealing off the 
wound, inflammatory cells (particularly neutrophils) are recruited to the site of 
injury in order to prevent infection and initiate further cell recruitment. As a major 
chemoattractant for neutrophils, the 5-LOX metabolite LTB4 plays a key role in 
early inflammatory cell recruitment both during sterile injury and infection.26 
However, whilst the early and transient production of LTB4 is instrumental for 
rapid wound closure, dysregulated LTB4 formation can contribute to increased 
inflammatory injury e.g. in settings of lung fibrosis.27 This study also showed that 
in addition to its pro-inflammatory effects on neutrophils, LTB4 (via its high affinity 
receptor BLT1) promoted the production of growth factors (e.g. TGFβ1) by 
macrophages, and epithelial cells, thus stimulating collagen production by 
fibroblasts. Furthermore, in a model ot type 2 diabetes, exaggerated production 
of LTB4 was observed in wounds of diabetic mice and involved in the increased 
susceptibility to infection with antibiotic resistant S. aureus.28 Indeed, multiple 
studies have implicated the 5-LOX-LTB4-BLT1 axis in aberrant neutrophil 
recruitment and impaired tissue repair in experimental models of skin wound 
healing. In particular, 5-LOX deficiency or pharmacological targeting of the 5-LOX 
pathway resulted in accelerated cutaneous healing, likely by reducing the 
production of reactive oxygen species (ROS) as well as of pro-inflammatory 
cytokines and chemokines in wounded skin.6,29 Similarly, 5-LOX deficient mice 
and mice treated with LT-modifying drugs were protected against acute 
inflammatory lung injury in a model of bacterial sepsis.17 However, these studies 
also suggested that in addition to the LTB4-BLT1 axis, cysteinyl LTs contributed 
to 5-LOX-driven inflammatory tissue damage and aberrant tissue repair.  
 
Cysteinyl leukotrienes - culprits in pathogenic repair and remodelling 
Upon tissue damage, activated platelets can metabolize neutrophil-derived LTA4 
into cysLTs, a phenomenon termed “trans-cellular metabolism”.30 The activation 
of resident mast cells may further contribute to the early wave of cysLT 
generation during tissue injury (Figure 1, Figure 3).14 The first wave of cysLTs 
can then promote the recruitment of eosinophils, which produce numerous 
molecules involved in tissue repair and tissue remodelling (for a recent review 
see 31). In addition to eosinophils, monocytes, macrophages and dendritic cells 
can produce high levels of cysLTs, particularly when exposed to TGFβ1.32 Thus, 
the recruitment of eosinophils and cells of the monocyte/ macrophage lineage 
during the inflammatory and proliferative phase of tissue repair results in a 
second wave of cysLTs, which has been linked to pathological remodelling, e.g. 
in asthma or fibrosis. During these later phases of tissue repair, stromal cells 
produce various mediators of tissue remodelling (including TGFβ1, wnt5A and 
transglutaminase 2 (TG2)), which can promote the generation of cysLTs by 
myeloid cells.15,32 On the other hand, cysLTs produced by myeloid cells or 
damaged epithelium can stimulate collagen production by (myo-)fibroblasts by 
activating their high-affinity receptor (CysLT1R).33 Thus, cysLTs are crucially 
involved in the bidirectional crosstalk between stromal cells and myeloid cells, 
which can drive pathological remodelling in inflammed airways. 
The central role of cysLTs in pathological tissue remodelling suggests that in 
order for tissue repair to proceed normally, cysLT production has to be turned off 
during the repair process. Such negative regulation of cysLT biosynthesis may be 
provided by the mTOR/ p70S6 kinase pathway, which is a key driver of tissue 
repair and has been implicated in the suppression of cysLT production in human 
macrophages.34,35 
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In addition to promoting tissue remodelling in airway inflammation, cysLTs have 
been reported to act as negative regulators of bone repair as mice treated with 
the CysLT1R antagonist montelukast showed improved fracture healing.36 In 
particular, inhibition of CysLT1R signaling promoted the proliferation and 
differentiation of chondrocytes in an experimental mouse model of fracture repair. 
In keeping with these pharmacological studies, mice genetically deficient in 5-
LOX showed faster fracture healing, whilst healing was impaired and correlated 
with increased LT levels in COX-2 deficient mice.37 Taken together, the 
exaggerated or prolonged generation of LTs after tissue injury can result in 
aberrant inflammation and host defense as well as pathological tissue repair in 
various tissues, including skin, lung and bone. 
 
Prostaglandin E2  - a key eicosanoid in physiological tissue repair 
Given that AA can be shunted from the COX- into the 5-LOX pathway, increased 
generation of LTs may contribute to impaired tissue repair, which has been 
observed in the absence of COX enzymes.37–39 However, recent studies using 
pharmacological inhibition or genetic ablation of prostanoid receptors suggest 
that COX metabolites (particularly PGE2) actively participate in tissue repair 
responses.5,40 
During the early inflammatory phase of tissue repair, immigrating macrophages 
and stromal cells produce PGE2, which has been shown to activate 
myofibroblasts and thus promote wound contraction41,42 (Figure 1, Figure 3). In 
addition, PGE2  promoted wound closure in the skin by inducing the expression of 
the IL-6 family cytokine oncostatin M in wound macrophages.43 Upon mucosal 
injury in the intestine, PGE2 accelerated tissue repair by promoting the removal of 
fibrin clots and by driving the differentiation of wound-associated epithelial cells in 
small intestinal lesions.5 
These positive effects of PGE2 on wound closure and early repair responses 
were mostly dependent on two of the four PGE2 receptors (EP1-4), namely EP2 
and EP4. Whilst both EP2 and EP4 signaling can contribute to bone repair44, the 
PGE2-EP4 axis appeared to be particularly important in early barrier repair in the 
skin and intestine.5,43  
During the subsequent proliferative phase of tissue repair, activated 
myofibroblasts, can themselves produce PGs (PGE2 and PGD2), which induce a 
regulatory macrophage phenotype expressing high levels of IL-10 and Arg1, but 
low levels of iNOS. Indeed, IL-10 and Arg1 have both been implicated in the 
prevention of tissue damage as well as in the regulation of pathological tissue 
remodelling in settings of type 2 immunity.45–47 Thus, the PG-driven induction of 
these regulatory factors may provide a negative feedback loop, which limits 
further activation and migration of myofibroblasts during physiological tissue 
repair.48 This implicates PGE2 in the transition from the inflammatory to the 
proliferative phase of tissue repair and in the prevention of aberrant 
(myo)fibroblast activation. Due to its regulatory effects on fibroblasts, PGE2 also 
functions as an important negative regulator of pulmonary fibrosis and airway 
remodelling in asthma.49,50 Mechanistically, the anti-fibrotic effects of PGE2 were 
mainly mediated via EP2 and EP4, which both increase cellular cAMP levels and 
thus regulate matrix metalloproteinases (MMPs) and collagen deposition.40 
The prominent effects of PGE2 on tissue repair responses have prompted the 
idea to administer PGE2 agonists in settings of impaired tissue repair or 
pathological remodelling.  When applied topically to the oral or vaginal mucosa 
before or after chemotherapy, PGE2 could prevent mucosal damage and 
accelerate re-epithelialization in cancer patients.12 Furthermore, local treatment 
with PGE2 could restore cutaneous tissue repair in mice that showed impaired 
repair after treatment with NSAIDs.51 However, the therapeutic potential of PGE2 
agonists in pulmonary fibrosis or airway remodelling during severe asthma may 
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be limited as PGE2 agonists could only prevent, rather than reverse structural 
changes in the lung.52 Thus, the development of novel modulators of EP receptor 
signaling may be useful for the prevention or treatment of pathological tissue 
repair in various disease contexts (for review see 53).  
 
Prostaglandin D2 - a negative regulator of tissue repair 
In contrast to the versatile roles of PGE2 in tissue repair, much less is known 
about the function of PGD2 in the context of tissue repair. Upon injury, PGD2 is 
formed subsequent to PGE2 with peak concentrations observed around 2 weeks 
after wounding.13 In an experimental model of skin wound healing, PGD2 and its 
degradation products were proposed to reduce inflammation via the activation of 
PPARγ, thus contributing to resolution after the inflammatory phase of tissue 
repair. In addition to the potential pro-resolving effects of PGD2 metabolites, 
PGD2 itself was reported to suppress collagen production and the recruitment of 
pulmonary fibroblasts by engaging its high affinity receptor DP1.54 This suggests 
that despite its pro-inflammatory roles in type 2 immune responses, PGD2 can act 
as a negative regulator of airway remodelling. In line with the suppressive effects 
of PGD2 on tissue repair responses in the lung, PGD2 was found to inhibit the 
formation of new hair follicles during cutaneous repair.55 An important role for 
PGD2 in the repair of barrier tissues was further supported by a recent study, 
which implicated the PGD2-DP1 axis in mucosal healing during ulcerative colitis.4 
In summary, PGD2 formation during the later phases of tissue repair appears to 
contribute to the timely termination of proliferative responses as well as of ECM 
production. 
 
Prostacyclin - a modulator of clotting and ECM deposition 
In oder for tissue repair to proceed normally, clots formed during the early phases 
of tissue repair have to be gradually removed. This process is called fibrinolysis 
and critically depends on the activation of plasmin by urokinase-type 
plasminogen activator (uPA). Whilst platelet derived TXA2 is critical for clot 
formation, prostacyclin (PGI2), another COX metabolite formed by endothelial 
cells, has fibrinolytic potential. Indeed stable analogues of PGI2 could promote 
the expression of uPA in human fibroblasts and thereby contribute to 
physiological tissue repair responses.56 In addition to its role in fibrin clot 
degradation, PGI2 has been implicated in the regulation of ECM deposition as a 
PGI2 analogue decreased fibronectin production in airway smooth muscle cells 
(ASM) and fibroblasts.57 Thus, similar to PGE2 and PGD2, PGI2 may act as a 
negative regulator of ECM production by structural cells and thereby contribute to 
the COX-driven regulation of tissue remodeling. These parallel effects of the 
three prostanoids (PGE2, PGD2, PGI2) may not be surprising given that all of 
them activate GPCRs that couple to Gα proteins and thus increase cAMP. 
In summary, the time- and tissue-dependent production of the different 
prostanoids contributes to rapid wound closure and tissue regeneration, whilst 
preventing scarring and fibrosis. Although the central roles of prostanoids in 
haemostasis and tissue repair have long been appreciated, novel roles and 
mechanisms of these versatile mediators of tissue repair remain to be uncovered. 
As the COX pathway represents a major drug target in chronic inflammation and 
cancer, new insights into prostanoid-driven tissue repair responses may hopefully 
be translated into clinical practice and improve the management of these 
common diseases. 
 
Epoxyeicosatrienoic acids (EETs) - endothelial mediators of regeneration 
In addition to producing the COX metabolite PGI2, endothelial cells can 
metabolize AA into epoxyeicosatrienoic acids (EETs) via cytochrome P450 
epoxygenases (Figure 1, Figure 2). Although EETs have mainly been studied for 
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their vascular activities, these mediators have also been implicated in the 
regeneration of various tissues and organs, including the liver, kidneys, lung and 
eye.20 In particular, the administration of 11,12-EET and 14,15-EET improved 
liver regeneration after experimental hepatectomy, a phenotype that was 
reproduced in transgenic mice expressing increased levels of the CYP enzyme 
CYP2C8. Furthermore, whilst EETs promoted angiogenesis and wound closure, 
impaired generation of EETs in diabetic mice correlated with delayed tissue 
repair.58 As impaired tissue repair is a major complication in type 2 diabetes the 
generation of EETs via CYPs or their degradation by soluble epoxide 
hydrogenase (sEH) represents an attractive drug target that may help to prevent 
or treat diabetes-associated tissue repair conditions such as diabetic ulcers. 
 
Lipoxins and resolvins - anti-inflammatory mediators of barrier repair 
In addition to generating pro-inflammatory LTs via the 5-LOX pathway, damaged 
tissues show increased production of 12/15-LOX metabolites, including 12- and 
15-HETE and LXA4. An important functional role for 12/15-LOX-derived 
eicosanoids in tissue repair was suggested by studies showing impaired re-
epithelialization after corneal damage in mice lacking the 12/15-LOX enzyme 
(Alox15-/-).8 Whilst the role of 12- and 15-HETE in tissue repair is largely unclear, 
LXA4 has been implicated in tissue regeneration as it could reduce inflammation 
and promote re-epithelialization in the eye.8 Moreover, the administration of 
LXA4-containing microparticles in a rat model of skin wound healing promoted 
wound closure,  angiogenesis and collagen deposition, potentially by inducing IL-
4, TGFβ1 and tissue repair macrophages.59 Intriguingly, 12-/15-LOX is generally 
highly expressed during type 2 immune responses, e.g. after exposure to house 
dust mite or during intestinal nematode infection.15,60 This may suggest that 
12/15-LOX also plays important roles in epithelial barrier repair in mucosal 
tissues such as the airways and intestine. 
As an alternative to the ω-6 PUFA AA, COX, LOX and CYP enzymes can 
metabolize ω-3 PUFAs (particularly DHA or EPA) into further pro-resolving 
mediators, which have been implicated in tissue repair. Resolvin D2 (RvD2), which 
is formed by the combined action of 5-LOX and 12-/15-LOX was reported to 
promote revascularization in diabetic mice that otherwise showed defective repair 
in a model of hind limb ischemia.10 The abundant formation of resolvins during 
mucosal healing in an IBD model further suggested the involvement of these 
mediators in barrier repair after inflammatory injury.19 Indeed, high levels of RvD2 
were also produced after skin injury in mice and pigs and topically administered 
RvD2 could promote re-epithelialization.9 Mechanistically, the RvD2-driven 
migration of epithelial keratinocytes depended on the lipoxin receptor Alx/Fpr2 
and the downstream activation of PI3K-AKT-mTOR-S6 kinase signaling. 
Taken together, pro-resolving PUFA metabolites appear to be crucially involved 
in repair and resolution in various tissues with particular importance for epithelial 
tissue repair. 
 
Conclusion and future perspectives 
Recent studies have uncovered an enormous versatility and complexity of 
eicosanoid-driven responses during tissue repair. In particular, eicosanoids have 
been implicated in the repair of epithelial barriers, which is central for host 
defense and the prevention of chronic inflammation. Despite this progress, the 
physiological roles of AA-metabolic pathways in tissue repair are incompletely 
understood as research has traditionally been focused on their involvement in 
pathological tissue remodelling (e.g. during fibrosis). Thus, future studies should 
further define the mechanisms, by which eicosanoids regulate physiological 
repair responses in various tissues. In particular, it would be important to 
compare the eicosanoid expression patterns during tissue repair in different 
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organs and determine their impact on different regenerative capacities (e.g. scar 
formation in the skin vs. liver regeneration). 
In addition, the immunological and metabolic regulation of eicosanoid synthesis 
during tissue damage and repair remains to be characterized. Such studies may 
provide important insights into the intricate cellular and metabolic crosstalk that 
enables proper tissue function and prevents aberrant healing, which can lead to 
fibrosis, diabetic ulcers or cancer.  
Indeed, the involvement of eicosanoids in virtually all stages of the tissue repair 
process provides ample opportunity for pharmacological intervention in 
conditions, where tissue repair has become impaired or exaggerated. This may 
include the use of already approved drugs (e.g. LT antagonists or NSAIDs) as 
well as newly-developed drugs, which can e.g. mimic the beneficial effects of pro-
resolving eicosanoids. To date, several clinical trials have been conducted to 
explore the effects of ω-3 PUFA supplementation on chronic inflammation and 
tissue repair in human patients, however with mixed results. Despite the 
beneficial effects of PGE2 application in patients suffering from mucosal lesions 
and despite a plethora of promising findings from experimental models, no 
clinical trials are currently ongoing to translate repair functions of eicosanoids into 
the clinic. Thus, by better understanding and harnessing the roles of eicosanoids 
in tissue repair we may develop new strategies for the prevention and treatment 
of major diseases of today’s societies. 
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Tables 
 

Eicosanoid Cellular source Function Experimental model 
prostaglandin E2 
(PGE2) 

macrophage 
(myo-)fibroblast 

• myofibroblast migration é 
• re-epithelialization é 
• keratinocyte proliferation é 
• epithelial differentiation é 
• ECM production/ fibrosis ê 

skin punch biopsy40 
full thickness excisional skin 
wounding51 
intestinal epithelial stem cells/ 
wound-associated epithelial 
cells5 
bleomycin-induced lung  
fibrosis52 

prostaglandin D2 
(PGD2) 

mast cell 
macrophage 

• ECM production ê 
• fibroblast migration ê 
• hair folicle neogenesis ê 

human lung fibroblasts54 
full thickness excisional skin 
wounding55 

thromboxane A2 
(TXA2) 

platelet 
macrophage 

• platelet aggregation é 
• fibroblast migration é 
• macrophage recruitment é 

tail incision22 
acute toxic liver injury3,23 

12-hydroxy-
heptadecatrienoic 
acid (12-HHT) 

platelet 
macrophage 
neutrophil 

• fibroblast migration é 
• fibroblast proliferation é 
• keratinocyte recruitment é 

skin punch biopsy24 
corneal wound injury26 
in vitro scratch assay26 

prostacyclin  
(PGI2) 

endothelial cell • fibrinolysis é 
• ECM deposition ê 

in vitro scratch assay, 
human fibroblasts 56,57 

leukotriene B4 
(LTB4) 

neutrophil 
macrophage 

• inflammation é 
• wound closure ê 
• TGFβI production é 
• ECM deposition / fibrosis é 

skin punch biopsy6 
bleomycin-induced lung 
fibrosis27 
acute lung injury (sepsis)17 

cysteinyl leukotrienes 
(cysLTs: LTC4, LTD4, 
LTE4) 

eosinophil 
macrophage 
platelet/ neutrophil 
aggregates 
epithelial cell 

• inflammation é 
• wound closure ê 
• ECM deposition / fibrosis é 

human (myo)fibroblasts33 
skin punch biopsy6 
 

epoxyeicosatrienoic 
acids (EETs) 

endothelial cell • regeneration of lung, liver & 
kidney 

• neovascularization  é 
• collagen production é 
• inflammation ê 

unilateral/ partial 
pneumonectomy, 
nephrectomy/ hepatectomy, 
skin punch biopsy20 
full thickness excisional skin 
wounding/ obesity58 

lipoxin A4  • TGFβI production é 
• inflammation ê 
• re-epithelialization é 
• wound closure é 

skin injury59 
corneal wound injury8 

Table 1: Overview of eicosanoids and their cellular sources and functions 
in different experimental models of tissue repair 
 
 
Figure and Table legends 
 
Table 1: Overview of eicosanoids and their cellular sources and functions 
in different experimental models of tissue repair; The table summarizes the 
functions of eicosanoids identified in different models of tissue injury and repair 
with a focus on barrier organs (skin, lung, intestine). Further examples of tissue 
repair functions of eicosanoids in other organs (eye, liver, kidney) are also 
provided. 
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Figure 1. Time course of eicosanoid production during the different phases 
of tissue repair; Eicosanoids are produced via different enzymatic pathways, 
which are expressed and activated in a time-dependent fashion during the tissue 
repair process.  Abbreviations: COX=cyclooxygenase, LOX=lipoxygenase, 
CYP=cytochrome P450, PG=prostaglandin, TX=thromboxane, HHT=hydroxy-
heptadecatrienoic acid, EET=epoxy-eicosatetraenoic acid, HETE=hydroxy-
eicosatetraenoic acid, LT=leukotriene, cysLT=cysteinyl leukotrienes, LX=lipoxin. 
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Figure 2. Biosynthesis of eicosanoid lipid mediators with major roles in 
tissue repair; Upon cellular stimulation, the ω-6 PUFA arachidonic acid (AA) is 
liberated from cellular membranes and metabolized into eicosanoids via four 
major enzymatic pathways: the prostanoids are synthesized via the 
cyclooxygenase (COX) pathway, leukotrienes and lipoxins via lipoxygenases 
(LOX) and epoxy-eicosatetraenoic acids (EETs) via cytochrome P450 (CYP) 
enzymes. Mediators that predominantly act as positive regulators of tissue repair 
are shown in green, whilst negative regulators of tissue repair are shown in red. 
Intermediates without biological activity are uncoloured; Abbreviations: 
PG=prostaglandin, TX=thromboxane, HHT=hydroxy-heptadecatrienoic acid, 
EET=epoxy-eicosatetraenoic acid, HETE=hydroxy-eicosatetraenoic acid, 
LT=leukotriene, cysLT=cysteinyl leukotrienes, LX=lipoxin.  
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Figure 3. Source- and target cells as well as biological functions of 
eicosanoids in tissue repair; Eicosanoids play key roles in the repair of 
epithelial barriers in the skin, intestine and airways. Thromboxane (TXA2) 
promotes platelet aggregation, whilst prostaglandin E2 (PGE2) drives 
myofibroblast migration and epithelial differentiation. PGs act as negative 
regulators of collagen secretion, while leukotrienes promote collagen production 
and inflammation. Mediators that predominantly act as positive regulators of 
tissue repair are shown in green, whilst negative regulators of tissue repair are 
shown in red. Abbreviations: PG=prostaglandin, TX=thromboxane, 
HHT=hydroxy-heptadecatrienoic acid, EET=epoxy-eicosatetraenoic acid, 
HETE=hydroxy-eicosatetraenoic acid, LT=leukotriene, cysLT=cysteinyl 
leukotrienes, LX=lipoxin, SPMs= specialized pro-resolving mediators. 
 
 


