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Abstract.
Background/Objective: Idiopathic REM sleep behavior disorder (iRBD) often precedes Parkinson’s disease (PD) and other
alpha-synucleinopathies. The aim of the study is to investigate brain glucose metabolism of patients with RBD and PD by
means of a multidimensional scaling approach, using18F-FDG-PET as a biomarker of synaptic function.
Methods: Thirty-six iRBD patients (64.1 ± 6.5 y, 32 M), 72 PD patients, and 79 controls (65.6 ± 9.4 y, 53 M) underwent
brain 18F-FDG-PET. PD patients were divided according to the absence (PD, 32 subjects; 68.4 ± 8.5 y, 15 M) or presence
(PDRBD, 40 subjects; 71.8 ± 6.6 y, 29 M) of RBD. 18F-FDG-PET scans were used to independently discriminate subjects
belonging to four categories: controls (RBD no, PD no), iRBD (RBD yes, PD no), PD (RBD no, PD yes) and PDRBD (RBD
yes, PD yes).
Results: The discriminant analysis was moderately accurate in identifying the correct category. This is because the model
mostly confounds iRBD and PD, thus the intermediate classes. Indeed, iRBD, PD and PDRBD were progressively located
at increasing distance from controls and are ordered along a single dimension (principal coordinate analysis) indicating the
presence of a single flux of variation encompassing both RBD and PD conditions.
Conclusion: Data-driven approach to brain 18F-FDG-PET showed only moderate discrimination between iRBD and PD
patients, highlighting brain glucose metabolism heterogeneity among such patients. iRBD should be considered as a marker
of an ongoing condition that may be picked-up in different stages across patients and thus express different brain imaging
features and likely different clinical trajectories.
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INTRODUCTION

REM sleep behavior disorder (RBD) is a para-
somnia characterized by complex and often violent
behaviors occurring during REM sleep [1]. Idiopathic
RBD (iRBD) is recognized as a strong risk factor for
Parkinson’s disease (PD) [2]. Moreover, about 40%
among PD patients exhibit RBD [3]. However, RBD
may also appear after the onset of motor symptoms
in PD, or never at all [4, 5], even if the prevalence of
PD patients developing RBD after the emergence of
overt PD is unknown.

Some clinical signs and neuroimaging features of
neurodegeneration can be found in iRBD patients, in
absence of parkinsonism and/or dementia [1]. These
findings strongly support the hypothesis that iRBD
patients could be in a prodromal phase of an alpha-
synucleinopathy. Indeed, the adequacy of the term
idiopathic for a subject with isolated RBD has been
questioned [6]. However, iRBD is a heterogeneous
condition with about 25% of patients converting to
a synucleinopathy within 3 years and a minority,
but not negligible, percentage of patients remaining
idiopathic after more than ten years [7], despite the
presence of neurodegeneration at biomarker assess-
ment.

Also, PD is heterogeneous, with different clin-
ical and possibly neuroimaging phenotypes. PD
patients with various non-motor symptoms, includ-
ing RBD, and other altered biomarkers, including
EEG and dopaminergic SPECT imaging, carry a

poorer prognosis in comparison with mainly motor
PD patients [8, 9]. Moreover, PD patients with RBD
showed marked posterior cortical hypometabolism
compared with PD patients without RBD [10].

At a group level, PD patients express a typical brain
glucose metabolism pattern (PDRP) characterized
by relative hypometabolism in the lateral premo-
tor and posterior parietal cortical regions associated
with relatively increased pallido-thalamic, pontine
and cerebellar metabolism [11]. This pattern has
been consistently identified in several independent
PD cohorts using spatial covariance analysis [12, 13].
The PDRP is significantly expressed in iRBD patients
as compared to controls [14–16] and is associated
with conversion to Lewy body diseases (LBD) [15].
Moreover, a specific RBD related pattern (RBDRP),
partially overlapping the PDRP, has been reported
[16]. Therefore, investigating the specific patterns
of glucose metabolic alterations in iRBD or in PD
patients, either with or without RBD, is regarded as
a meaningful approach to detect brain dysfunction.

We have recently identified a specific RBDRP pat-
tern and compared it with the known PDRP [17],
finding the former significantly expressed in PD
patients, in particular in those with Mild Cogni-
tive Impairment (MCI). Moreover, subjects scores on
RBDRP were highly correlated to subjects scores on
PDRP [17]. Finally, RBDRP was equally expressed in
PD patients with and without RBD [17], thus suggest-
ing that it may represent an ‘early-stage’ PD pattern.
However, not all iRBD patients eventually develop
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PD and not all PD patients ever exhibit RBD, thus
increasing the level of complexity.

Indeed, although studying heterogeneous con-
ditions, such as iRBD and PD by means of
disease-specific related patterns, may be useful to
provide data representative of the core neuroimaging
features of the diseases, a meaningful part of patients
may not be represented by such rigid classifications.

We faced the problem of describing brain 18F-
FDG-PET patterns of patients with RBD and PD by
a classical strategy widely used in ecological studies
[18]. The rationale of the method is: if the mutual
distances among the profiles (initially expressed in a
high dimension space spanned by the principal com-
ponents of the VOI’s values) can be collapsed into
a dominant single dimension explaining the major
part of between-class variability, then we can safely
affirm that a single linear (i.e. one dimensional) order
get rids of the among pathology classes differences so
corroborating the existence of a single flux of vari-
ation encompassing both RBD and PD conditions.
This resembles the existence of a single physical
driving force (e.g. temperature and altitude) ordering
multidimensional ecological profiles (e.g. different
areas characterized by a vector of different species
abundance) along a linear order or ‘cline’ [18] that, in
our case, corresponds to a shared ‘pathology’ driver.

To this aim: i) we applied for the first time a typi-
cal ecological approach used to detect environmental
clines demonstrating the existence of a single dimen-
sion linear ordering: subjects without RBD nor PD
(controls), subjects with RBD but no PD (iRBD),
subjects with PD but no RBD (PD) and subjects with
PD and RBD (PDRBD); ii) we checked the relative
between-group separability by linear discriminant
analysis.

In addition, the need of taking into consideration
patients recruited in different centers prompted us to
develop a data normalization process that could be of
use for multicenter neuroimaging studies.

We supplemented a classical z-score based nor-
malization procedure (based on different healthy
reference samples for the two centers so to eliminate
any systematic center bias) with a check for the invari-
ance of correlation structure that could be affected
by a ‘range restriction effect’ [19] due to the dras-
tic change in variance coming from standardization.
The change in correlation structure can provoke huge
biases in neuroimaging studies based on dimension
reduction techniques relying upon among ROI’s cor-
relation and, to our knowledge, was never applied in
neuroimaging studies.

MATERIALS AND METHODS

Subjects

The study cohort consisted of 187 subjects,
recruited in seven centers located in Germany,
Netherlands and Italy, subdivided into four groups
(see Table 1 for demographic data).

This cohort also included 21 iRBD patients and
38 de novo, drug naı̈ve PD patients from a previous
study [17]. The opportunity to recruit subjects from
independent centers allowed investigating the issue
of data harmonization that is a crucial step for using
neuroimage studies in the realm of multicenter trials.

Seventy-nine healthy controls, 36 iRBD and 72
PD patients were prospectively enrolled from the
recruiting centers. Diagnosis of RBD and PD fol-
lowed international standard criteria [20, 21]. The
reason for adopting the 1999 PD criteria is because a
substantial part of PD patients was diagnoses before
the publication of updated criteria. Brain MRI/CT
excluded other brain diseases. In PD patients, the
Mayo sleep questionnaire [22] and a semi-structured
clinical interview by a sleep medicine expert were
used to investigate the presence of RBD. In 17 PD
patients with RBD and 10 PD patients without RBD,
the presence/absence of RBD diagnosis was further
confirmed by polysomnography (PSG). In all iRBD
patients, the diagnosis was PSG-confirmed.

The Mini-Mental State Examination (MMSE)
was used as a measure of global cognition and a
comprehensive neuropsychological battery has been
performed, including: (i) categorical and phonologi-
cal verbal fluency to asses language; (ii) Trailmaking
test (TMT) A, Stroop color-word test and digit span
(forward) to asses attention and working memory;
(iii) TMT B, Stroop color test and symbol-digit for
executive functions; (iv) figure copying of the men-
tal deterioration battery (simple copy and copy with
guiding landmarks) and Clock Completion test to
assess visuospatial abilities; (v) Rey Auditory Ver-
bal Memory Test (immediate and delayed recall) and
Corsi’s block design to investigate memory. The pres-
ence/absence of mild cognitive impairment (MCI)
was investigated according to international criteria,
by level 2 assessment (at least two tests 1.5 SDs
below norms) [23]. The Unified Parkinson Disease
Rating Scale, motor section was used to assess motor
impairment.

The control subjects were healthy volunteers
carefully checked by clinical examinations, general
medical history and were free of any neurological
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Table 1
Education is total years of education; iRBD, idiopathic REM sleep behavior disorder patients; M, male; MCI, mild cognitive impairment;
MMSE, Mini-Mental State Examination; PD, Parkinson’s disease patients without RBD; PDRBD, Parkinson’s disease patients with RBD;

UPDRS-III, Unified Parkinson Disease Rating Scale motor section

Groups n Age Gender (M) Education MMSE MCI UPDRS-III Drug naive

Controlsa) 79 65.6 ± 9 53 (67%) 8.8 ± 4 29.3 ± 0.9 0 0.9 ± 1 79 (100%)
iRBDb) 36 64.1 ± 6 32 (89%) –– 29 ± 1 –– 4.3 ± 4.3 36 (100%)
PDc) 32 68.4 ± 9 15 (47%) 8.4 ± 6 28.3 ± 2 8 15.3 ± 8 23 (72%)
PDRBDd) 40 71.8 ± 7 29 (73%) 8.2 ± 6 27.3 ± 2 20 17.2 ± 7 35 (88%)
a)In 18 controls, the educational level was unknown; in 61 controls the UPDRS-III score was unknown, but lower than three in all the
remaining cases. b)In iRBD patients, the educational level and the presence/absence of MCI were unknown. c)In eight PD patients, the
MMSE score was unknown; in ten PD patients, the UPDRS-III score and the presence/absence of MCI was unknown. d)In five PDRBD
patients, the MMSE score was unknown; in eight PDRBD patients, the UPDRS-III score and the presence/absence of MCI was unknown.

symptom. Only subjects with a normal MMSE (above
24) and/or MOCA (above 26) score and with a CDR
of 0 were considered. They were chosen based on bal-
anced age, gender and educational level distribution
as the patients. They underwent brain18F-FDG-PET
and MRI and/or TC scanning and were administered
an extended neuropsychological testing to exclude
the presence of cognitive impairment.

The study protocol met the approval of the local
Ethics Committees, and all participants signed an
informed consent form in compliance with the
Helsinki Declaration of 1975.

Data acquisition and preprocessing

Forty-four healthy controls, 6 iRBD and 54 PD
patients underwent brain 18F-FDG-PET in Genoa.
PET Images were acquired by a SIEMENS Biograph
16 PET/CT. Scan acquisition lasted 15 minutes in 3-
D mode. Images were reconstructed through a 3D
ordered subset-expectation maximization (OSEM)
algorithm, 16 subsets and 6 iterations, with a recon-
structed voxel size of 1.33 × 1.33 × 2.00 mm, and
smoothed with a Gaussian 8 mm full-width at half-
maximum filter. Attenuation correction was based on
CT scan.

Thirty-five healthy controls, 30 iRBD and 18 PD
patients, recruited in Germany and in the Nether-
lands, underwent brain 18F-FDG-PET in Groningen.
PET images were acquired by a Siemens Biograph
mCT-64 PET/CT camera. Scan acquisition lasted 5
minutes in 3-D mode. Images were reconstructed
with OSEM3D (point spread function and time-of-
flight modeling), 21 subsets and 3 iterations, with a
reconstructed voxel size of 3 × 3 × 2 mm, including
point-spread function and time-of-flight modeling,
and smoothed with a Gaussian 8 mm full-width
at half-maximum filter. Attenuation correction was
based on CT scan.

Dicom files were exported and converted into
Analyze files. Subsequently, FDG-PET images were
submitted to the pre-processing steps included in
the Statistical Parametric Mapping (SPM8) stand-
alone version for spatial normalization into the MNI
space (Wellcome Department of Cognitive Neurol-
ogy, London, UK). The spatially normalized set of
images was then smoothed with a 10 mm isotropic
Gaussian filter and all the default choices of SPM8
were followed, except spatial normalization, for
which a customized brain 18F-FDG-PET template
optimized for dementia patients was chosen [24].

Region of interest identification

FDG uptake values were computed in 45 anatom-
ical volumes of interest (VOIs) in each hemisphere,
as defined by the Automated Anatomic Atlas, and
analyzed by an in-house created Matlab-based script
automatically processing mean FDG uptake intensity
from each of the VOIs, bilaterally [25]. In order
to decrease the number of variables for statistical
analysis, the number of VOIs was further reduced
by merging regions with similar anatomo-functional
characteristics into meta-VOIs, thirteen in each
hemisphere: 1. Occipital Cortex (Calcarine/Lingual/
Inferior Occipital/Middle Occipital/Superior Occip-
ital Gyri); 2. Putamen/Pallidum/Caudate; 3. Parahi-
ppocampal gyrus/Amygdala/ Hippocampus/Insula;
4. Orbito-frontal Cortex (Inferior Frontal/Medial
Frontal/Middle Frontal Gyri); 5. Frontal Cortex
(Middle Frontal/Superior Frontal/Superior-Medial
Frontal/Superior-Orbital Frontal/Inferior Frontal
Gyri); 6. Cuneus/Fusiform Gyrus/Precuneus; 7.
Postcentral Gyrus/Precentral Gyrus/Supplementary
Motor Area; 8. Parietal Lobe (Inferior Pari-
etal/Superior Parietal Gyri); 9. Anterior Cingulate
Gyrus, 10; Posterior Cingulate Gyrus; 11. Temporal
Lobe (Inferior Temporal/ Middle Temporal/Superior
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Temporal Gyri); 12. Temporal Pole (Middle Tempo-
ral Pole/Superior Temporal Pole Gyri); 13. Thalamus.

Strategy of analysis: Elimination of systematic
bias (Center effect)

Preliminary analyses (data not shown) demon-
strated the presence of a strong ‘center effect’ causing
a systematic bias whose nature, probably related to
general measurement conditions (e.g. scanners and
data acquisition protocol), is difficult to ascertain.
In order to overcome this problem, a standardization
procedure focused on the control groups of both cen-
ters was performed. The raw data were transformed
into z-scores by the action of the mean and stan-
dard deviation relative to the controls of the center
in which FDG-PET was performed. Thus, the stan-
dardization procedure does not generate two zero
mean/unit standard deviation distribution for all the
samples of Genoa and Groningen respectively but
only for the two control subsets. Hence, the other
groups are normalized with respect to their own con-
trols. If the same systematic bias is present in both
control and pathological classes, the adopted choice
keeps intact the correlation structure of the dataset
(that could be modified by the change of scale for
eventual range restriction effects [26]), thus allow-
ing the merging of the two Genoa and Groningen
datasets. To check the tenability of this hypothesis, we
performed two separate principal component analy-
ses for the raw and normalized datasets demonstrating
their complete superposition in terms of eigenvector
distribution (Fig. 1).

Checking brain glucose metabolism differences
between groups

The normalized whole dataset was submitted to a
principal component analysis (PCA), giving rise to
an eight-component solution explaining 85% of vari-
ance. The eight-factor space was the basis for the
generation of two-class linear discriminant analysis
independently evaluating the discrimination power
as for PD and RBD classes with respect to con-
trols. The two PD and RBD binary categories were
in turn combined so as to generate a four-category
classification correspondent to: controls (RBD no,
PD no), iRBD (RBD yes, PD no), PD (RBD no, PD
yes) and PDRBD (RBD yes, PD yes). Discriminant
analysis was performed by SPSS (version 23) and
general linear model analysis. The presence of a sin-
gle flux of variation encompassing both RBD and

Fig. 1. Eigenvalue distribution of both original and normalized
data showing the complete superposition between the two sets.
Moreover, the corresponding component scores were highly cor-
related (correlation coefficients around r = 0.85) and no significant
‘location effect’ was put in evidence.

PD conditions was tested by means of a multidimen-
sional scaling approach [27] (Principal Coordinate
Analysis, PCoA), as applied to the between classes
centroids Euclidean Distances.

RESULTS

Table 2 reports the loading pattern (correspond-
ing to the correlation coefficients between meta-VOIs
and factors) for the eight components explaining the
most of the variance for the normalized data set,
before the noise floor starts.

As expected, while major components showed
marked leading areas (bolded) allowing for a physi-
ological interpretation, minor components are more
diffuse and are likely to be more noise contaminated.
In any case we selected the 8 components solution
to be submitted to discriminant analysis, separately
accomplished for RBD and PD conditions. Figure 2
shows the topography of the meta-VOIs set included
in the Factor1, which explained the highest percent-
age of the variance.

For both RBD and PD, the most discriminant
factors were Factor1 and Factor4. In addition, PD dis-
crimination function involved also Factor2, Factor5
and Factor7 pointing to a more ‘generalized effect’
of PD on brain metabolism with respect to RBD.
The discriminant analysis showed 62% sensitivity
and 76% specificity for RBD; 72% sensitivity and
88% specificity for PD (Tables 3 and 4).

Although the sharper ‘control/disease’ separa-
tion in PD with respect to RBD might already be
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Table 2

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8

Occipital L –0.59389 –0.59352 0.0188 0.13426 –0.01176 –0.20718 0.08664 0.26033
Occipital R –0.65398 –0.57461 0.01665 0.20272 –0.23043 0.06856 –0.04825 0.18259
Pal Cau Put L 0.57561 0.23359 0.51741 0.31526 –0.09591 –0.23079 –0.03403 0.00699
Pal Cau Put R 0.64679 0.3356 0.16072 –0.01583 –0.32568 –0.19718 –0.25474 0.15082
Amy Hippo Ins L 0.77563 –0.21246 –0.11673 –0.07829 0.316 –0.21109 –0.18335 0.15944
Amy Hippo Ins R 0.82503 –0.12896 –0.12688 0.01748 0.15816 0.03751 –0.30018 0.16376
Orbito Frontal L 0.33005 0.56706 –0.51233 0.13289 –0.09139 –0.24233 0.33494 0.19272
Orbito Frontal R 0.43292 0.48317 –0.50435 0.0802 –0.36127 0.11608 0.20651 0.23865
Frontal L –0.32263 0.78439 –0.13891 0.01264 0.21622 –0.01597 0.28425 –0.07344
Frontal R –0.20355 0.80589 –0.24402 –0.05159 –0.26297 0.21105 0.01628 –0.00956
Cun Pre Cun Fus L –0.7236 –0.33551 0.08978 –0.0843 0.19985 –0.15194 0.21306 0.35087
Cun Pre Cun Fus R –0.70168 –0.44046 –0.10781 –0.06351 –0.13983 0.05345 –0.14308 0.27458
Pre Post Centr L –0.45895 0.51029 0.09337 –0.42722 0.45817 –0.06045 –0.0795 0.02066
Pre Post Centr R –0.35266 0.53348 –0.06595 –0.55283 0.01122 0.19318 –0.34327 0.12303
Parietal L –0.86413 0.03017 0.12961 0.03609 0.11161 –0.09786 0.08489 –0.23477
Parietal R –0.81507 0.03934 0.2029 0.04415 –0.05233 0.26874 –0.06939 –0.16328
Cingulate L –0.04976 0.31885 0.56081 0.24179 0.3509 0.2571 0.28266 0.35715
Cingulate R 0.28917 0.18234 0.64167 0.11315 –0.00657 0.10642 –0.25834 0.06453
Temporal L 0.11853 –0.18202 –0.28625 0.6284 0.20362 –0.44044 –0.02578 –0.21303
Temporal R –0.06845 –0.24643 –0.23515 0.63981 –0.44556 0.39711 –0.06268 –0.04141
Temporal Pole L 0.45244 –0.10159 –0.29742 0.33193 0.61251 0.17761 –0.06432 0.04988
Temporal Pole R 0.46621 –0.11002 –0.16852 0.32322 0.40429 0.57556 0.00969 –0.00598
Thalamus L 0.32228 0.03835 0.76811 0.27776 –0.00905 0.06974 0.27899 –0.07925
Thalamus R 0.54587 0.07959 0.51879 –0.09773 –0.34915 –0.02634 0.1069 0.06667
Cerebellum L 0.59055 –0.50412 –0.0892 –0.49919 –0.05103 0.0461 0.22114 –0.12209
Cerebellum R 0.53608 –0.60812 –0.12775 –0.37023 –0.0901 0.21274 0.24985 –0.02251
% Variance Explained 29.2 17.2 10.7 9.7 6.9 4.9 3.9 2.9

Legend: L, Left, R, Right; the other abbreviations refer to regions as listed in the methods.

considered as an indirect proof of a shared pathol-
ogy encompassing both RBD and PD conditions, we
looked for a more cogent demonstration. This was
given by the analysis of the ‘complex class’ (four
categories generated by the combination of PD/RBD
binary categorizations) distribution.

This task was based on the classification of patients
in a combined classification made-up of the four cate-
gories: Controls: PD = 0 and RBD = 0; iRBD: PD = 0
and RBD = 1; PD: PD = 1 and RBD = 0; PDRBD:
PD = 1 and RBD = 1.

A multidimensional scaling approach as applied
to the between classes centroids Euclidean Distances
generated a main (First principal coordinate, PCo1)
linear ordering explaining 81% of variance, going
from controls to PDRBD and having a ‘control pole’
(controls/iRBD) and a ‘disease pole’ (PD/PDRBD)
at the extremes (Fig. 3).

This metrics results from the quadratic distances
(Table 5) between groups computed on the 8-factor
space (see Table 2) in which each group is defined
by the profile of the group averages relative to the
factors.

It is evident how iRBD, PD and PDRBD are pro-
gressively located at increasing distance (0.79, 2.17,
3.74) from controls. In order to have a clear image of a

main linear order parameter (i.e. of the disposition of
the classes mainly along a single axis), we applied a
principal coordinate analysis to the above distance
matrix, obtaining the results reported in (Tables 6
and 7).

The mutual distances among classes, computed on
the 8 component vectors correspondent to the relative
group averages on the 8 factors (see Table 2), are fully
explained (99.18%) by two dimensions (principal
coordinates) with first coordinate explaining 81.5%
of total variance. The Table reports the Eigenvalues
(variance relative to each coordinate), Differences
in variance between subsequent coordinates and the
Proportion of variance explained by each coordinate.

Principal coordinate analysis is analogue to PCA
but instead of applying on unit/variable matrices is
computed over distance matrices. This implies that
variables correspond to the distance from the dif-
ferent categories while loadings are the cosines of
the extracted axes (PCo1, PCo2) with respect to
the position in the space of the classes. Thus, we
obtained (Table 6) a single dimension ordering axis
(Principal Coordinate 1) going from PDRBD pole
(cosine = 0.97) to Controls pole (cosine = –0.98). The
cosine corresponds to the loading of classical PCA:
the opposite sign and the close-to-unit module of



D. Arnaldi et al. / Brain Metabolism Heterogeneity in RBD and PD 235

Fig. 2. Topographic representation of the meta-VOIs set in the principal component (Factor1), superimposed to the Montreal Neurological
Institute template in the coronal (top-left), sagittal (top-right) views and transversal (bottom-left). In yellow, the meta-VOIs set with positive
correlation coefficients are shown. In blue, the meta-VOIs set with negative correlation coefficients are shown.

Table 3
RBD discriminant analysis. Most ‘false’ positive RBD (66.7%)
were PD patients without RBD; most ‘false’ negative RBD (72.3%)

were iRBD patients

Observed
YES NO

Predicted
YES 47 (61.8%) 27 (24.3%)
NO 29 (38.2%) 84 (75.7%)

TOT 76 111
(iRBD + PDRBD) (CTR + PD)

cosine implies that controls/iRBD and PD/PDRBD
poles are along the same line.

PD (dist PD) points in the direction of PDRBD
pole (cosine = 0.88 with PCo1) while iRBD condi-
tion (dist RBD) points toward control (cosine = –0.75
with PCo1). The PCo1 main axis explains the 81.5%

Table 4
PD discriminant analysis. Most ‘false’ positive PD (62.5%) were
iRBD patients; most ‘false’ negative PD (63.6%) were PD patients

without RBD

Observed
YES NO

Predicted
YES 52 (72.2%) 14 (12.2%)
NO 20 (27.8%) 101(87.8%)

TOT 72 115
(PD + PDRBD) (CTR + iRBD)

of total information, suggesting the presence of a sin-
gle flux of variation encompassing both RBD and
PD conditions from controls to PDRBD condition
with a marked difference between controls/iRBD vs.
PD/PDRBD couples.
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Fig. 3. The geometrical disposition of the groups in the principal
coordinate space.

Table 5

Controls iRBD PD PDRBD

Controls 0 0.79393 2.16914 3.74196
iRBD 0.79393 0 0.98844 2.02158
PD 2.16914 0.98844 0 0.38847
PDRBD 3.74196 2.02158 0.38847 0

iRBD, idiopathic REM sleep behavior disorder; PD, Parkinson’s
disease.

Table 6

Eigenvalue Difference Proportion Cumulative

1 3.259 2.551 0.8149 0.8149
2 0.707 0.674 0.1768 0.9918
3 0.033 0.033 0.0082 10.000
4 0 0 10.000

Table 7
Director Cosines (mutual orientation of axes with respect to poles)

PCo1 PCo2

Dist controls –0.98316 0.1321
Dist PD 0.88181 0.46177
Dist RBD –0.75131 0.65448
Dist PDRBD 0.97522 0.21985

The variance escaping single dimension order-
ing (accounting for 17% of variance, PCo2) is
mainly driven by the ‘peculiar eccentricity’ of iRBD
(Table 6; Fig. 3). This eccentricity accounts for
the singular (not PD related) properties of iRBD.
The geometrical representation of the groups in the
principal coordinate space immediately clarifies the
situation.

DISCUSSION

Our data-driven approach on brain FDG-PET data
has shown that iRBD, PD without or with RBD are
located at increasing distances from healthy subjects.
Moreover, principal coordinate analysis has shown a
single dimension ordering going from controls/iRBD
to PD/PDRBD pole, explaining 81.5% of total infor-
mation. Along this axis, PD points more toward
PDRBD while iRBD toward controls. This result
strongly corroborates the hypothesis of a shared brain
pathology encompassing both RBD and PD condi-
tions.

Several studies have postulated that iRBD patients
might represent a prodromal LBD stage. Indeed,
more than 80% iRBD patients develop a synucle-
inopathy after 14 years from diagnosis [7]. Moreover,
several neurodegeneration findings can be detected
in the so-called ‘idiopathic’ RBD patients, including
the presence of cognitive impairment [6, 28], hypos-
mia [29], altered color vision [29] and autonomic
dysfunction [29].

Clinical signs of neurodegeneration are combined
with both structural and functional neuroimaging
changes, other than brain glucose hypometabolism.
The nigro-striatal dopaminergic system can be altered
in iRBD [30] and in particular, the nigro-caudate
deafferentation has been proposed as a marker of
RBD [31]. Indeed, dopaminergic system abnormal-
ities identify those iRBD subjects at high risk of
short-term conversion [32]. Moreover, MRI substan-
tia nigra alterations have been found in iRBD patients
[33–35].

In the present study, data-driven discrimination
analysis on FDG-PET data achieved moderate accu-
racy in identifying subjects with RBD (70%) and PD
(82%). This is because the model mostly confounds
RBD-only and PD-only patterns. Indeed, looking at
discriminant analysis (Table 3) most ‘false’ positive
RBD were indeed PD patients without RBD while
most ‘false’ negative RBD were iRBD. On the other
hand (Table 4) most ‘false’ positive PD were iRBD
patients while most ‘false’ negative PD were PD
patients without RBD. Thus, the intermediate classes
were the least discriminated ones. These results fur-
ther support the hypothesis that iRBD and PD are two
contiguous and partially ‘confused’ conditions along,
with a shared pathological mechanism.

The use of multidimensional scaling techniques in
biomedical science is advisable when in presence
of distance spaces computed on multivariate data.
Here we adopted a definition of continuity borrowed
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from ecology [18] that does not imply any theoretical
assumption other than the possibility of representing
distances between categories on a linear order.

This approach has allowed to highlight the het-
erogeneity of brain glucose metabolism in RBD
and PD. The principal components loading distri-
bution largely overlaps previously published pattern
of altered brain metabolism in both PD [11–13]
and RBD [14–16] (PDRP and RBDRP, respectively)
(Fig. 2). Indeed, both PDRP and RBDRP showed
relative hypometabolism in the posterior parietal
and occipital cortical regions associated with rela-
tively increased thalamic, brainstem and cerebellum
metabolism. In our study, according to both PDRP
and RBDRP, bilateral posterior cortical areas have
shown a negative factor loading while bilateral cere-
bellum and right thalamus showed a positive factor
loading in the principal component. These brain areas
may account for a stable core of brain areas affected
by the PD pathology, which can be found in both
prodromal PD stages (thus in iRBD patients) and in
full-blown PD patients.

Moreover, according to RBDRP but not PDRP,
bilateral hippocampal cortex is included with a nega-
tive factor loading in the principal component while,
according to PDRP but not RBDRP, the globus pal-
lidus and the putamen are included with a positive
factor loading. These brain areas may account for
the heterogeneity of both RBD and PD and for the
different metabolic pattern that can be found at dif-
ferent clinical stages along the continuum from iRBD
to full-blown PD and eventually to PDRBD.

Furthermore, our principal component included
bilateral cuneus and precuneus with negative factor
loadings, which are not included in either PDRP or
RBDRP, but they are part of the PD-related cognitive
pattern (PDCP) [36]. This novel finding may account
for the known association between RBD and cogni-
tive dysfunction, either in iRBD patients [6] and in
PD patients with RBD [28].

Interestingly, the principal components found in
the present study included brain regions that are not
included in either PDRP, PDCP or RBDRP, namely
bilateral amygdalae, insulae and caudate nuclei, all
with positive factor loadings. This could be a conse-
quence of the pre-processing building of meta-VOIs.
Indeed, amygdala and insula were clustered together
in a meta-VOI with hippocampal region and caudate
nuclei were clustered in a large region along with
globus pallidus and putamen. Thus, these meta-VOIs
might be included in the principal component due
to the weight of hippocampal and globus pallidus

regions, respectively. On the other hand, this might
represent features that are not observed when evaluat-
ing the characteristic of PD or RBD patients alone, but
that are noticed when evaluating with the more holis-
tic approach that we adopted, thus further accounting
for the heterogeneity of the disease. For instance, a
minority of iRBD patients eventually develops mul-
tiple system atrophy (MSA), which has a typical
metabolic pattern, very different from the typical PD
pattern, including putamen and caudate nuclei alter-
ations [37]. Indeed, iRBD patients may develop over
time not only PD, but also dementia with Lewy bodies
(DLB) and MSA [38]. This may further account for
the brain glucose metabolism heterogeneity of iRBD
patients.

The presence of strong center-related batch effects
can be very detrimental for the analysis of multicen-
ter studies. The classical standardization based on
z-score in the case of multidimensional data, as in
neuroimaging studies, must be complemented by a
check on the invariance of between-areas correlation
structure that can be altered by the variance normal-
ization. This possible bias has to be controlled for by
the equivalence of the PCA solutions of raw and nor-
malized data (Fig. 1). This approach may be used in
clinical research and in clinical trials.

This study has some limitations. First, the cur-
rent study is cross-sectional and follow-up for iRBD
patients is ongoing. In fact, when follow-up will
be available we should be able to investigate iRBD
who further developed a Lewy body disease. Indeed,
it is arguable that iRBD patients who were incor-
rectly classified in the PD group might be the ones
who will convert earlier to a synucleinopathy. On
the other hand, PD patients without RBD who were
incorrectly classified as iRBD might represent sub-
jects with a more benign phenotype in contrast to
those who might have a more aggressive PD sub-
type, with a worse prognosis. Second, the relatively
limited number of subjects does not allow a more pre-
cise stratification of the patient to investigate more in
depth the role of clinical characteristics on 18F-FDG-
PET discrimination ability.

In conclusion, our study has shown an increasing
distance from healthy brain glucose metabolism to
PD patients with RBD, passing by iRBD and PD.
However, data-driven approach to brain 18F-FDG-
PET showed only moderate discrimination between
subjects with/without RBD and/or PD, suggesting
that at least a portion of iRBD patients might be con-
sidered, from a biological point of view, already in the
spectrum of LBD pathology. This finding adds further
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evidence to the poor meaning of the term ‘idiopathic’
which may be adequate for at least a part of subjects
with clinically isolated RBD [39].

In the present study we have analyzed with
a multidimensional scaling approach a larger
sample of subjects than previously [17]. In agree-
ment with the previous work, the findings corroborate
the hypothesis that RBD and PD share a common
brain pathological mechanism. However, we have
also shown that the core neuroimaging alteration that
can be found in both iRBD and PD patients is not
expressed in a small but not negligible part of patients.

Indeed, the multidimensional scaling approach
used in the present study has highlighted the hetero-
geneity of brain glucose metabolism alteration that
can be found in both iRBD and PD patients. Thus,
our results suggest that patients with iRBD are hetero-
geneous also from a neuroimaging standpoint since
they show different brain imaging endophenotypes
that may underlie different clinical trajectories.

The prognostic value of 18F-FDG-PET imaging in
defining iRBD patients at high risk of short-term con-
version into a neurodegenerative disease needs to be
investigated in larger, longitudinal studies.
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