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Predicting patient-reported outcomes
following hip and knee replacement
surgery using supervised machine learning
Manuel Huber1* , Christoph Kurz1 and Reiner Leidl1,2

Abstract

Background: Machine-learning classifiers mostly offer good predictive performance and are increasingly used to
support shared decision-making in clinical practice. Focusing on performance and practicability, this study evaluates
prediction of patient-reported outcomes (PROs) by eight supervised classifiers including a linear model, following
hip and knee replacement surgery.

Methods: NHS PRO data (130,945 observations) from April 2015 to April 2017 were used to train and test eight
classifiers to predict binary postoperative improvement based on minimal important differences. Area under the
receiver operating characteristic, J-statistic and several other metrics were calculated. The dependent outcomes
were generic and disease-specific improvement based on the EQ-5D-3L visual analogue scale (VAS) as well as the
Oxford Hip and Knee Score (Q score).

Results: The area under the receiver operating characteristic of the best training models was around 0.87 (VAS) and
0.78 (Q score) for hip replacement, while it was around 0.86 (VAS) and 0.70 (Q score) for knee replacement surgery.
Extreme gradient boosting, random forests, multistep elastic net and linear model provided the highest overall
J-statistics. Based on variable importance, the most important predictors for post-operative outcomes were
preoperative VAS, Q score and single Q score dimensions. Sensitivity analysis for hip replacement VAS evaluated the
influence of minimal important difference, patient selection criteria as well as additional data years. Together with a
small benchmark of the NHS prediction model, robustness of our results was confirmed.

Conclusions: Supervised machine-learning implementations, like extreme gradient boosting, can provide better
performance than linear models and should be considered, when high predictive performance is needed.
Preoperative VAS, Q score and specific dimensions like limping are the most important predictors for postoperative
hip and knee PROMs.

Keywords: Patient-reported outcomes, Hip replacement, Knee replacement, Shared decision-making, Machine
learning, Binary classification, Predictive performance, Variable importance, Boosting

Background
Shared decision making (SDM) is an approach where cli-
nicians and patients share available evidence and prefer-
ences to support upcoming treatment decisions [1].
SDM has been found to improve care and reduce costs
[2]. A recent Cochrane review for the effects of decision
aids included 105 studies (31,043 patients in total) and

concluded that while knowledge perception increased,
no adverse effects on outcomes or satisfaction were ob-
served [3]. One way to support SDM is to gather and
evaluate patient reported outcome measures (PROMs).
These are powerful tools which transform symptoms
into numerical scores that capture why most patients
seek medical attention, namely to improve their health
state [4]. To control quality of care the National Health
Service (NHS) routinely collects PROMs for four elect-
ive procedures since 2009 [5] and a the majority of
Swedish quality registers are obliged to gather PROMs
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as well [6]. One advantage of individual PROMs compared
with average study population results, is the possibility to
predict individual outcomes [7]. While prediction models
exist for reoperations [8], scheduling [9, 10] or morbidity
risk [11, 12] of elective surgery, models that predict
health-related quality of life are rare, despite around
160,000 hip and knee replacement procedures that are
conducted in England and Wales every year [13]. To sup-
port SDM, accurate prediction models are needed, for ex-
ample to inform doctors and patient about likely surgery
outcomes. While generalized linear models are solid tools,
machine-learning techniques are often able to outperform
linear approaches [14–17]. Combining machine learning
with expertise from clinicians is needed to improve col-
lective care and to foster precision medicine [18]. How-
ever, there is no free lunch in optimization [19, 20] and
thus, no single model works best for all problems. More-
over, machine-learning models are often seen as black
boxes that deliver very good performance but are less in-
tuitive and transparent than traditional statistical methods.
Additional uncertainty is partly rooted in the nature of
machine learning where modelers have a wide variety of
algorithms and approaches to choose from [21], unless
more automated approaches are implemented [22]. Gain-
ing and sharing empirical experience is therefore key to
advance the understanding of model applicability and
usefulness in respective scenarios. Despite thousands of
papers for machine learning in medicine, meaningful con-
tribution to clinical care is still rare [23]. The aim of this
study is to evaluate eight different machine learning and
one generalized linear model to predict binary PROM out-
come following hip and knee replacement surgery. More-
over, by evaluating variable importance of respective models,
we provide easy-to-interpret evidence illustrating model
findings.

Methods
Data
The NHS publishes PROMs data for hip replacement,
knee replacement, varicose vein and groin hernia on a
monthly basis and releases a finalized data set every year
[24]. Eligible patients are only those who are treated by
or on behalf of the NHS. The PROMs program is mainly
limited to England. NHS PROMs data from April 1st
2015 to March 31st 2017 were used to train and test
models. The data sets contain 81 variables before filter-
ing. Variables include sociodemographics with living sta-
tus, age groups, disease affliction by self-report (“Have
you been told by a doctor that you have …? ”),
EQ-5D-3L [25], visual analog scale (VAS), Oxford Hip
Score (OHS) [26] dimensions, Oxford Knee Score (OKS)
[27] dimensions and respective Q scores (sum of OHS
or OKS). We removed observations with missing values
or variables with near zero or zero variance. Moreover,

we removed all post-operative variables except those of
interest (VAS and Q score). Plausibility checks were ap-
plied to all variables. Some algorithms are sensitive to
data imbalances. Three common options exist to address
this issue, downsampling, upsampling and Synthetic Mi-
nority Over-sampling Technique (SMOTE) [28]. Down-
sampling removes observations from the majority class,
upsampling randomly increases observations from the
minority class and SMOTE is a more complex form of
oversampling that artificially creates minority cases using
nearest neighbors. We disregarded downsampling be-
cause it causes loss of information. One disadvantage of
SMOTE is that it can add additional noise to the dataset
because of increased overlap between classes. Due to its
ease of use and high competitiveness [29] compared with
more complex techniques, we chose normal upsampling
to reach balanced class ratios. Normal upsampling is asso-
ciated with two disadvantages. One, it makes overfitting
more likely since it replicates the minority class. Two, it
increases the number of observations and thereby in-
creases training time. To avoid overfitting we use
cross-validation and apply upsampling only to the training
but not to the test data. The increase of computational
time was acceptable for us.

Model selection, outcome metrics, cross-validation and
variable importance
Algorithm selection has significant influence on model
outcome and is essential for model performance [30]. Due
to the vast amount of available algorithms – the caret
package [31] in R currently (May 2018) includes 237
models of which 189 can be used for classification prob-
lems – it is difficult for researchers to know in advance
which algorithm performs best. To reduce the number of
potential test algorithms, several software environments
offer so called cheat sheets that provide some guidance on
algorithm implementation for specific problems [32–34].
These cheat sheets are mainly based on expert experience
but also oversimplification and generalization. Moreover,
data cleaning, feature engineering, hyper-parameter tun-
ing and ensembling cause additional complexity. To select
models, we also incorporated expertise published in sup-
plement 1 of Sauer et al. 2018 [35]. The following algo-
rithms were selected for comparison: logistic regression,
extreme gradient boosting [36], multi-step adaptive
elastic-net [37], random forest [38], neural net [39, 40],
Naïve Bayes [41], k-Nearest Neighbors [42] and boosted
logistic regression [43]. Carets pre-defined grid search
values for respective algorithm hyper-parameters were
used. Originally, a support vector machine with radial
basis function kernel [44] has been evaluated as well.
However, due to functional instabilities, results were in-
consistent and we consequentially removed the imple-
mentation from the analysis.

Huber et al. BMC Medical Informatics and Decision Making            (2019) 19:3 Page 2 of 13



The area under the receiver operating characteristic
(AUROC) is used as outcome metric for the training set.
For binary classification, the AUROC combines the sen-
sitivity, in our case the probability of correctly classifying
a patient who will reach the minimal important differ-
ence (MID), and its specificity, i.e. the probability of cor-
rectly classifying a case that will stay below MID. The
AUROC combines both characteristics at different prob-
ability cutoff points. It has certain advantages compared
with overall accuracy, e.g. it is not dependent on deci-
sion thresholds or prior class probabilities [45]. It ranges
from 0.5 (random predictor) to 1 (perfect predictor). To
validate our models and to detect possible overfitting,
we test the classifiers with surgery outcomes of the
2016/2017 full data release for both procedures. Since
neither cost nor utility nor loss functions for the test
characteristics (confusion matrix) are available, we value
sensitivity (true positives / (true positives + false nega-
tives); the proportion of people correctly predicted to
have improvement among all patients who have improve-
ment) and specificity (true negatives / (true negatives +
false positives); the proportion of people correctly pre-
dicted to have no improvement among all patients who
have no improvement) the same. We also provide the
Youden J-statistic [46] (Sensitivity + Specificity – 1) for
each training model. The statistic is calculated across dif-
ferent thresholds (0 to 1 by steps of 0.05) and allows
selecting the threshold that maximizes the sum of sensi-
tivity and specificity. It ranges from − 1 to + 1 and a higher
score is considered better. For the validation models we
also report other common metrics like positive predictive
value/precision (the proportion of patients correctly pre-
dicted to have improvement compared with all patients
predicted to have improvement), negative predictive value
(the proportion of patients who are correctly predicted to
have no improvement compared with all patients pre-
dicted to have no improvement), F1-score (2 * (Recall *
Precision) / (Recall + Precision); a balanced average of
precision and sensitivity) and balanced accuracy (0.5 *
(true positives / N positives + true negatives / N negatives);
the average proportion of correctly classified cases across
patients with actual improvement and no improvement).
Overfitted models predict outcomes based on spurious

correlations or random noise and have poor fit with un-
seen data. To avoid overfitting, we used five-fold re-
peated cross-validation (CV). For five-fold CV, data are
split into five equally big parts. One part is retained and
the other four parts are used for training. Once training
is finished, model performance is tested with the
retained part. This is iterated until each of the parts has
been used for validation once. Seeds were set to make
results reproducible and models comparable.
Variable importance is a concept to indicate the im-

portance of each variable for the predictive performance

of the model. For example, in the case of extreme gradi-
ent boosting, the importance is calculated by permuting
each predictor variable and summing the importance
(change in accuracy) over each boosting iteration [47].
The scaled importance ranges from 0 (unimportant vari-
able) to 100 (most important variable). We calculate
variable importance for models where the function is
available, namely extreme gradient boosting, multistep
elastic net, random forest, neural net and linear model.

Performance comparison
For validation and comparison purposes we benchmark
one of our high performing hip models against the hip
prediction model used by the NHS (predictions of the
NHS model are included in the released dataset). The
NHS model [48] is a linear regression model that has ac-
cess to more detailed variables (e.g. age instead of age
groups). Since it predicts actual postoperative outcome
values, we use two different approaches to benchmark
performance. First, we transform the absolute NHS pre-
dictions into binary form, by evaluating if the predicted
postoperative value reaches MID (= improvement) or
not (= no improvement). Second, we calculate our own
regression model based on the respective implementa-
tion used for the first comparison, via 10-fold cross val-
idation (3 repetitions) and we compare it against the
regression results of the NHS model. Comparison met-
rics for the regression models are root mean squared
error (RMSE) and mean absolute error (MAE).

PROMs
The NHS uses the EQ-5D-3L [25] including its VAS, the
OHS [26] and the OKS [27] to collect PROMs for hip
and knee replacement surgery. The EQ-5D-3L is a
widely accepted and validated instrument to measure
HRQoL. It consists of five questions, also called dimen-
sions, and the VAS. The five dimensions include mobil-
ity, self-care, usual activities, pain/discomfort and
anxiety/depression. The survey taker has three answer
possibilities (no problems, some/moderate problems, un-
able to or extreme problems). Moreover, the survey
taker is asked to mark his current health state on the
VAS. The VAS ranges from 0 (worst imaginable health
state) to 100 (best imaginable health state). The VAS
measures a broader construct of health and is closer to
the patient perspective than population based value sets
that are normally used to transform health states. Ox-
ford Hip Score (OHS) as well as Oxford Knee Score
(OKS) are hip and knee specific instruments to measure
disease-specific HRQoL. They consist of 12 questions
with five answer possibilities. Values from 0 (severe) to 4
(none) are assigned to each answer and get summed up
to the Q score. The sum score grades are 0–19, 20–29,
30–39 and 40–48 points and can be translated to
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severe/moderate/mild-to-moderate arthritis and satisfac-
tory joint function. Patients complete the preoperative
survey in the interval between having an appointment/
being fit for surgery and the procedure. The time lag be-
tween pre- and postoperative questionnaires is at least 6
months. The surveys are voluntary and the response rate
is around 75%.

Minimal important differences (MIDs)
MIDs describe the change of a measure that is detect-
able by the patient. MIDs are not universally valid and
vary by patient group and instrument [49]. Several ways
to calculate MIDs for PROMs exist. They include
anchor-based methods, clinical-trial-based methods as
well as distribution-based methods [50]. 0.5 standard de-
viations were found to approximate MIDs for HRQoL in
chronic diseases very well [51]. Since we had no clinical
data, we used half a standard deviation of baseline pre-
operative VAS as MID. This resulted in VAS MIDs of 11
(hip) and 10 (knee). Using multiple anchor-based ap-
proaches, a study from Denmark calculated hip MIDs
that ranged from 5 to 23 [52]. Our MID is within this
range. The individual MIDs for OHS and OKS were
taken from literature, they were 8 and 7 respectively
[53].

Results
Table 1 depicts sociodemographic data and patient per-
ception before and after surgery. In total, 30,524 obser-
vations for hip and 34,110 observations for knee
replacement surgery were included from the training
dataset 2015/2016. 59.7 and 56.44% of patients were fe-
male, respectively. Over 70% of hip and knee surgery pa-
tients were between 60 and 79 years of age. Around 7 to 8%
had related surgery before. The majority of both patient
groups considered themselves to have a disability. On aver-
age, patients before hip replacement had lower generic
(64.85) and disease specific (18.47) health perception com-
pared with patients before knee replacement (68.18; 19.34)
but average postoperative outcomes were higher for hip pa-
tients. The numbers for the testing dataset 2016/2017 are
comparable. Only slightly more surgeries were done in
2016/2017 and the percentage of people withVAS improve-
ment increased by around 2 percentage points.
The histogram (Fig. 1) illustrates postoperative

changes (postoperative response minus preoperative re-
sponse) for both outcomes and procedures. The blue,
dashed lines depict MIDs. Outcomes are distributed
widely and while only a minority of patients have VAS
improvements ranging above MIDs, a clear majority of
patients perceive relevant improvements of Q scores.
Box plots of model performance (Fig. 2) depict

AUROC for the VAS and Q score prediction models fol-
lowing hip replacement. For both outcomes, extreme

gradient boosting delivered the best AUROC (0.87; 0.78).
However, other models followed closely, especially the
multistep elastic net and the linear model. Overall,
models had higher predictive performance for VAS re-
sults than for Q score. Model outcome variation was

Table 1 Demographics and health perception of hip and knee
patients

Hip replacement surgery 2015/2016 2016/2017

Observations 30,524 31,905

Female 18,224 (59.7%) 19,009 (59.58%)

Age band (years)

20 to 29 5 (0.02%) 0

30 to 39 22 (0.07%) 0

40 to 49 576 (1.89%) 457 (1.43%)

50 to 59 3819 (12.51%) 4204 (13.18%)

60 to 69 10,633 (34.83%) 10,898 (34.16%)

70 to 79 11,607 (38.03%) 12,179 (38.17%)

80 to 89 3844 (12.59%) 4130 (12.94%)

90 to 120 18 (0.06%) 37 (0.12%)

Previous hip-replacement surgery 2481 (8.13%) 1587 (4.97%)

Disability 16,654 (54.56%) 16,899 (52.97%)

Mean preoperative VAS score 64.85 (±21.94) 64.35 (±22.30)

Mean postoperative VAS score 76.91 (±18.17) 77.61 (±17.66)

Mean preoperative Q score 18.47 (±8.34) 18.19 (±8.31)

Mean postoperative Q score 39.66 (±8.62) 39.74 (±8.65)

Patients with improvement (VAS) 13,321 (43.64%) 14,512 (45.49%)

Patients with improvement (Q score) 27,636 (90.54%) 29,026 (90.98%)

Knee replacement surgery 2015/2016 2016/2017

Observations 34,110 34,406

Female 19,253 (56.44%) 19,483 (56.63%)

Age band (years)

40 to 49 43 (0.13%) 19 (0.05%)

50 to 59 3368 (9.87%) 3552 (10.32%)

60 to 69 13,025 (38.19%) 12,716 (36.96%)

70 to 79 13,849 (40.60%) 13,974 (40.62%)

80 to 89 3825 (11.21%) 4145 (12.05%)

90 to 120 0 0

Previous knee-replacement surgery 2348 (6.88%) 1194 (3.47%)

Disability 17,964 (52.66%) 17,576 (51.08%)

Mean preoperative VAS score 68.18 (±20.24) 67.86 (±20.36)

Mean postoperative VAS score 74.27 (±18.61) 74.81 (±18.40)

Mean preoperative Q score 19.34 (±7.79) 19.32 (±7.71)

Mean postoperative Q score 35.60 (±9.51) 35.83 (±9.37)

Patients with improvement (VAS) 11,037 (32.08%) 11,679 (33.94%)

Patients with improvement (Q score) 28,657 (84.01%) 29,096 (84.57%)

Percentage or standard deviation in brackets

Huber et al. BMC Medical Informatics and Decision Making            (2019) 19:3 Page 4 of 13



lower for VAS results. K-Nearest Neighbors had the low-
est AUROC for both evaluations.
The AUROC of VAS models following knee replace-

ment (Fig. 3) were slightly lower compared with the re-
spective hip models. Extreme gradient boosting,
multistep elastic net and the linear model delivered the
highest median AUROC and were closely trailed by ran-
dom forest and neural net, which had an AUROC of
around 0.83. Linear model, multistep elastic net and ex-
treme gradient boosting had the highest median AUROC
(0.71) for post-operative Q score.
Table 2 depicts key performance metrics of the three

models with the highest J-statistic for each outcome. The
optimal probability thresholds to maximize J-statistic
ranged between 0.45 and 0.55. The highest validated

J-statistic for each outcome was 0.59 (hip VAS), 0.42 (hip
Q score), 0.57 (knee VAS) and 0.31 (knee Q score). Across
both procedures and both outcomes, extreme gradient
boosting delivered the highest J-statistic, while multistep
elastic net, neural net and the linear model followed
closely. Among the three models with the highest
J-statistic, extreme gradient boosting delivered the highest
or equally good F1 scores as well as balanced accuracy as
the second best model. Overall, the performance margin
was very small and it was easier to predict VAS than Q
score improvement, especially for knee replacement sur-
gery. An overview of all performance metrics for all eight
models can be found in Additional file 1.
Figure 4 illustrates variable importance of several

models for hip replacement surgery and both outcomes.

Fig. 1 Histograms for postoperative outcome change, VAS and Q score, both procedures, training data. Note: MID depicted as dashed blue line
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Preoperative VAS is the most important predictor for
postoperative VAS. Preoperative Q score and Q score di-
mensions, especially the limping question, were the most
important predictors for postoperative Q score respect-
ively. Neural net and linear model show greater reliance
on dimensional variables.
Figure 5 depicts the variable importance of several

models for knee replacement surgery and both out-
comes. Again, preoperative VAS, preoperative Q score
and Q score dimensions, especially the limping question,
were the most important variables for each outcome
respectively.

Discussion
This evaluation unveiled three main findings. First, ex-
treme gradient boosting, linear model, multistep elastic

net and neural net delivered the highest J-statistic and
thus, represent the most robust real world benchmark
for one year hip and knee PRO. Second, preoperative
VAS, Q score and Q score dimensions were the most
important predictors for each respective outcome. Third,
it is easier to predict generic VAS than disease-specific
Q score and it is easier to predict hip Q score than it is
to predict knee Q score.

Predictive performance and adaptability
The performance margin between the top models was
small but extreme gradient boosting delivered the high-
est overall J-statistic for the four prediction tasks. Ex-
treme gradient boosting is a very versatile algorithm that
has been found to perform very well in different ma-
chine learning challenges [54]. Its high predictive

Fig. 2 Boxplots, training results (AUROC), postoperative VAS (left) and Q score (right), all models, hip replacement surgery. Note: Outliers depicted
as blue dots. XGB: Extreme gradient boosting, MSAENET: Multi-step elastic-net, LM: Linear model, RF: Random forests, NNET: Neural net, LB:
Logistic boost, NB: Naïve Bayes, KNN: K-nearest neighbors

Fig. 3 Boxplots, training results (AUROC), postoperative VAS (left) and Q score (right), all models, knee replacement surgery. Note: Outliers
depicted as blue dots; XGB: Extreme gradient boosting, MSAENET: Multi-step elastic-net, LM: Linear model, RF: Random forests, NNET: Neural net,
LB: Logistic boost, NB: Naïve Bayes, KNN: K-nearest neighbors
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performance has also been documented for other clinical
prediction scenarios like in hip fractures [55], urinary
tract infections [56], imaging-based infarcts [57], bio-
active molecules [58] and quantitative structure-activity
relationships [59]. Due to the ease of implementation
and relatively low computing times, compared with
other machine learning algorithms, extreme gradient
boosting can serve as an alternative to traditional
methods or as benchmarking instrument. For our data,
the NHS model delivers a sensitivity of 0.77 and a speci-
ficity of 0.80. Our extreme gradient boosting model de-
livers a sensitivity of 0.82 and a specificity of 0.77
(J-statistic 0.57 vs. 0.59). For hip Q scores the extreme
gradient boosting model also outperforms the NHS pre-
dictions for sensitivity but not specificity (Sensitivity:
0.44 vs. 0.79; specificity: 0.77 vs. 0.63). However, the
J-statistic difference is significantly higher (0.21 vs. 0.41).
In a next step, we calculated an extreme gradient boost-
ing regression model for the respective data via 10-fold
cross validation (3 repetitions). It outperformed the lin-
ear model regarding RMSE (16.10 vs. 16.26 for VAS and
7.61 vs. 7.79 for OHS) and MAE (VAS: 11.89 vs. 12.25;
OHS: 5.75 vs. 6.15). Overall, despite only incorporating a
restrictive set of variables, our model performs slightly
better than the predictions provided in the NHS data-
sets. This confirms robustness of our models.
Extreme gradient boosting provides several hyperpara-

meters (eta, max_depth, colsample_bytree, subsample,
nrounds) that can be tuned to improve model perform-
ance. Since we only used the standard grid search pa-
rameters, performance gains are still possible. Naïve
Bayes and KNN delivered only relative low J-statistics.

The Naïve Bayesian classifier tended strongly towards
sensitivity for all outcomes (0.99, 0.83, 0.99, and 0.87)
but had reduced specificity. Decision makers should be
aware that utility, cost or loss functions are needed to
optimize models for most clinical scenarios and that
blindly following AUROC results or J-statistics does not
guarantee finding the best classifier for each respective
task. Assuming a patient has severe knee or hip pain,
suffers from very low HRQoL and, to allow further sim-
plification, only has one opportunity for respective sur-
gery. In this case, prediction models should avoid false
negatives and maximize sensitivity, since a patient who
greatly benefits from surgery but is predicted not to do
so, will suffer significantly from this decision (assuming
the surgery decision is based on the prediction), espe-
cially when surgery is only possible now but not in the
future. However, the easiest way to avoid false negatives
is to maximize sensitivity by always predicting improve-
ment for all patients (sensitivity = 100%, false negatives
= 0%), irrespective of actual outcome. This is not realis-
tic for most clinical scenarios however, because a high
number of false positives is normally associated with
risks (e.g. postoperative disability), disutilities and losses.
Consequential, sensitivity and specificity should not be
viewed alone. Patient and doctor preferences as well as
the surgery situation have to be accounted for before
model selection.
Speaking more broadly, outcome valuation depends on

aims and risk attitude of the patient, in assuring that im-
provements are being achieved, or deterioration or lack
of change are being avoided. The advantage of machine
learning is that different algorithms or implementations

Table 2 Key performance metrics of the best three models based on J-statistic, all outcomes

Hip replacement surgery Knee replacement surgery

VAS Q score VAS Q score

Model xgbTree msaenet neural net xgbTree msaenet glm xgbTree msaenet glm xgbTree msaenet glm

Training

AUC 0.87 0.87 0.86 0.78 0.78 0.78 0.87 0.86 0.86 0.71 0.71 0.71

Best threshold 0.5 0.45 0.55 0.5 0.5 0.5 0.5 0.45 0.45 0.5 0.5 0.5

Sensitivity 0.81 0.79 0.81 0.78 0.76 0.76 0.82 0.79 0.79 0.70 0.69 0.69

Specificity 0.76 0.77 0.76 0.64 0.67 0.67 0.73 0.76 0.76 0.59 0.61 0.61

J-statistic 0.57 0.57 0.57 0.42 0.43 0.43 0.56 0.56 0.56 0.29 0.30 0.30

Testing

Sensitivity 0.82 0.72 0.84 0.79 0.78 0.77 0.83 0.70 0.71 0.70 0.70 0.70

Specificity 0.77 0.85 0.73 0.63 0.64 0.65 0.73 0.83 0.83 0.61 0.61 0.62

Pos Pred Value 0.75 0.79 0.72 0.96 0.96 0.96 0.62 0.69 0.68 0.91 0.91 0.91

Neg Pred Value 0.84 0.78 0.85 0.23 0.22 0.22 0.89 0.85 0.85 0.27 0.27 0.27

F1 0.78 0.75 0.78 0.86 0.86 0.85 0.71 0.69 0.69 0.79 0.79 0.79

Balanced Accuracy 0.79 0.78 0.79 0.71 0.71 0.71 0.78 0.77 0.77 0.66 0.66 0.66

J-statistic 0.59 0.56 0.58 0.42 0.42 0.42 0.57 0.54 0.54 0.31 0.31 0.31

Huber et al. BMC Medical Informatics and Decision Making            (2019) 19:3 Page 7 of 13



can deliver higher predictive performance than trad-
itional methods. While machine learning excels at hand-
ling huge amounts of predictors and combining them in
non-linear, interactive ways [60, 61], linear models may
still be a practical option for restrictive data with linear
relationships between variables. By using more versatile,
non-linear patient data, performance metrics of respect-
ive machine learning models will likely improve. It

should be noted that for a comparable analysis with lon-
ger follow-up periods and less restrictive data with more
variables, computing time will increase superlinearly.
Hardware needs should therefore be accounted for.
Since we only used the standard grid search ap-
proach, performance gains are still possible, by fine-
tuning associated hyperparameters. Additional training
years will also lead to better predictive performance.

Fig. 4 Needle plot of scaled variable importance, several models, hip replacement surgery, top ten variables. Note: Importance does not indicate
absolute effect or direction
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Variable importance
Many machine-learning algorithms can reach very high
predictive performance but don’t solve the problem of
causal inference. However, both, traditional methods and
machine learning, point us towards meaningful medical
conclusions [62]. For example, when overweight is of
high importance, doctors may counsel patients to lose
weight. While it would be desirable to understand the
underlying principles and causative variables of perfect

prediction models, it is no requirement to use respective
models for SDM. The prediction itself provides inherent
value by supplementing available evidence. While infer-
ence and machine learning are often viewed as separated
entities, variable importance of machine learning classifiers
is used for the evaluation of a wide variety of different re-
search objectives. They include healthcare spending [63],
identification of biomarkers for knee osteoarthritis [64],
microarray studies [65], credit default risk of enterprises

Fig. 5 Needle plots of scaled variable importance, VAS and Q score, knee replacement surgery, top ten variables. Note: Importance does not
indicate absolute effect or direction
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[66], energy performance of buildings [67] or even landslide
susceptibility modeling [68]. By providing the variable im-
portance of five different models, we illustrated the predict-
ive importance of preoperative VAS and Q score as well as
respective dimensions. Vogl et al. 2014 [69] and other
studies [70, 71] confirm the importance of preoperative
HRQoL for postoperative HRQoL. The likely reason is that
patients with low preoperative HRQoL can benefit signifi-
cantly from respective surgery, while patients with high pre-
operative HRQoL cannot or can only improve slightly. The
university of York developed an informed clinical decision
tool to predict improvement for hip and knee replacement
surgery that also strongly relies on preoperative EQ-5D-3L
index as well as age, gender and symptom duration [72].
The Pearson correlation for preoperative and postoperative
hip VAS, hip Q score, knee VAS, knee Q score was 0.33,
0.30, 0.40 and 0.39 respectively. This indicates a moder-
ate correlation. For testing purposes, we calculated the
AUROC for extreme gradient boosting and all out-
comes by only using preoperative VAS or Q score. The
highest AUROCs for hip and knee VAS were 0.85 and
0.82 (preoperative VAS only), compared with 0.87 and
0.87 for all variables. As indicated by Figs. 4 and 5, pre-
dictive performance for Q score is more reliant on
multivariate data. To validate this finding we calculated
univariate AUROCs by using preoperative Q score only.
This yielded maximum AUROCs of 0.69 (univariate
preoperative hip Q score) and 0.62 (univariate pre-
operative knee Q score), while the original multivariate
AUROCs were 0.78 and 0.71 respectively. This wider
difference confirms that Q score models are less reliant
on the preoperative Q score and require additional vari-
ables to reach optimal results. It should be noted that
variable importance can be calculated in different ways
for different models. Some methods, under specific cir-
cumstances and especially for random forests, can intro-
duce bias and artificial variable selection, while random
permutations can cause additional issues [73, 74]. How-
ever, the ranking of our top variables was constant among
different runs, we included several different models with
different methods and univariate analysis confirmed their
importance.

Differences between hip and knee replacement
Compared with the average knee replacement surgery
patient, the average hip replacement surgery patient has
lower preoperative VAS (64.85 vs. 68.18) and Q score
(18.47 vs. 19.34) but also has better improvement follow-
ing surgery (+ 12.06 vs. + 6.09 for VAS and + 21.19 vs.
16.26 for Q score). 6.09 is below our respective MID,
meaning that the average patient does not reach relevant
generic improvement. However, average Q score change is
significantly above the respective MID, indicating that
relevant disease-specific improvement is present following

surgery. Thus, the choice of HRQoL instrument has sig-
nificant influence on outcome achievement. Greater im-
provement with hip replacement falls in line with other
research [75, 76] and is likely based on the greater com-
plexity of knee replacement surgery. We also showed that
predicting VAS results (AUROC of around 0.87 for hip
and 0.87 for knee) is easier than predicting Q scores
(AUROC of around 0.78 for hip and 0.70 for knee). One
explanation for this difference is the nature of both instru-
ments. VAS results represent a generic summary of health
perception and consequentially should be less sensitive to
disease-specific influences, as shown by our evaluation.
Despite ranging from 0 to 100, VAS results on average,
only improve 6 and 12 points, while Q scores, ranging
only from 0 to 48, improve by 16 and 21 points respect-
ively. Nevertheless, VAS outcomes represent a more holistic
approach that may account for aspects of disease, which
are not directly addressed via disease-specific instruments.

Clinical relevance
One important way to support shared decision-making
is to provide patients and doctors with highly accurate
prediction models for relevant outcomes. From a patient
perspective, relevant outcomes in osteoarthritis include
HRQoL as well as contextual barriers, treatment disad-
vantages and consequences for personal life [77]. Our
evaluation focused on HRQoL, since it resembles an
overall aggregate of patient health perception. When
clinicians want to predict postoperative HRQoL, they
can rely on either personal expertise, average patient
results or individual prediction models. These predic-
tion models should incorporate significant numbers of
population-based surgery observations from a real-
world context in order to be representative. Our mo-
dels incorporate data of over 60,000 recent hip and
knee replacement surgeries from a real world, routine
care, population-based registry and we apply different
algorithms/implementations to reach high predictive
performance. By delivering real-world benchmarks, re-
sults from our models supplement clinical expertise
and thus, may contribute to shared-decision making.
Clinicians should be aware that predictive performance
of our models can be improved further by using more
detailed clinical data (e.g. ASA class, blood values, BMI
etc.) that were not available for the conduct of this
study but that are typically gathered before elective sur-
gery, also on a routine basis. We further showed that
preoperative PROMs are the most important predictors
for postoperative PROMs. The underlying PROMs
can be gathered easily in clinical settings on a routine
basis though limitations do exist [78]. The two small
self-explanatory surveys are filled out in a few mi-
nutes or less and do not require any previous know-
ledge by the patient.
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Another aspect of clinical relevance of this study is
that PROMs-based quality of care improvement requires
defined standards on postoperative PROMs change [79].
By providing individual outcome estimations, we deliver
a more (VAS) or less (Q score) reliable standard to in-
corporate PROMs into clinical quality of care control.

Sensitivity analysis
Different methods exist to calculate MIDs. To evaluate
the influence of MID on model performance we con-
ducted several univariate sensitivity analyses, in a first
example, for hip VAS patients. Since MID selection in-
fluences the proportion of patients who can achieve
MID-based improvement, we also tested the influence of
removing respective patients from the dataset. A patient
with preoperative VAS score of 90 is not able to achieve
postoperative gains greater than 10. Thus, selecting
higher MIDs results in less patients being able to achieve
improvement, supposedly making it easier for models to
predict the correct outcome by only incorporating pre-
operative VAS score. Our first sensitivity analysis (Add-
itional file 2) concerned patients with hip replacement
and tested a MID of 23 for EQ-5D-3L VAS that was
stated in a Danish study by Paulsen et al. 2014 [52]. This
improved the AUROCs of the best five models to 0.91/
0.92 (compared with 0.86/0.87 before; MID = 11). This
gain is not surprising, since significantly less patients
can achieve this MID. Removing all patients not able to
achieve MID, reduced respective AUROCs to 0.83/0.84
for the best five models (Additional file 3) and reduced
the number of observations to 19,716. Taking the ex-
ample of our main evaluation and filtering all patients
who could not achieve a VAS MID of 11 resulted in
25,606 remaining observations and AUROCs of the best
models ranging around 0.81/0.82 (Additional file 4). MID
selection, filtering of patients and number of observations
all have significant influence on model performance.

Limitations
Strengths of this study include the wide variety of algo-
rithms that were applied for evaluation as well as the
testing of specific probability thresholds to find the best
classifier. By reporting the J-statistic, we go beyond
AUROC calculation and show maximal performance
when sensitivity and specificity are valued the same.
Moreover, the incorporation of generic and disease-specific
outcomes for both, hip and knee replacement surgery, gave
insights for both instruments and both procedures.
One limitation of this study is the lack of controls. It

was not possible to model patient trajectories without
surgery. It is unknown, if a patient has no improvement
because of surgery or if surgery prevented an otherwise
significant deterioration of health outcome. The lack of
long-term data made it impossible to make long-term

predictions. Some patients will only have temporary im-
provement and long-term data are needed to evaluate
this issue. Moreover, we only evaluated a binary outcome
(improvement/no improvement) but patients may want
to know the degree of improvement or deterioration.
This could be investigated in future research but results
and associated uncertainty are more difficult to apply in
shared decision-making. We had no utility, loss or cost
function to optimize model metrics because costs were
not available and utilities change by patient. Due to priv-
acy concerns, public NHS PROMs data are restrictive
and do not reflect clinical precision and versatility. For
example, age bands in NHS data cover 10-year time
spans and other variables like rehabilitation, BMI or al-
lergies, despite having been found to influence knee and
hip replacement outcomes [80–83], are completely miss-
ing. Incorporating respective data will likely improve
predictive performance of models. Furthermore, between
pre- and postoperative patient reports, response shift
has been observed in the UK PROMs data which poten-
tially reduces patient’s gain but could not further be ana-
lyzed here [84]. Conflicting evidence regarding the validity
of self-reported patient data exists [85, 86]. However, a
rigorous recent study concluded that patient reporting
provides similar and less costly information compared
with medical records [87]. Moreover, comorbidities in
hospital medical records are often based on self-report as
well, since clinical validation is mostly not feasible. When
we ensembled all models linearly for both procedures and
both outcomes (not shown here), the resulting AUROC
was either worse or only minimally better (third decimal
place) than for single models alone. Ensembling of differ-
ent models was not the focus of this study and thus, we
refrained from adding additional uncertainty.

Conclusion
We provide robust real world benchmarking results for
the prediction of PROMs-based postoperative hip and
knee replacement surgery outcomes. Extreme gradient
boosting delivered the highest overall J-statistic among all
models. Linear model, multistep elastic net and neural net
followed closely. One strength of machine learning models
is their adaptability to different clinical scenarios where
certain levels of sensitivity or specificity are needed. Pre-
operative VAS, Q score and specific instrument dimen-
sions like lumping, were the most important predictors
for hip and knee replacement surgery PROMs.

Additional files

Additional file 1: Performance metrics including J-statistic, training and
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Additional file 2: Univariate increase of VAS MID to 23, hip replacement
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