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An atlas of the aging lung mapped by single cell
transcriptomics and deep tissue proteomics
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George Tsitsiridis2, Meshal Ansari1,2, Elisabeth Graf3, Tim-Matthias Strom3, Monica Nagendran4,

Tushar Desai 4, Oliver Eickelberg 5, Matthias Mann 6, Fabian J. Theis 2,7 & Herbert B. Schiller1

Aging promotes lung function decline and susceptibility to chronic lung diseases, which are

the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass

spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell

types and chart the lung proteome of young and old mice. We show that aging leads

to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell

type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2

pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells

as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old

mice, including increased collagen IV and XVI and decreased Fraser syndrome complex

proteins and collagen XIV. Computational integration of the aging proteome with the single

cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased

reference map of the aging lung.
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The intricate structure of the lung enables gas exchange
between inhaled air and circulating blood. As the organ
with the largest surface area (~70m2 in humans), the lung

is constantly exposed to a plethora of environmental insults. A
range of protection mechanisms are in place, including a highly
specialized set of lung-resident innate and adaptive immune cells
that fight off infection, as well as several stem and progenitor cell
populations that provide the lung with a remarkable regenerative
capacity upon injury1. These protection mechanisms seem to
deteriorate with advanced age, since aging is the main risk factor
for developing chronic lung diseases, including chronic obstruc-
tive pulmonary disease (COPD), lung cancer, and interstitial lung
disease2,3. Advanced age causes a progressive impairment of lung
function even in otherwise healthy individuals, featuring struc-
tural and immunological alterations that affect gas exchange and
susceptibility to disease4. Aging decreases ciliary beat frequency
in mice, thereby decreasing mucociliary clearance and partially
explaining the predisposition of the elderly to pneumonia5.
Senescence of the immune system in the elderly has been linked
to a phenomenon called ‘inflammaging', which refers to elevated
levels of tissue and circulating pro-inflammatory cytokines in the
absence of an immunological threat6. Several previous studies
analyzing the effect of aging on pulmonary immunity point to
age-dependent changes of the immune repertoire as well as
activity and recruitment of immune cells upon infection and
injury4. Vulnerability to oxidative stress, pathological nitric oxide
signaling, and deficient recruitment of endothelial stem cell pre-
cursors have been described for the aged pulmonary vasculature7.
The extracellular matrix (ECM) of old lungs features changes
in tensile strength and elasticity, which were discussed to be
a possible consequence of fibroblast senescence8. Using atomic
force microscopy, age-related increases in stiffness of par-
enchymal and vessel compartments were demonstrated recently9;
however, the causal molecular changes underlying these effects
are unknown.

Aging is a multifactorial process that leads to these molecular
and cellular changes in a complicated series of events. The hall-
marks of aging encompass cell-intrinsic effects, such as genomic
instability, telomere attrition, epigenetic alterations, loss of
proteostasis, deregulated nutrient sensing, mitochondrial dys-
function, and senescence, as well as cell-extrinsic effects, such
as altered intercellular communication and extracellular matrix
remodeling2,3. The lung contains potentially at least 40 distinct
cell types10, and specific effects of age on cell-type level have
never been systematically analyzed.

In this study, we build on rapid progress in single-cell
transcriptomics11,12 which recently enabled the generation of
a first cell-type resolved census of murine lungs13, serving as a
starting point for investigating the lung in distinct biological
conditions as shown for lung aging in the present work. We
computationally integrate single-cell signatures of aging with
state-of-the-art whole lung RNA-sequencing (RNA-seq) and
mass spectrometry-driven proteomics14 to generate a multi-omics
whole organ resource of aging-associated molecular and cellular
alterations in the lung.

Results
Lung aging atlas reveals deregulated transcriptional control. To
generate a cell-type resolved map of lung aging we performed
highly parallel genome-wide expression profiling of individual
cells using the Dropseq workflow15 which uses both molecule and
cell-specific barcoding, enabling great cost efficiency and accurate
quantification of transcripts without amplification bias16. Single-
cell suspensions of whole lungs were generated from 3-month-old
mice (n= 8) and 24-month-old mice (n= 7). After quality

control, a total of 14,813 cells (7672 young, 7141 old) were used
for downstream analysis (Fig. 1a). Quality metrics including
number of unique molecular identifiers (UMI), genes detected per
cell, and reads aligned to the mouse genome were comparable
across mice (Supplementary Fig. 1a–c). To ensure that cell-type
discovery is not confounded by aging effects, we only used highly
variable genes between cell types (see Methods for details).
Unsupervised clustering analysis revealed 36 distinct clusters
corresponding to 30 cell types, including all major known epi-
thelial, mesenchymal, and leukocyte lineages (Fig. 1b, c). We
observed very good overlap across mouse samples (Silhouette
coefficient: −0.074) and most clusters were derived from >70%
of the mice of both age groups (Supplementary Fig. 1d and e).
The definition of cell types (clusters in t-distributed stochastic
neighbor embedding (tSNE) map) was very comparable between
old and young mice, indicating that the cell-type identity was not
strongly confounded by the aging effects (Supplementary Fig. 1f).
Two clusters exclusively contained cells from a single mouse and
were removed from downstream analysis. Interestingly, we
identified even rare (<1%, 43 cells) cell types such as mega-
karyocytes, which were recently identified as an unexpected
tissue-resident cell type in mouse lung17. Of note, some samples
contributed as little as a single cell to this megakaryocyte cluster,
emphasizing the power and accuracy of the computational
workflow used here for data integration from multiple mice.

We used differential gene expression analysis to determine cell
type-specific marker genes with highly different levels between
clusters (Fig. 1c, Supplementary Data 1). The clusters were
annotated with assumed cell-type identities based on (1) known
marker genes derived from expert annotation in literature and
(2) enrichment analysis using Fisher’s exact test of gene
expression signatures of isolated cell types from databases
including ImmGen18 and xCell19. Correlation analysis of marker
gene signatures revealed that similar cell types clustered together,
implying correct cell-type annotation (Fig. 1c).

We used the matchSCore tool20 to compare the cluster
identities of our dataset with the lung data in the recently
published Mouse Cell Atlas (MCA)13, and found very good
agreement in cluster identities and annotations (Supplementary
Fig. 2a). Moreover, when comparing our cluster identities to the
MCA peripheral blood data, only weak correspondence was
observed (Supplementary Fig. 2b), which was similar in the MCA
peripheral blood versus MCA lung comparison (Supplementary
Fig. 2c). One notable exception in this comparison is the
cluster of red blood cells in our dataset which achieved high
correspondence with the MCA peripheral blood cluster annotated
as Erythroblast_Hbb-a2_high. The red blood cells serve as a
control and illustrate matchSC values for a correct overlap
(Supplementary Fig. 2d). Taken together, these findings indicate
that very little blood-derived contamination was present.

Additionally, we noticed one cluster of mainly proliferating
cells showing high expression levels for S and G2M cell-cycle
marker genes (Supplementary Fig. 3a and b). Young mice showed
a higher fraction of cells in this cluster compared to old mice
(Supplementary Fig. 3c; Generalized linear binomial model, p <
0.001). Next, we isolated this cluster and corrected the gene
expression levels for cell-cycle phase (Supplementary Fig. 3 d and
e). Subsequent unsupervised clustering analysis revealed that
these proliferating cells belong to T cells, type-2 pneumocytes,
and alveolar macrophages (Supplementary Fig. 3f–i).

It was suggested that aging is a consequence of increased
transcriptional instability rather than the result of a coordinated
transcriptional program, and that an aging-associated increase
in transcriptional noise can lead to fate drifts and ambiguous cell-
type identities21,22. Therefore, we quantified transcriptional noise
following previous work22 and accounted for differences in total
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UMI counts and cell-type frequencies (see Methods for details).
We observed an increase in transcriptional noise with aging in
most cell types (Fig. 2a). To further exclude technical confound-
ing we additionally averaged the transcriptional noise scores
per mouse and obtained highly concordant results (Fig. 2b). To
further substantiate this finding we quantified transcriptional
noise in an alternative manner using Spearman's correlations
between cells. This analysis confirmed our finding that transcrip-
tional noise is increased with aging (Fig. 2c, d) and is in line
with previous reports in the human pancreas22 or mouse CD4+
T cells21.

Multi-omics data integration of mRNA and protein. To vali-
date the completeness of our single-cell RNA-sequencing
(scRNA-seq) data and capture age-dependent alterations in both
mRNA and protein content for the whole lung, we generated two
additional cohorts of young and old mice (Fig. 3a, Supplementary
Figure 4 and Supplementary Data 2): (1) bulk RNA-seq data of
three replicates of young (3 months) and old mice (22 months)
and (2) state-of-the-art shotgun proteomics data of four replicates
of young (3 months) and old mice (24 months). To compare the
whole lung bulk transcriptome with single-cell data we generated
in silico bulk samples from the scRNA-seq data by summing
expression counts from all cells for each mouse individually
(Supplementary Data 2). Differential gene expression analysis
from in silico bulks and real whole lung bulk sequencing revealed
a total of 2362 and 9245 differentially expressed genes (negative

binomial generalized linear model, false discovery rate (FDR)
<10%) between the two age groups, respectively (Supplementary
Fig. 4a, b, Supplementary Data 2). From whole lung tissue pro-
teomes we quantified 5212 proteins across conditions and found
213 proteins to be significantly regulated with age (two-sided t-
test, FDR < 10%, Supplementary Fig. 4c, Supplementary Data 2).
We observed very good agreement between the real and in silico
bulk data, thus excluding strong biases by the single-cell isolation
procedures (Fig. 3b). Furthermore, we also observed strong cor-
respondence between the age-dependent alterations in all three
data sets (Fig. 3c), indicating that we were able to pick up robust
age-dependent changes with three independent experimental
settings. Significant correlation was observed between the gene-
level fold changes derived from RNA-seq, scRNA-seq, and pro-
tein expression data (Supplementary Fig. 4d–f).

Prediction of the upstream regulators23 of the observed
expression changes in either the transcriptome or proteome data
gave very similar results (Fig. 2d). In both datasets from
independent mouse cohorts, we discovered a pro-inflammatory
signature, which included upregulation of Il6, Il1b, Tnf, and Ifng,
as well as the downregulation of Pparg and Il10 (Fig. 2d).
Furthermore, to reveal common or distinct regulation of gene
annotation categories in the transcriptome or proteome, we
performed a two-dimensional annotation enrichment analysis24

(Supplementary Data 3). Again, most gene categories regulated by
age were showing the same direction in transcriptome and
proteome so that the positive Pearson's correlation of the
annotation enrichment scores was highly significant (Fig. 2e).
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We observed several hallmarks of aging, including a decline in
mitochondrial function and upregulation of pro-inflammatory
pathways (‘inflammaging´). Interestingly, we detected a strong
increase in immunoglobulins in both datasets, as well as higher
levels of major histocompatibility complex (MHC) class I, which
is consistent with the observed increase in the interferon pathway
(Fig. 2e). Many extracellular matrix genes, such as collagen III,
were downregulated on both the mRNA and protein levels, while
the levels of all basement membrane-associated collagen IV genes
were increased on the protein level, but decreased at the mRNA
level in both transcriptome datasets (Fig. 2f) and in proximity

ligation in situ hybridization of mRNA in tissue sections (Fig. 2g).
The differential regulation of collagen IV transcripts and proteins
highlights the importance of combined RNA and protein analysis.
We validated the increased protein abundance of collagen IV
using immunofluorescence and found that interestingly the main
increase in collagen IV in old mice was found around airways and
vessels (Fig. 2g).

Altered frequency of airway epithelial cells upon aging. Single-
cell RNA-seq can disentangle relative frequency changes of cell
types from real changes in gene expression within a given cell
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type. We analyzed age-dependent alterations of relative fre-
quencies of the 30 cell types represented in our dataset. Since the
cell-type frequencies are proportions, the data are compositional.
Therefore, it is impossible to statistically discern if a relative
change in cell-type frequency is caused by the increase of a given
cell type or the decrease of another. However, after performing
dimension reduction using multidimensional scaling of the cell-
type proportions, we observed a significant association between
the first coordinate and age (Fig. 4a, b; Wilcoxon test, p < 0.005),
indicating that cell-type frequencies differed between young and
old mice. Interestingly, the Dropseq data showed a relative
increase in ciliated cells in old mice so that the ratio of club to
ciliated cells was altered (Fig. 4c, d). Relative frequency differ-
ences in scRNA-seq data can be biased by tissue isolation

artifacts. We therefore validated the change in club to ciliated cell
proportions by deconvolving the whole lung bulk expression data
using our single-cell gene expression profiles (Fig. 4e). Indeed, we
found that the ciliated cell marker genes signature was sig-
nificantly upregulated in old compared to young mouse lungs
(Fig. 4f). Interestingly, this analysis also revealed marked increase
of various immune cell populations, including CD4+ and CD8+
T cells, eosinophils, and classical monocytes (Fig. 4e). We addi-
tionally validated this finding in situ by quantifying airway club
and ciliated cells using immunostainings of Foxj1 (ciliated cell
marker) and CC10 (club cell marker) (Fig. 4g). In addition, in this
analysis the ciliated cells were increased in old mice (Fig. 4h),
leading to a significantly altered ratio of club to ciliated cells in
aged mouse airways (Fig. 4i).
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Altered composition of the pulmonary extracellular matrix.
The ECM can act as a solid phase-binding interface for hundreds
of secreted proteins, creating an information-rich signaling tem-
plate for cell function and differentiation25. Alterations in ECM
composition and possibly architecture in the aging lung have
been suggested26, but experimental evidence using unbiased mass
spectrometry is scarce. From the 5138 proteins quantified in the
tissue proteome (Fig. 5a), we identified 32 Matrisome proteins
with significant change upon aging (two-sided t-test, FDR < 10%,
Fig. 5b, Supplementary Data 2). Collagen XIV, a collagen of the
FACIT (Fibril Associated Collagens with Interrupted Triple
helices) family of collagens that is associated with the surface of
collagen I fibrils and may function by integrating collagen bun-
dles27, was downregulated in old mice (Fig. 5b). Collagen XIV is a
major ECM binding site for the proteoglycan Decorin28, which
is known to regulate TGF-beta activity29,30. Interestingly, our
scRNA-seq data localized collagen XIV expression to interstitial
fibroblasts that together with mesothelial cells also expressed
Decorin and were distinct from the lipofibroblasts that showed
very little expression of this particular collagen (Fig. 5c). Thus, the
combination of tissue proteomics with single-cell transcriptomics
enabled us to predict the cellular source of the regulated proteins,
which can be explored in the online webtool (https://theislab.
github.io/LungAgingAtlas). In the webtool the cell-type specificity
of any gene query can be exported as dot plot in pdf format.

We previously developed the quantitative detergent solubility
profiling (QDSP) method to add an additional dimension of
protein solubility to tissue proteomes31–33. In QDSP, proteins are
extracted from tissue homogenates with increasing stringency
of detergents, which typically leaves ECM proteins enriched in
the insoluble last fraction. This enables better coverage of ECM
proteins and analysis of the strength of their associations with
higher-order ECM structures such as microfibrils or collagen
networks. We applied this method to young and old mice and
compared protein solubility profiles between the two groups
(Fig. 6a). Differential comparison of the solubility profiles
between young and old mice revealed 74 proteins, including 8
ECM proteins, with altered solubility profiles (two-way analysis of
variance (ANOVA), FDR < 20%) (Supplementary Data 4).

Using principal component analysis of 432 secreted extra-
cellular proteins we found that the protein solubility fractions
separated in component 1, while the age groups separated in
component 4 of the data (Fig. 6b). Thus, principal component
analysis enabled the stratification of secreted proteins by their
biochemical solubility and their differential behavior upon aging
(Fig. 6c). This analysis also showed that neither the abundance
nor the solubility of many ECM proteins, including collagen I and

basement membrane laminins, was altered (Fig. 6c). While the
most abundant basement membrane laminin chain (Lamc1) was
unaltered in both abundance (Fig. 6d) and solubility (Fig. 6g),
serving as a control for overall integrity of the basement
membrane and the quality of our data, the basement
membrane-associated trimeric Fraser Syndrome complex (con-
sisting of Fras1, Frem1, and Frem2) was downregulated (Fig. 6e)
and more soluble (Fig. 6h) in old age. Incorporation of the Fraser
syndrome complex within the basement membrane (rendering it
more insoluble) has been shown to depend on extracellular
assembly of all three proteins34, indicating that this assembly and/
or the expression of either one or all subunits of the complex
is perturbed in old mice. Fraser syndrome is a skin-blistering
disease which points to an important function of the Fraser
syndrome complex proteins in linking the epithelial basement
membrane to the underlying mesenchyme34. In the lungs of adult
mice, expression is restricted to the mesothelium; Fras1−/− mice
develop lung lobulation defects35. Interestingly, the solubility of
the downregulated collagen XIV (Fig. 6f) was also significantly
changed (Fig. 6i).

Cell type-specific effects of aging. Cell type-resolved differential
gene expression testing between age groups in the single-cell
data sets identified 391 significantly regulated genes (Wilcoxon
rank sum test, FDR < 10%) (Fig. 7a; Supplementary Data 5).
Alveolar macrophages and type-2 pneumocytes, the two cell
types with highest number of cells in the dataset, are discussed
as an example for the type of insight that can be gained from
our cell type-resolved resource. Both cell types showed a clearly
altered phenotype in aged mice.

In alveolar macrophages, we found 125 significantly regulated
mRNAs (FDR < 10%, Fig. 7b), including the downregulation of
the genes for Eosinophil cationic protein 1 & 2 (Ear1 and Ear2),
which have ribonuclease activity and are thought to have potent
innate immune functions as antiviral factors36. We observed
higher levels of the C/EBP beta (Cebpb), which is an important
transcription factor regulating the expression of genes involved
in immune and inflammatory responses37,38. Several genes that
have been shown to be upregulated in lung injury, repair, and
fibrosis33, such as Spp1, Gpnmb, and Mfge8, were also induced in
alveolar macrophages of old mice, which may be a consequence
of the ongoing ‘inflammaging'.

In alveolar type-2 pneumocytes, 121 mRNAs were significantly
regulated (Wilcoxon rank sum test, FDR < 10%, Fig. 7c). We
observed a strong increase of the MHC class I genes H2-K1,
H2-Q7, H2-D1, and B2m (Fig. 7c), which we validated using an

Fig. 3 Multi-omic data integration uncovers uncoupled regulation of RNA and protein. a Experimental design—three independent cohorts of young and old
mice were analyzed by single-cell RNA-sequencing (scRNA-seq), bulk RNA-seq, and mass spectrometry-driven proteomics respectively. b On the left,
gene expression profiles from whole lung bulk samples (n= 6) and in silico bulk samples (n= 15) were averaged and plotted on X and Y axes, respectively.
Red and black lines indicate linear model fit and the diagonal. On the right, correlation heatmap shows Pearson's correlation between all bulk and in
silico bulk samples. c Normalized bulk (RNA-seq) and in silico bulk (scRNA-seq) data were merged with proteome data (mass spectrometry) and quantile
normalized. The first two principal components show clustering by data modality. The third principal component separates young from old samples
across all three data modalities. Blue and red colors indicate young and old samples, respectively. d Gene expression and protein abundance fold changes
were used to predict upstream regulators that are known to drive gene expression responses similar to the ones experimentally observed. Upstream
regulators could be cytokines or transcription factors. The color-coded activation z-score illustrates the prediction of increased or decreased activity upon
aging. e The scatter plot shows the result of a two-dimensional annotation enrichment analysis based on fold changes in the transcriptome (x-axis) and
proteome (y-axis), which resulted in a significant positive correlation of both datasets. Types of databases used for gene annotation are color coded
as depicted in the legend. f Expression of collagen IV genes in the in silico bulk (scRNA-seq), bulk (RNA-seq), and proteome (mass spec) experiments,
respectively. The box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile
range. g Immunofluorescence image of collagen type IV using confocal microscopy at ×25 magnification and proximity ligation in situ hybridization (PLISH)
staining of Col4a1 mRNA. Note the increased fluorescence intensity of the protein around vessels in old mice along with the decreased mRNA expression
(scale bar: 50 µm)
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independent flow cytometry experiment on epithelial cells
marked by Epcam expression (Fig. 7k, l). Elevated MHC class I
levels likely result in increased presentation of self-antigens to the
immune system and are consistent with our observation of a
prominent interferon-gamma signature in old mice (Fig. 3d),
which is known to activate MHC class I expression39. Type-2
pneumocytes of old mice featured a highly significant upregula-
tion of the enzyme Acyl-CoA desaturase 1 (Scd1), which is the
fatty acyl Δ9-desaturating enzyme that converts saturated fatty
acids into monounsaturated fatty acids (Fig. 7c). The age-
dependent upregulation of Scd1 in type-2 pneumocytes may have
important implications since Scd1 is thought to induce adaptive

stress signaling that maintains cellular persistence and fosters
survival and cellular functionality under distinct pathological
conditions40.

To perform global validation of the cell type-resolved
differential gene expression analysis for a large number of genes
we flow-sorted epithelial cells and macrophages from an
additional cohort of young and old mice (see Supplementary
Fig. 5 for gating strategy) and performed bulk RNA-seq on these
isolated cell types from young (n= 4) and old (n= 4) mice.
Principal component analysis (PCA) was performed using the
scRNA-seq-derived signatures of alveolar macrophages and type-
2 pneumocytes. Gene expression profiles of flow-sorted epithelial
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marker signatures in the differential expression results of the bulk RNA-seq data from young and old mice. f The empirical density plot shows significant
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cells and macrophages were projected into this PCA space (see
Methods for details) showing good overlap of cell-type identity,
thereby confirming the scRNA-seq-based cell-type annotation
(Fig. 7d, e). Next, age-dependent alterations in the flow-sorted
bulk RNA-seq data were identified (Supplementary Data 2).
Significant agreement with the scRNA-seq-derived results was
observed (Fisher’s exact test, p < 2.2e−16, Fig. 7f–j), thus
validating the power of scRNA-seq to derive age-dependent
changes in gene expression.

To obtain a meta-analysis of changes in previously character-
ized gene expression modules and pathways, we used cell type-
resolved mRNA fold changes for gene annotation enrichment
analysis (Supplementary Fig. 6a and b, Supplementary Data 6)
and upstream regulator analysis (Supplementary Fig. 6c–e). The
analysis revealed cell type-specific alterations in gene expression
programs upon aging. For instance, comparing club cells to type-
2 pneumocytes showed that Nrf2 (Nfe2l2)-mediated oxidative
stress responses were higher in type-2 pneumocytes of old mice
and lower in club cells (Supplementary Fig. 6c). Aging is known
to affect growth signaling via the evolutionary conserved Igf-1/
Akt/mTOR axis. Interestingly, we found evidence for increased
mammalian target of rapamycin (mTOR) signaling in type-2 and
club cells, but not in ciliated and goblet cells (Supplementary

Fig. 6c). Mesenchymal cells showed remarkable differences in
their aging response (Supplementary Fig. 6d). For instance, we
observed the pro-inflammatory Il1b signature in capillary
endothelial cells, as well as in mesothelial and smooth muscle
cells, but not in the other mesenchymal cell types. In myeloid cell
types we found both differences and similarities in the aging
response (Supplementary Fig. 6e). While an increased interferon-
gamma and reduced Il10 signature in old mice was consistently
observed, other effects were more specific, such as the increase in
Stat1 target genes in classical monocytes (Ly6c2+), which was not
observed in non-classical monocytes (Ly6c2−).

Increased cholesterol biosynthesis in aged cell types. Pulmonary
surfactant homeostasis is a tightly regulated process that involves
synthesis of lipids by type-2 pneumocytes and lipofibroblasts41.
Lipid metabolism in alveolar type-2 cells is regulated by sterol-
response element-binding proteins (SREBPs) such as Srebf2 and
their negative regulators Insig1 and Insig2. Deletion of Insig1/2 in
mouse type-2 pneumocytes activated SREBPs and led to the
accumulation of neutral lipids (cholesterol esters and trigylcerids)
in type-2 pneumocytes and alveolar macrophages, accompanied
by lipotoxicity-related lung inflammation and tissue
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remodeling42. Interestingly, we observed very similar gene
expression changes in type-2 pneumocytes of old mice as
reported for the Insig1/2 deletion. Consistently, the upstream
regulator analysis predicted increased activity of Srebf2 and
reduced activity of Insig1 specifically in type-2 pneumocytes of
old mice (Supplementary Fig. 6c). The upstream regulator ana-
lysis was based on 25 known targets of SREBP/Insig1, all of which
were increased in aged type-2 pneumocytes (Fig. 8a). Using gene
annotation enrichment analysis on the universal protein resource
(Uniprot) Keywords, Gene Ontology (GO) terms, and Kyoto

encyclopedia of genes and genomes (KEGG) pathways (Supple-
mentary Data 6), we found increased cholesterol biosynthesis as
the top hit in type-2 pneumocytes and lipofibroblasts and no
other cell type (Fig. 8b). Indeed, most of the Insig1/2 target genes
are directly involved in cholesterol biosynthesis (Fig. 8c).

To confirm the increased cholesterol biosynthesis and analyze
the actual lipid content of the cells, we performed immuno-
fluorescence of the type-2 pneumocyte marker prosurfactant
protein C (proSP-C) together with the LipidTox compound that
stains neutral lipids. Increased LipidTox staining in aged lungs
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was specific to alveolar type-2 cells (Fig. 8d). In addition, we used
the Nile red dye to stain neutral lipids in cells of a whole lung
suspension after depletion of leukocytes. Using flow cytometry we
quantified the Nile red lipid staining and found a significant
increase in mean fluorescence intensity (Fig. 8e–g) in the CD45-
negative cells of old mice. CD45+ cells were not significantly
altered, indicating that the increase in neutral lipid content is
specific to epithelial cells and fibroblasts. Thus, we have
shown that increased cholesterol biosynthesis and neutral lipid
content in type-2 pneumocytes and lipofibroblasts is a hallmark
of lung aging.

Discussion
Enabling healthy aging is one of the prime goals of the modern
society. In order to better understand age-related chronic lung
diseases such as COPD, lung cancer, or fibrosis, intense efforts
in integrated multi-omics systems biology tools for the analysis
of lung aging are needed26. In this work, we present a single-cell
survey of mouse lung aging and computationally integrate single-
cell transcriptomics data with bulk proteomics and tran-
scriptomics of whole lung to build a draft of an atlas of the aging
lung. Atlasing efforts are generally organized in stages so that
more detailed maps of cellular phenotypes will be integrated at
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later stages to initial drafts of the atlas. The intention in this study
was to perform an integrated analysis of aging effects at a depth of
current state of the art of proteomics and transcriptomics. The
lung aging atlas and associated raw data can be accessed at
https://theislab.github.io/LungAgingAtlas (Supplementary Fig. 7).
It features five dimensions that can be navigated through gene
and cell type-specific queries: (1) cell type-specific expression of
genes and marker signatures for 30 cell types, (2) regulation of
gene expression by age on cell-type level, (3) cell type-resolved
pathway and gene category enrichment analysis, (4) regulation of
protein abundance by age on tissue level, and (5) regulation of
protein solubility by age.

The highly multiplexed nature of droplet-based single-cell
RNA sequencing used in this study allows the direct analysis of
thousands of individual cells freshly isolated from whole mouse
lungs, providing unbiased classification of cell types and cellular
states. Two previous studies have analyzed aging effects using
single-cell transcriptomics and found increased transcriptional
variability between cells in human pancreas and T cells21,22. In
this study, we identify aging-associated increased transcriptional
noise, which may result from deregulated epigenetic control, in
most cell types of the lung, indicating that this phenomenon is a
general hallmark of aging that likely affects most cell types in both
mice and humans. This concept is supported by our study and it
will be interesting when and how future investigations will shed
light on the molecular mechanisms driving this phenomenon.

We have used three independent cohorts of young and old
mice and uncovered remarkably well-conserved aging signatures
in both mRNA and protein. Thus, the three datasets validate each
other and show that (1) single-cell analysis can be highly repre-
sentative of biological changes in total tissue, and (2) the analysis
of protein and mRNA content can lead to overall similar results
with important differences. Hallmarks of aging, such as the
downregulation of mitochondrial oxidative phosphorylation and
the upregulation of pro-inflammatory signaling pathways, were
consistently observed in all datasets. On the level of individual
genes/proteins, however, we often observed interesting differ-
ences, which indicates that for functional analysis of a particular
gene/protein, it remains essential to also analyze the protein,
which ultimately executes biological functions.

The example of basement membrane collagen IV genes that
were all downregulated on the mRNA level but upregulated on
the protein level illustrates that protein post-transcriptional reg-
ulation is indeed important. In particular, the abundance of ECM
proteins, which often have long half-lives and are thus likely more
often regulated on the posttranscriptional level, could frequently

show decoupling of protein and mRNA. Next to mass
spectrometry-based methods, single-cell methods combining
mRNA and protein analysis, such as cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq)43, will become
ever more important in the near future. We show that the
combination of single cell-resolved mRNA analysis and bulk
proteomics is highly complementary using the single-cell
expression data to understand the most likely cellular origin of
proteins that showed altered abundance with age. Spatial tran-
scriptomics methods for high-throughput detection of transcripts
in single cells in situ are currently quickly evolving44,45. Tradi-
tional antibody-based methods for single-cell protein analysis
in situ are however not well multiplexed and do not easily scale
for high throughput. Thus, to fully develop the enormous
potential of single-cell multi-omics data integration, the field
depends on current and future developments in multiple omics
layers on single-cell level in situ46,47.

We analyzed the foundations of lung tissue architecture by
quantifying compositional and structural changes in the aged
extracellular matrix using state-of-the-art mass spectrometry
workflows. The ECM is not only key as a scaffold for the lungs
overall architecture, but also an important instructive niche for
cell fate and phenotype25,48. Recent proteomic studies identified
at least 150 different ECM proteins, glycosaminoglycans, and
modifying enzymes in the lung, and these assemble into intricate
composite biomaterials that are characterized by specific bio-
physical and biochemical properties32,33,49. Due to this com-
plexity of the ECM, both in terms of composition and
posttranslational modification and the assembly of ECM proteins
into supramolecular structures, it is presently unclear on which
level and how exactly the aging process affects the lung ECM
scaffold. We used detergent solubility profiling to screen for
differences in protein crosslinking and complex formation within
the ECM. Surprisingly, most solubility profiles were not sig-
nificantly altered with age, indicating that aging-related ECM
remodeling does not involve large differences in covalent protein
crosslinks. However, we observed a few very strong changes in the
ECM which have not yet been reported in the context of aging
and are open for future investigation into their functional
implications.

In order to stabilize the alveolar structure during breathing-
induced expansion and contraction, type-2 pneumocytes produce
and secrete pulmonary surfactant, which is a thin film of phos-
pholipids and surfactant proteins41. The lipid composition of
pulmonary surfactant has been shown to change with age50, and
electron microscopy of surfactant and the lipid-loaded lamellar

Fig. 7 Single-cell RNA-sequencing (scRNA-seq) enables cell type-resolved differential expression analysis. a Heatmap displays fold changes derived from
the cell type-resolved differential expression analysis. Rows and columns correspond to cell types and genes, respectively. Negative fold change values
(blue) represent higher expression in young compared to old. Positive fold change values are colored in pink. b, c Volcano plots visualize the differential
gene expression results in b alveolar macrophages and c type-2 pneumocytes. X and Y axes show average log2 fold change and −log10 p value,
respectively. d Scatterplot illustrates principal component analysis (PCA) of in silico bulk samples of alveolar macrophages and type-2 pneumocytes and
the projected flow-sorted bulk samples. Color and shape indicate cell-type identity and data modality. PCA loadings show that well-known marker genes
define the first principal component corresponding to cell-type identity (e). Fold changes derived from the flow-sorted bulk samples and the cell type-
resolved differential expression analysis are depicted on the X and Y axes respectively for alveolar macrophages (f) and type-2 pneumocytes (g). The
likelihood of corresponding fold change direction was highly enriched between the scRNA-seq and flow-sorted bulk data for both cell types (h). X-axis
shows the odds ratio including 95% confidence interval. Black vertical line illustrates an odd ratio of one representing equal likelihood. Increased expression
of H2-K1 in old compared to young mice was observed for type-2 pneumocytes in the scRNA-seq (i) and flow-sorted bulk (j) data (n= 4 young and n= 4
old mice). For (j), the box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range. k The indicated cell lineages were gated by flow cytometry as shown in the left panel in a CD31 and Epcam co-staining and evaluated
for H2-K1 expression on protein level. The histograms show fluorescence intensity distribution of the H2-K1 cell surface staining for the indicated lineages
and age groups. l Boxplot shows mean fluorescence intensity for H2-K1 in the indicated cell types taken from 4 young and 4 old mice. The p values are from
a two-sided t-test. The box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the
interquartile range
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bodies in type-2 pneumocytes revealed ultrastructural dis-
organization with age51. This may be related to our finding that
cholesterol biosynthesis and neutral lipid content is upregulated
in type-2 cells of old mice. It is currently unclear at which level
the homeostasis of lipid metabolism is altered in the aged lungs.
We found strong similarity of the aged type-2 phenotype with the
phenotype in Insig1/2 knockout mice that accumulated neutral
lipids, accompanied by lipotoxicity-related lung inflammation
and tissue remodeling42. Thus, it is possible that part of the
chronic inflammation we observed in the aged lung is influenced
by deregulation of lipid homeostasis. The inflammatory pheno-
type may also be related to epithelial senescence, as mice with a
type-2 pneumocyte-specific deletion of telomerase, and thus

premature aging with increased senescence in these cells, devel-
oped a pro-inflammatory tissue microenvironment and were less
efficient in resolving acute lung injury52.

In summary, we have demonstrated that the lung aging atlas
presented here contains a plethora of information on molecular and
cellular scale and serves as a reference for the large community of
scientists studying chronic lung diseases and the aging process.

Methods
Ethics statement. Pathogen-free C57BL/6 mice were obtained from Charles River
and housed in rooms maintained at constant temperature and humidity with a 12 h
light cycle. Animals were allowed food and water ad libitum. For this study, organs
were obtained from mice that had to be killed because of excessive breeding.
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Fig. 8 Aging increases cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts. a The graph shows genes known to be negatively regulated by
Insig1 that were found to be upregulated in type-2 pneumocytes of old mice. b Selected gene categories found to be significantly (false discovery rate
(FDR) < 5%) upregulated (positive enrichment scores) or downregulated (negative enrichment scores) in the indicated cell types. c Segment of the
cholesterol biosynthesis pathway. Diamond-shaped nodes represent enzymes that were found to be upregulated in type-2 pneumocytes of old mice. The
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cytometry. Histograms show flow cytometry analysis of Nile red in aged (red) and young (blue) mice; unstained control is represented in gray. Cells were
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Animal handling was performed according to strict governmental and interna-
tional guidelines and ethical oversight by the local government for the adminis-
trative region of Upper Bavaria, Germany.

Generation of single-cell suspensions from whole mouse lung. After killing
mice, lung tissue was perfused with sterile saline from the right to the left ventricle
of the heart and subsequently inflated via a catheter in the trachea by an enzyme
mix containing dispase (50 caseinolytic units/ml), collagenase (2 mg/ml), elastase
(1 mg/ml), and DNase (30 μg/ml). After tying off the trachea, the lung was
removed and immediately minced to small pieces (approximately 1 mm2). The
tissue was transferred into 4 ml enzyme mix for enzymatic digestion for 30 min at
37 °C. Enzyme activity was inhibited by adding 5 ml of phosphate-buffered saline
(PBS) supplemented with 10% fetal calf serum (FCS). Dissociated cells in sus-
pension were passed through a 70 μm strainer and centrifuged at 500 × g for 5 min
at 4 °C. Red blood cell lysis (Thermo Fisher 00-4333-57) was done for 2 min and
stopped with 10% FCS in PBS. After another centrifugation for 5 min at 500 × g
(4 °C) the cells were counted using a Neubauer chamber and critically assessed for
single-cell separation and viability. A total of 250,000 cells were aliquoted in 2.5 ml
of PBS supplemented with 0.04% of bovine serum albumin and loaded for DropSeq
at a final concentration of 100 cells/μl.

Single-cell RNA sequencing. Dropseq experiments were performed according to
the original Dropseq protocol15,16. Using a microfluidic polydimethylsiloxane
device (Nanoshift), single cells (100/µl) from the lung cell suspension were co-
encapsulated in droplets with barcoded beads (120/µl, purchased from ChemGenes
Corporation, Wilmington, MA) at rates of 4000 µl/h. Droplet emulsions were
collected for 15 min/each prior to droplet breakage by perfluorooctanol (Sigma-
Aldrich). After breakage, beads were harvested and the hybridized mRNA tran-
scripts reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were
removed by the addition of exonuclease I (New England Biolabs), following which
beads were washed, counted, and aliquoted for pre-amplification (2000 beads/
reaction, equals ~100 cells/reaction) with 12 PCR cycles (Smart PCR primer:
AAGCAGTGGTATCAACGCAGAGT (100 µM), 2× KAPA HiFi Hotstart Ready-
mix (KAPA Biosystems), cycle conditions: 3 min 95 °C, 4 cycles of 20 s 98 °C, 45 s
65 °C, 3 min 72 °C, followed by 8 cycles of 20 s 98 °C, 20 s 67 °C, 3 min 72 °C, then
5 min at 72 °C)15. PCR products of each sample were pooled and purified twice by
0.6× clean-up beads (CleanNA), following the manufacturer’s instructions. Prior to
tagmentation, complementary DNA (cDNA) samples were loaded on a DNA High
Sensitivity Chip on the 2100 Bioanalyzer (Agilent) to ensure transcript integrity,
purity, and amount. For each sample, 1 ng of pre-amplified cDNA from an esti-
mated 1000 cells was tagmented by Nextera XT (Illumina) with a custom P5
primer (Integrated DNA Technologies). Single-cell libraries were sequenced in a
100 bp paired-end run on the Illumina HiSeq4000 using 0.2 nM denatured
sample and 5% PhiX spike-in. For priming of read 1, 0.5 µM Read1CustSeqB
(primer sequence: GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC)
was used.

Bioinformatic processing of scRNA-seq reads. The Dropseq core computational
pipeline15 was used for processing next-generation sequencing reads of the
scRNA-seq data. STAR (version 2.5.2a) was used for mapping53. Reads were
aligned to the mm10 genome reference (provided by the Dropseq group via the
Gene Expression Omnibus (GEO) accession code GSE63269). For cell filtering, we
considered all barcodes with more than 200 genes detected within the top 1200
barcodes by total UMI counts. Samples muc3838, muc3839, muc3840, and
muc3841 were sequenced at lower depth in which case we considered the top 800,
500, 500, and 500 barcodes by total UMI counts corresponding to the expected
number of cells, respectively.

Single-cell data analysis. After constructing the single-cell gene expression count
matrix, we used the R package Seurat54 and custom scripts for analysis.

For unsupervised clustering and visualization, we first defined highly variable
genes within each mouse sample separately following the Seurat standard
approach. Next, genes appearing in >4 mouse samples in the set of highly variable
genes were defined as a set of consensus highly variable genes. To minimize the
effect of cell cycle on clustering we removed cell-cycle genes55 from the set of
consensus highly variable genes. All 14,813 cells passing quality control were
merged into one count matrix and normalized and scaled using Seurat’s
NormalizeData() and ScaleData() functions, in which we regressed out the total
UMI count. The reduced set of consensus highly variable genes was used as the
feature set for independent component analysis using Seurat’s RunICA() function.
The first 30 independent components were used for tSNE visualization and
Louvain clustering using the Seurat functions RunTSNE() and FindClusters(),
respectively.

To quantitatively assess the clustering overlap across mouse samples, the
Silhouette coefficient was calculated. The Silhouette coefficient was calculated
between the Euclidean distance of the 50 independent components and the mouse
sample indicator. The Silhouette coefficient ranges from −1 to 1 and values close
to zero indicate random clustering with regard to the specified indicator.

The Seurat FindAllMarkers() function was used to identify cluster-specific
marker genes. Based on manual annotation and with guidance of the enrichment
analysis (see below), the 36 clusters were assigned to 30 cell-type identities. Using
the annotation of cell-type identities, the FindAllMarkers() function was called to
identify the final set of cell-type markers used throughout this analysis.

An important technical detail needed our attention and is briefly described here.
As infrequently discussed in the community but not yet addressed, we also
observed ‘ambient mRNA' effects, which we believe are the consequence of free
mRNA released from dying cells hybridizing with beads in droplets during the
microfluidic capture of single cells in the Dropseq workflow. The ambient mRNAs
are typically derived from highly abundant transcripts and this artifact is inherent
to all droplet-based methods (including the commercially available 10× platform).
Here, it can be exemplified by the Scgb1a1 gene in Fig. 1c that is known to be highly
specific for club and goblet cells but was nevertheless detected in almost 100% of
the cells in our data. However, the UMI count levels were much higher in club and
goblet cells (representing the real source of expression), indicating that the mRNA
counts observed in all other clusters were of ambient mRNA background. To
independently confirm this we therefore determined all genes that showed ambient
mRNA background by analyzing the identity of genes on beads at the tail-end
of the total UMI count distribution (on average 10 UMIs per barcode),
representing empty beads that were never in contact with a real cell but
nevertheless contain information from free-floating ambient mRNA. We identified
153 genes (Supplementary Data 7) with an ‘ambient mRNA' effect and accounted
for this effect in the cell type-resolved differential expression analysis (see below
for details).

To aid the assignment of cell type to clusters derived from unsupervised
clustering, we performed cell-type enrichment analysis. Cell-type gene signatures
obtained from bulk-level gene expression were downloaded from the ImmGen and
xCell resources. Each gene signature obtained from our clustering was statistically
evaluated for overlap with gene signatures contained in these two resources. Mouse
gene symbols were capitalized to map to human gene symbols. Overlap between
gene signatures was evaluated using Fisher’s exact test.

Cell-type marker signatures in our data (Supplementary Data 1) were compared
to cell-type marker signatures in the MCA13. MatchSCore20 was used to quantify
overlap between cell-type marker signatures derived from our study and the MCA.
Marker genes with adjusted p value < 0.1 and average log fold change >1 were
considered.

Transcriptional noise in the gene expression profiles was quantified following
previous work22. For each cell type with at least 10 old and young cells, we
quantified transcriptional noise in the following manner. To account for differences
in total UMI counts, all cells were downsampled so that all cells had equal
number of total UMI counts. To account for differences in cell-type frequency,
cell numbers were down-sampled so that equal numbers of young and old cells
were used. Next, genes were divided into 10 equally sized bins based on mean
expression and the top and bottom bins excluded. Within each bin, the 10% of
genes with the lowest coefficient of variation were selected. Subsampled raw count
data were reduced to this set of genes and square-root transformed. Next, the
euclidean distance between each cell and the corresponding cell-type mean within
each age group was calculated. This euclidean distance was used as one measure
of transcriptional noise for each cell. Additionally, we average the euclidean
distances for each mouse and calculated the transcriptional noise ratio between
young and old mice. Alternatively, we calculated Spearman's correlation
coefficients on the down-sampled expression matrices across all genes between
all pairwise cell comparisons within each cell type and age group. To be
consistent with the sign of the metric we used 1–Spearman correlation coefficient
as the second measure of transcriptional noise. To statistically assess the
association between transcriptional noise and age within each cell type, Wilcoxon’s
rank sum test was used. The p values were subsequently corrected for multiple
testing using the Bonferroni–Hochberg method as implemented in the R function
p.adjust().

Cell-type frequencies were calculated based on the counts of cells annotated
to each cell type for each mouse. Counts were transformed to proportions using
the DR_data() function of the DirichletReg R package which causes the values
to shrink away from extreme values of 0 and 1. Next, the mouse-wise euclidean
distances were calculated based on these proportions using the dist() R function
followed by multidimensional scaling using the isoMDS() R function. To
statistically assess the association between age and the first coordinate derived
from the multidimensional scaling, Wilcoxon test was applied. Relative changes
in cell-type frequencies were calculated by subtracting the median cell-type
proportion of the young mice from the cell-type proportions of the old mice.

Cell type-resolved differential expression analysis was performed using the
Seurat differential gene expression testing framework. Within each cell type, cells
were grouped by age and differential testing performed using the Seurat
FindMarkers() function. By inspecting barcodes with a very low number of UMI
counts, we identified 153 potential ambient mRNAs. However, these mRNAs could
represent true housekeeper genes which are constitutively expressed in all cells.
Therefore, we removed 41 mRNAs which showed no cell type-specific expression
effect (log2 fold change < 1) in any of the cell types in the cell-type marker
discovery analysis from this list. Next, to avoid differential testing of a gene in a cell
type where expression levels are driven by the ambient effect, cell type-resolved
differential expression testing of the remaining 112 ambient mRNAs was limited to
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cell types in which the ambient mRNA showed moderate cell type-specific
expression (adjusted p value < 0.25).

The one-dimensional annotation enrichment analysis24 was used for cell type-
resolved pathway analysis. We used the freely available software package Perseus56,
as previously described33. To predict the activity of upstream transcriptional
regulators and growth factors based on the observed gene expression changes, we
used the Ingenuity® Pathway Analysis platform (IPA®, QIAGEN Redwood City,
www.qiagen.com/ingenuity). The analysis uses a suite of algorithms and tools
embedded in IPA for inferring and scoring regulator networks upstream of gene
expression data based on a large-scale causal network derived from the Ingenuity
Knowledge Base. The analytics tool Upstream Regulator Analysis23 was used to
compare the known effect (transcriptional activation or repression) of a
transcriptional regulator on its target genes to the observed changes to assign an
activation Z-score. Since it is a priori unknown which causal edges in the master
network are applicable to the experimental context, the Upstream Regulator
Analysis tool uses a statistical approach to determine and score those regulators
whose network connections to dataset genes as well as associated regulation
directions are unlikely to occur in a random model23. In particular, the tool defines
an overlap p value measuring enrichment of network-regulated genes in the
dataset, as well as an activation Z-score which can be used to find likely regulating
molecules based on a statistically significant pattern match of up- and down-
regulation, and also to predict the activation state (either activated or inhibited) of a
putative regulator. In our analysis we considered genes with an overlap p value of
>7 (log10) that had an activation Z-score > 2 as activated and those with an
activation Z-score <−2 as inhibited.

Proteomics and multi-omics data integration. For proteome analysis ~100 mg of
fresh frozen total tissue (wet weight) of mouse lungs was homogenized in 500 µl
PBS (with protease inhibitor cocktail) using an Ultra-turrax homogenizer. After
centrifugation the soluble proteins were collected and proteins were extracted from
the insoluble pellet in three steps using buffers with increasing stringency using the
QDSP protocol33. Lungs were perfused with PBS through the heart to remove
blood. Then, ~100 mg of total lung tissue (wet weight) was homogenized in 500 µl
PBS (with protease inhibitor cocktail and EDTA) using an Ultra-turrax homo-
genizer. After centrifugation the soluble proteins were collected and proteins were
extracted from the insoluble pellet in three steps using buffers with increasing
stringency (buffer 1: 150 mM NaCl, 50 mM Tris-HCl (pH 7.5), 5% Glycerol, 1%
IGPAL-CA-630 (Sigma, #I8896), 1 mM MgCl2, 1× Protease inhibitors (+EDTA),
1% Benzonase (Merck, #70746-3), 1× Phosphatase inhibitors (Roche,
#04906837001); buffer 2: 50 mM Tris-HCl (pH 7.5), 5% Glycerol, 150 mM NaCl
+fresh protease inhibitor tablet (+EDTA), 1.0% IGEPAL® CA-630, 0.5% sodium
deoxycholate, 0.1% SDS, 1% Benzonase (Merck, #70746-3); buffer 3: 50 mM Tris-
HCl (pH 7.5), 5% Glycerol, 500 mM NaCl, protease inhibitor tablet (+EDTA),
1.0% IGEPAL® CA-630, 2% sodium deoxycholate, 1% SDS, 1% Benzonase (Merck,
#70746-3)). Insoluble pellets were resuspended in detergent containing buffers and
incubated for 20 min on ice (except for buffer 3, which was used at room tem-
perature), followed by separation of soluble and insoluble material using cen-
trifugation for 20 min at 16,000 × g. The PBS from the tissue homogenate and the
NP40 soluble fraction (buffer 1) was pooled which, together with the two fractions
derived from ionic detergent extraction (buffer 2 and 3), resulted in a total of three
soluble fractions and one insoluble pellet that were subjected to liquid
chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Soluble pro-
teins were precipitated with 80% acetone and subjected to in solution digestion
using a modified published protocol57. In brief, protein reduction (10 mM TCEP)
and alkylation (50 mM CAA) were performed at once in 6M guadinium hydro-
chloride (100 mM Tris-HCl pH 8) at 99 °C for 15 min. Subsequent protein
digestion was done in two steps. The first digestion was done at 37 °C for 2 h with
LysC (1:50 enzyme to protein ratio) in 10 mM Tris-Hcl (pH 8.5) containing 2M
guadinium hydrochloride (Gdm), 2.7 M Urea, and 3% acetonitrile. The second
digestion step was done using fresh LysC (1:50 enzyme to protein ratio) and trypsin
(1:20 enzyme to protein ratio) in 600 mM Gdm, 800 mM Urea, and 3% acetonitrile
at 37 °C overnight. For the insoluble protein pellet, which is strongly enriched for
insoluble ECM proteins, we optimized the in-solution digestion protocol with
additional steps involving extensive mechanical disintegration and ultra-sonication
aided digestion. The insoluble material was cooked, reduced, and alkylated in 6 M
Gdm for 15 min and then subjected to 200 strokes in a micro-dounce device, which
reduced the particle size of the insoluble protein meshwork. We then proceeded
with the two-step digestion protocol described above, which was additionally aided
by 15 min ultrasonication (Bioruptor, Diagenode) in the presence of the enzymes
in both digestion steps. Peptides were purified using stage-tips containing a poly-
styrene-divinylbenzene copolymer modified with sulfonic acid groups (SDB-RPS)
material (3 M, St. Paul, MN 55144-1000, USA) as previously described57.

Mass spectrometry data were acquired on a Quadrupole/Orbitrap type Mass
Spectrometer (Q-Exactive, Thermo Scientific) as previously described33.
Approximately 2 μg of peptides were separated in a 4 h gradient on a 50 cm long
(75 μm inner diameter) column packed in-house with ReproSil-Pur C18-AQ 1.9
μm resin (Dr. Maisch GmbH). Reverse-phase chromatography was performed with
an EASY-nLC 1000 ultra-high pressure system (Thermo Fisher Scientific), which
was coupled to a Q-Exactive Mass Spectrometer (Thermo Scientific). Peptides were
loaded with buffer A (0.1% (v/v) formic acid) and eluted with a nonlinear 240 min

gradient of 5–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at a flow
rate of 250 nl/min. After each gradient, the column was washed with 95% buffer B
and re-equilibrated with buffer A. Column temperature was kept at 50 °C by an in-
house designed oven with a Peltier element58 and operational parameters were
monitored in real time by the SprayQc software59. MS data were acquired with a
shotgun proteomics method, where in each cycle a full scan, providing an overview
of the full complement of isotope patterns visible at that particular time point, is
followed by up to 10 data-dependent MS/MS scans on the most abundant not yet
sequenced isotopes (top10 method)60. Target value for the full scan MS spectra was
3 × 106 charges in the 300−1650m/z range with a maximum injection time of 20
ms and a resolution of 70,000 at m/z 400. Isolation of precursors was performed
with the quadrupole at window of 3 Th. Precursors were fragmented by higher-
energy collisional dissociation with normalized collision energy of 25% (the
appropriate energy is calculated using this percentage, and m/z and charge state of
the precursor). MS/MS scans were acquired at a resolution of 17,500 at m/z 400
with an ion target value of 1 × 105, a maximum injection time of 120 ms, and fixed
first mass of 100 Th. Repeat sequencing of peptides was minimized by excluding
the selected peptide candidates for 40 s.

MS raw files were analyzed by the MaxQuant61 (version 1.4.3.20) and peak lists
were searched against the human Uniprot FASTA database (version Nov 2016),
and a common contaminants database (247 entries) by the Andromeda search
engine62 as previously described33. As fixed modification cysteine
carbamidomethylation and as variable modifications, hydroxylation of proline and
methionine oxidation was used. False discovery rate was set to 0.01 for proteins and
peptides (minimum length of seven amino acids) and was determined by searching
a reverse database. Enzyme specificity was set as C-terminal to arginine and lysine,
and a maximum of two missed cleavages were allowed in the database search.
Peptide identification was performed with an allowed precursor mass deviation up
to 4.5 ppm after time-dependent mass calibration and an allowed fragment mass
deviation of 20 ppm. For label-free quantification in MaxQuant the minimum ratio
count was set to two. For matching between runs, the retention time alignment
window was set to 30 min and the match time window was 1 min. The mass
spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [1] partner repository with the dataset identifier
PXD012307.

QDSP analysis intensities were first normalized such that the mean log2
intensities of the young and the old samples are zero, respectively. Using the
normalized intensities, a two-way ANOVA with the two-factor treatment (old/
young) and solubility fraction (FR1, FR2, FR3, INSOL) and the corresponding
interaction term was performed using the R function aov(). Proteins significant in
the interaction term correspond to proteins for which the solubility profile changes
between young and old mice. Therefore, the corresponding p value was used for
filtering the significantly changed profiles after FDR correction.

scRNA-seq, bulk RNA-seq, and proteome integration. In silico bulk samples
were generated by summing UMI counts across all cells within one mouse sample.
Differential gene expression analysis of in silico bulk samples was performed using
the R package DESeq2 (v1.20.0)63.To integrate scRNA-seq, bulk RNA-seq, and
protein data, the following approach was used. Raw count data from the in silico
bulk and whole lung tissue bulk were normalized using the voom() function of
the limma R package64. Next, in silico bulk, whole lung tissue bulk, and protein
data were merged on a set of genes present in all three data sets and quantile
normalized. This merged and quantile normalized expression matrix was then
subjected to PCA.

Some statistical and bioinformatics operations, such as normalization, pattern
recognition, cross-omics comparisons, and multiple-hypothesis testing corrections,
were performed with the Perseus software package56. The two-dimensional
annotation enrichment test used to compare proteome and transcriptome is based
on a two-dimensional generalization of the nonparametric two-sample test. The
false discovery rate is stringently controlled by correcting for multiple hypothesis
testing24.

Flow cytometry. Isolated total lung cell suspensions were used to detect and
quantify cell populations and activation by flow cytometry. We depleted red blood
cells by positive selection of Ter199 cells, followed by CD45 bead separation
(Miltenyi Biotec; Bergish Gladbach, 130-052-301). Next, we analyzed cells by
fluorescence-activated cell sorting (FACS) cell suspensions before and after
CD45 separation and stained cell suspensions with anti-mouse CD31 (Biolegend,
102419), EpCAM (Biolegend, 118225), and H2-K1 (Thermo Fisher Scientific,
Waltham, 12-5998-81). Cells were stained in the dark at 4 °C for 20 min. CD45
lineage-negative cells were stained with Nile red (Santa Cruz Biotechnology, sc-
203747) in a 1:1000 dilution for 10 min at 4 °C, as previously reported62.Cells were
sorted using the CD45-negative fraction of the cell isolate stained for anti-mouse
CD31, and EpCAM antibodies. Epithelial cells were sorted as CD31− cells and
EpCAM+ cells. For sorting macrophages we used the CD45-positive fraction and
stained with anti-mouse CD11c (Biolegend, 117310), CD11b (Biolegend, 101216),
MHC II (Biolegend, 107615), Siglec-F (552126, BD Pharmingen), and Ly6G
(Biolegend, 127627) antibodies. For flow cytometry sorting, neutrophils were
excluded by selection of Ly6G-negative cells. Macrophages were sorted as MHCII
+, CD11c+, CD11b+ as previously described65. Data acquisition was performed in
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a BD Fortessa flow cytometer (Becton Dickinson, Heidelberg, Germany). All
stainings were performed per 300,000 cells in the following dilutions: CD31
(1:300), EpCAM (1:50), H2-K1 (1:50), CD11c (1:100), Siglec-F(1:20), CD11b
(1:25), MHCII (1:50), and Ly6G (1:10).

Data were analyzed using the FlowJo software (TreeStart Inc., Ashland, OR,
USA). Data were reported as absolute numbers (cells/μl), normalized by bead
counts (BD Truecount TM Beads tubes; BD Biosciences, Heidelberg, Germany)
(Supplementary Fig 5). For H2-K1 and Nile red, data were analyzed by mean
fluorescence intensity (MFI). Negative thresholds for gating were set according to
isotype-labeled and unstained controls.

Bulk RNA-sequencing and analysis. RNA was isolated from whole lung tissue
using the Qiagen RNeasyⓇ Mini Kit (#74104) according to the manufacturer's
recommendations. The RNA isolate was thereafter enriched for poly-A templates
and submitted for whole mRNA sequencing on the Illumina HiSeq4000.

Whole lung tissue bulk RNA next-generation sequencing reads were aligned to
the mouse reference genome mm10 using STAR53 (version 2.2.1). Read
summarization was performed using the featureCounts63 (version 1.5.0) tool. To
statistically evaluate the agreement between the in silico bulk and true bulk RNA-
seq data, Spearman's correlation coefficients were calculated on the gene expression
profiles between all sample pairs and the averages of both modalities. Differential
gene expression analysis of whole lung tissue bulk samples was performed using the
R package DESeq266 (v1.20.0).

To identify potential age-dependent alterations in tissue composition, the whole
lung tissue bulk RNA-seq were integrated with the scRNA-seq-derived cell-type
signatures. Kolmogorov–Smirnov test was used to statistically evaluate the
enrichment of cell-type marker genes in the fold changes derived from the
differential expression analysis of the whole lung tissue bulk RNA-seq. The p values
were limited to the range from 1 to 1e−50.

Flow-sorted macrophages and epithelial cells were immediately lysed after
sorting and cDNA synthesis was performed using the Smart-Seq® v4 Ultra® Low
Input RNA Kit for Sequencing (TaKaRa, 634896). For each sample, 200 pg of pre-
amplified cDNA from an estimated 2000 cells was tagmented by Nextera XT
(Illumina) according to the manufacturer’s protocol and submitted for sequencing
on the Illumina HiSeq4000.

Flow-sorted bulk RNA next-generation sequencing reads were aligned to the
mouse reference genome mm10 using STAR53 (version 2.2.1). Read summarization
was performed using the featureCounts63 (version 1.5.0) tool. To increase
comparability between bulk and single-cell RNA-seq data, a total of 30 in silico
bulk samples were generated by summing the counts from all cells belonging to the
alveolar macrophages and type-2 pneumocytes clusters for each mouse. Next, PCA
was calculated for these in silico bulk samples using the alveolar macrophages and
type-2 pneumocytes marker genes with adjusted p value < 0.1 and fold change > 0
(Supplementary Data 1). Subsequently, the flow-sorted bulk RNA-seq samples
were projected into this PCA space to show correspondence between the scRNA-
seq-derived in silico bulk samples and the flow-sorted RNA-seq samples.
Differential expression analysis of flow-sorted bulk RNA-seq samples was
conducted using the R package limma64. To statistically evaluate the agreement
between the age-dependent alterations measured in the scRNA-seq and flow-sorted
bulk RNA-seq data, Fisher’s exact test was used. Fisher’s exact test assesses the
likelihood of genes having the same fold change direction (up- or down-regulation
in old compared to young).

Proximity ligation in situ hybridization (PLISH). Samples were prepared and
processed for PLISH and immunostaining as described in Nagendran et al.67. with
some modifications. 14 μm mouse lung cryosections were collected on superfrost
slides and allowed to air dry for 10 min. The slides were immersed in prewarmed
10 mM citrate buffer containing 0.05% lithium dodecyl sulfate at 100 °C in a water
bath for 5 min. The slides were quickly removed, rinsed with diethyl pyrocarbonate
(DEPC)-treated water and air dried. Seal chambers (GBL621505 Sigma-Aldrich)
were applied and the sections were rehydrated with DEPC-treated water for 1 min.
The samples were incubated with 0.025 mg/ml Pepsin (10108057001 Roche; from
Sigma-Aldrich) in 0.1 M HCL for 5 min at 37 °C followed by a quick rinse with 1×
PBS and the addition of H probes for Col4a1.

H probe sequences were: Col4a1 NM_009931.2:mmHLC2-VB01-Col4a1-5315
AGGTCAGGAATACTTACGTCGTTATGGTAGGGTTCATTGCTGTTACA,
mmHRC2-VB01-Col4a1-5315
AGGTACACAGGATATAATTCTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5385
AGGTCAGGAATACTTACGTCGTTATGGAGTTACGCGAATCCCTATAA,
mmHRC2-VB01-Col4a1-5385
CCAACGAAGCGGGGTGTGTTTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5910
AGGTCAGGAATACTTACGTCGTTATGGTTGACCTGCCTAATTGCTGA,
mmHRC2-VB01-Col4a1-5910
AACAGGCTCTACGCTAGAACTTATAGGTCGAGTAGTATAGCCAGGTT,
mmHLC2-VB01-Col4a1-5848
AGGTCAGGAATACTTACGTCGTTATGGATTTATTTATTTTCCATCTA,
mmHRC2-VB01-Col4a1-5848
ATATATATATTTATTTACTTTTATAGGTCGAGTAGTATAGCCAGGTT,

mmHLC2-VB01-Col4a1-5753
AGGTCAGGAATACTTACGTCGTTATGGAAGTTTGTGTTTGGGGCTGA,
mmHRC2-VB01-Col4a1-5753
CATAGTACCACACAGGGCATTTATAGGTCGAGTAGTATAGCCAGGTT.

Connector circle CCC2.1: 5′
ATTCCTGACCTAACAAACATGCGTCTATAGTGGAGCCACATAAT-
TAAACCTGGCTAT 3′.

Variable bridge VB01-P1:
ACTACTCGACCTATAACCATAACGACGTAAGT.

Label probe: LP1m-Cy5: 5′Cy5/ CTATACTACTCGACCTATA.

Immunofluorescence and histology. For immunofluorescence microscopy,
mouse lungs were perfused with PBS, fixed in 4% paraformaldehyde (pH 7.0), and
embedded in paraffin for formalin-fixed, paraffin-embedded sections. The paraffin
sections (3.5 µm) were deparaffinized and rehydrated, and the antigen retrieval was
accomplished by pressure-cooking (30 s at 125 °C and 10 s at 90 °C) in citrate
buffer (10 mM, pH 6.0). After blocking for 1 h at room temperature with 5% bovine
serum albumin, the lung sections were incubated with the primary antibodies
overnight at 4 °C, incubated with the secondary antibodies (1:250) for 2 h, followed
by 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, 1:2000) for 20 min at
room temperature. Images were acquired with an LSM 710 microscope (Zeiss). The
following primary (1) and secondary (2) antibodies were used: (1) CC10 rabbit
(Santa Cruz, sc-25554, 1:100), Foxj1 mouse (Santa Cruz, sc-53139, 1:50), collagen
IV rabbit (Abcam, ab6586, 1:100), (2) donkey anti-mouse Alexa Fluor (AF) 647
(Invitrogen, A21447), donkey anti-rabbit AF 568 (Invitrogen, A10042), and donkey
anti-goat AF 488 (Invitrogen, A21202). Counterstain with LipidTox was performed
using HCS LipidTOX deep red neutral lipid stain (Invitrogen, H34477, 1:200).

The frequency of ciliated (nuclear Foxj1+) and club cells (CC10+) were
quantified by counting 2647 cells, covering a total length of 22 mm airway in
28 individual airways (young, n= 14; old n= 14) of 2 mice of each age group.
We normalized cell numbers to the total length of their respective airway using
the ZEN 2.3 SP1 software for image processing.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Code availability. The code to reproduce the analyses and figures described in this
study can be found at: github.com/theislab/2018_Angelidis.

Data availability
Proteome raw data can be downloaded from the PRIDE repository under the accession
number PXD012307. scRNA-seq, whole lung tissue bulk and flow-sorted cell populations
bulk raw data, can be downloaded from the Gene Expression Omnibus under the
accession number GSE124872. The whole lung aging atlas can be accessed via an
interactive user-friendly webtool at: https://theislab.github.io/LungAgingAtlas. All other
data supporting the findings of this study are available from the corresponding authors
upon reasonable request.
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