
 

Abstract— Optoacoustic (photoacoustic) tomography 

reconstructs maps of the initial pressure rise induced by the 

absorption of light pulses in tissue. In practice, due to inaccurate 

assumptions in the forward model employed, noise and other 

experimental factors, the images often contain errors, 

occasionally manifested as negative values. We present 

optoacoustic tomography based on an entropy maximization 

algorithm that uses logarithmic regularization as a potent 

method for imparting non-negative image reconstruction. We 

experimentally investigate the performance achieved by the 

entropy maximization scheme on phantoms and in vivo samples. 

The findings demonstrate that the proposed scheme reconstructs 

physically relevant image values devoid of unwanted negative 

contrast, thus improving quantitative imaging performance.    

 
Index Terms— image reconstruction, inverse problems, optical 

parameters, photoacoustic tomography, regularization theory.  

I. INTRODUCTION 

PTOACOUSTIC imaging detects broadband ultrasound 

(pressure) waves generated within tissue in response to 

external illumination with transient light energy, which is 

absorbed by tissue elements and leads to thermo-elastic 

expansion. Using forward models that describe sound 

propagation in tissue, ultrasound measurements from multiple 

positions surrounding the imaged object are mathematically 

reconstructed to resolve the spatial distribution of the initial 

pressure rise. The reconstructed initial pressure rise is 

proportional to the product a x , whereby a is the optical 

absorption coefficient and  is the light fluence [1], [2]. The 

initial pressure rise distribution in biological tissues may only 

have positive values since absorption and light fluence are 
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both positive. However, the appearance of negative values is 

common in optoacoustic images due to different factors, such 

as the use of inaccurate forward models, inversion schemes, 

numerical errors, limited view detection geometry, unknown 

or unpredictable experimental effects or noise in the imaging 

system. The presence of negative values in the reconstruction 

does not have physical relevance. Importantly, when spectral 

techniques are employed, such as Multispectral Optoacoustic 

Tomography (MSOT) [3],[4], the presence of negative values 

makes spectral unmixing of chromophore concentration 

problematic.  

It is therefore important to eliminate the appearance of 

negative values in the optoacoustic tomography problem. 

Model based reconstruction has been suggested as an 

alternative to back-projection algorithms to improve the 

accuracy of optoacoustic imaging, further incorporating 

transducer and laser characteristics into the inversion 

procedure [5],[6]. In principle, accurate inversion can reduce 

the image artifacts, but errors persist due to different 

experimental challenges including limited-angle signal 

collection, limited bandwidth detection, noise and other 

uncertainties, resulting regardless in the presence of erroneous 

negative values [5],[7],[8],[9]. Consequently, methods to 

directly treat the problem of negative values have been 

considered [4],[10],[11]. Lu et. al. compared the utility of 

different minimization procedures using non-negative 

constraints, including steepest descent, conjugate gradient, 

quasi-newton based inversion [10]. Typical non-negative 

constraint schemes truncate the negative values within each 

step of the gradient iteration, forcing a result containing only 

positive or zero values. This practice however may bias the 

solution and generate inaccuracies in the reconstruction.  

An alternative approach to address the problem of negative 

values relates to using image content for image correction. 

Image features such as the total energy (smoothness), contrast, 

or total variation can be generally employed as prior 

information to direct the inversion towards pre-determined 

outcomes, usually based on assumptions on the nature of the 

image. For example L2- or L1-norm minimization of the total 

variation of an image minimizes the edges of the reconstructed 

image. Using this notion, negative artifacts can then be 

eliminated by applying an explicit non-negativity constraint 

along with L2-norm minimization [10], [12]. Another image 

metric that has been considered for eliminating negative 

values is the entropy of an image [13], [14]. Entropy is the 

measure of randomness in an image. Maximization of entropy 
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(i.e. maximizing the term -xlog(x); whereby x is the image) is 

equal to minimizing the term xlog(x) and is a method 

considered in  Positron Emission Tomography (PET) and 

multi-modal imaging [13], [14] as well as astronomical 

imaging [15].  

In this work, we examine the use of entropy as a prior in 

optoacoustic image inversion, in the context of nonlinear 

conjugate gradient minimization [16]. We hypothesized that 

the use of an entropy-based prior, which implements an 

implicit non-negativity constraint, can improve the accuracy 

of optoacoustic inversions over externally imposed non-

negativity constraints. To address this hypothesis, we first 

theoretically compare a conventional L2-norm minimization 

problem using a smoothness constraint to an entropy 

maximization problem. We show that images reconstructed by 

entropy maximization cannot take negative values. Then, 

using experimental data on phantoms and animal tissue we 

compare the performance of inversion using entropy 

maximization and conventional inversion with externally 

applied non-negativity constraint. We discuss the performance 

differences observed and the advantages and limitations of 

using entropy maximization.  

II. MATERIALS AND METHODS 

A. Theoretical  background  

The propagation of the acoustic pressure wave generated 

due to the short-pulsed light absorption is governed by the 

following inhomogenous wave equation [17], 
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where the instantaneous light power absorption density in 

W/m
3
 is indicated by H and Γ represents the medium-

dependent dimensionless Grüneisen parameter. In Eq. (1) the 

tissue density is represented by ρ while c indicates the speed 

of sound (SoS). For our experiments, a uniform SoS of 1520 

m/sec was heuristically estimated using image autofocusing 

methods [18]. The solution for the wave equation can then be 

obtained using a Green’s function by assuming 

H(r,t)=Hr(r)δ(t), which results in [17] 
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where R=ct represents the radius of the integration circle. 

The above solution is subsequently discretized into the 

following matrix equation 

b Ax         (3) 

where b is the boundary pressure measurements, A is the 

interpolated model matrix and x is the unknown image to be 

reconstructed, representing the initial pressure rise 

distribution. The above formulation represents the forward 

model, i.e. given the initial pressure rise one can estimate the 

pressure at the boundary locations detected by the transducers. 

Thus, the acoustic inverse problem involves reconstructing the 

initial pressure rise given the boundary pressure data. In the 

L2-norm formulation, the inverse problem is solved by 

minimizing a function given as,  
2 2

2 2
arg min( )Ax b Lx 

,    (4) 

where λ is the regularization parameter. The term (||Ax-b||2)
2
 

is called the residual term. The term (||Lx||2)
2
 is a L2-norm of 

the second order total-variation of the image x and L indicates 

the Laplacian operator. 

The term (||Lx||2)
2
 can serve to minimize the edges in the 

reconstructed image, thereby achieving a smooth image x. In 

other words, the value of the regularization parameter affects 

the resolution characteristics of the reconstructed image; 

higher the value of regularization the smoother the 

reconstructed image. Typically, the regularization parameter λ 

is chosen automatically using the L-curve method[19], [20].  

 

B. Entropy Maximization and non-negative constraint 

An alternative method to the minimization problem of Eq.4 

(optoacoustic reconstruction), is maximization of the entropy 

of the image. Mathematically, entropy maximization is similar 

to maximizing the parameter -xlog(x). The entropy 

maximization problem can be posed as a non-linear convex 

maximization problem and this problem is solved by 

minimizing the function, 

2

2
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arg min( ( ))
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Ax b x log x


  
   (5) 

where -xlog(x) indicates the entropy function of image x. 

Detailed mathematical analysis on the use of Eq.5 for applying 

an implicit non-negativity constraint, stability, and 

convergence of entropy maximization is given in [21]. Herein 

we study how positive values are retained with entropy 

maximization scheme:  

The residual ((||Ax-b||2)
2
) term in Eqs. 4 and 5 aims to adapt 

the term x, so that Ax=b. However, the collected data (b) in 

optoacoustic imaging contains negative values due to the 

fundamentals of generating a propagating pressure wave. 

Although the matrix A should accurately model all positive 

and negative values in the vector b, noise, modelling errors 

and other experimental and computational uncertainties pass 

any modelling errors of the matrix A to the image x, when 

inverting with Eq. 4 since the  term (||Lx||2)
2
 cannot implicity 

apply a non-negativity constraint. Consequently, without any 

constraint in the inversion process, the image x may contain 

negative values that have no physical meaning. In contrast, 

inversion based on entropy maximization, which is equivalent 

to minimizing the function xlog(x) is bound to yield a positive 

solution. Minimization of xlog(x) attains an implicit non-

negativity constraint, because the derivative of xlog(x) 

enforces natural positivity [21]. Indeed, we assume 

optoacoustic data that contain noise (i.e. b = b0+η; wherein b0 

is the noiseless data and η represents the noise in the data) and 

that the model matrix (A), noiseless data (b0) and noise (η) are 

natural values expressed as real values (ℝ). We also 

established that the terms A, b in the residual may take 

negative values.  

In L2-norm minimization (Eq. 4), the gradient update 

equation at iteration i is given as, 



  1 1  T

i i ix x A Ax b I    
      (6) 

The above update equation is obtained by taking the 

derivative of the objective function in Eq. 4. Note that in the 

above equation all the quantities will always be in real space 

i.e. (A, xi-1, xi, b∈ℝ). Hence the resulting noise distribution 

(η=Axi - b) will be having real values as A, xi-1, xi, b∈ℝ, 
assuming that xi is close to the expected solution (x0). 

Therefore the L2-norm based minimization can generate 

negative values (which can be in ℝ) during the image 

reconstruction procedure. 

In case of entropy maximization (Eq. 5), the gradient 

updated equation at iteration i is given as, 

 
     1 1 1  log  T

i i i ix x A Ax b I x      
 (7) 

The gradient update equation is obtained by taking the 

derivative of the objective function in Eq. 5. Note that in the 

above equation all the quantities will always be in real space 

i.e. (A, xi-1, xi, b∈ℝ) only if the image xi-1 in the previous 

iteration (i-1) is positive. When xi-1 contains negative values, 

this will percolate into the next iteration making xi to be 

complex, leading to A, xi-1, b∈ℝ while xi∈ℂ. Hence whenever 

we encounter a negative value, the xi to be reconstructed 

image will become complex and in turn makes the noise 

(η=Axi – b) complex (ηi∈ℂ), which is contradicting the initial 

hypothesis of the noise being real (ηi∈ℝ). Hence the 

reconstructed image is forced to assume positive values, 

imposing an implicit non-negativity constraint within the 

entropy scheme (also called a non-negative differentially 

constrained entropy-like regularizer [21]). Note that the initial 

guess in our numerical scheme should be positive in order to 

maintain positivity throughout the iterative scheme. 

 

C. L2-norm with smoothness constraint 

Minimizing the function in Eq. 4 was performed using a 

conjugate gradient method (equivalent to iterative least 

squares QR (LSQR) method), which has a closed form 

solution as [22] 
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where Bk, Sk, Vk, βo, and e1 can be obtained in the Lanczos 

diagonalization procedure with 

A

L

 
 
   and 0

b 
 
  . Here k 

indicates the number of iterations during the joint 

bidiagonalization procedure.  

 

D. L2-norm with smoothness and non-negativity constraint 

In the L2-norm formulation with non-negativity constraint, 

the inverse problem is solved by the following minimization,  
2 2

2 2
arg min( )Ax b Lx 

,            s.t. x>0   (9) 

The above minimization is again solved using the LSQR 

solver and then the obtained solution containing negative 

values are thresholded to 0, as negative values do not have any 

physical relevance. Eq. 6 is used to obtain the solution and 

then the negative values in the solution are thresholded. The 

regularization parameter was chosen using L-curve method. 

 

E. Entropy Maximization 

Eq. 5 is minimized using a non-linear conjugate gradient 

type method and the step-length for the conjugate gradient 

method is computed using a line search [23]. Minimization of 

the objective function in Eq. 5 with conjugate gradient 

requires computing the derivative and then move in 

independent perpendicular gradient directions. The derivative 

used in the conjugate gradient scheme of the objective 

function in Eq. 5 is computed as, 

    Ω 2 1 logTA Ax b x    
   (10) 

The minimization is presented in more details in the 

Algorithm-1 section. 

Algorithm-1: Entropy Maximization Algorithm  

Inputs: Obtain boundary pressure data b, Build the 

interpolated model matrix A, Regularization Parameter  , 

Maximum Iteration max_iter, Iteration Number iter = 0, Initial 

Guess x0 

Output: Reconstructed Initial Pressure Rise x 

1) Compute Gradient g(x) = 

    0 02 1 logTA Ax b x   , Residue r = 

0Ax b , p = -g, Φ0=p
T
g; xprev = x0; gprev = g 

2) Repeat until iter<max_iter 

a. Ap = A*p, ɣ = Ap
T
Ap, v=A

T
 Ap 

b. Perform line search based on secant method 

to estimate optimal α by having minimum of 

p
T
g(x+ αp) (At the end of the iteration) 

i. Φ=Φ0+αɣ+   p
T

1 log 1
prev

p

x

  
     

  

; 

(optimal α is estimated based using 

root finding); gtemp = gprev 

+      1 log 1 / prevp x    

+ αA
T
Ap;  

ii.  β=(gtemp
T
 gtemp- gprev

T
 gtemp)/(Φ-Φ0); 

iii. u = - gtemp
T
gtemp+ βΦ ; 

c. gprev=gtemp; Δx = α*p; xprev = xprev+ Δx; p=-

gprev+ β*p; r=r+ α*Ap; Φ0=p
T
g 

3) Solution is given as x=xprev. 



F. Fluence correction 

The image reconstructed in Eq.7 and with Algorithm-1 

represents the absorbed energy distribution Hr(r) in tissue, 

which depends on the fluence distribution and the optical 

absorption coefficient  μa(r) i.e [17]  

       0   .Φar r µ r r  rx p H
   (11) 

where p0(r) is the initial pressure rise distribution and Φ(r) 

indicates the local light fluence density in mJ/cm
2
. To extract 

the absorption coefficient map, it is therefore critical to 

estimate the fluence in the medium imaged. Different schemes 

have been developed for fluence distribution, including 

wavelet frameworks [24] or approximations with base spectra 

[25]. For demonstration purposes we assumed a light 

propagation model based on the diffusion equation, further 

assuming that scattering dominates over absorption [26], 

which is a valid approximation for  most biological tissues and 

NIR measurements, i.e. , 

         0. . Φ ΦaD r r r r S r          (12) 

Where D(r) = 1/(3(μa+μ′s)) is the diffusion coefficient and 

μ′s(r) indicates the reduced scattering coefficient at position r. 

S0(r) indicates the light source at the boundary of the imaging 

domain. Eq. 12 is used for fluence estimation, and the 

diffusion equation is solved using the finite volume method 

(FVM). Optical properties were based on the known phantom 

specifications or estimates of absorption and scattering 

coefficients of tissue from the literature [27]. Then, we 

obtained absorption coefficient maps by normalizing the 

images with the corresponding calculated fluence distribution 

[28]. Since optoacoustic measurements of phantoms were 

performed in a water bath, we also employed the Beer-

Lambert Law to model photon propagation in water. The 

relative distances in phantom and water were assigned after 

segmentation of the optoacoustic images. The entire workflow 

of segmentation and fluence correction is integrated with the 

proposed non-negative entropy maximization algorithm to 

render improved image quality. 

G. Data Acquisition Setup 

Experimental data was acquired using the multispectral 

optoacoustic tomography (MSOT) scanner [29] (MSOT256-

TF, iThera Medical GmbH, Munich, Germany). The boundary 

pressure readouts (time-series) were collected at 2,030 discrete 

time points at 40 Mega samples per second using a 256-

element cylindrically focused transducers, resulting in the 

number of measurements (M) being 2030x256=519,680. The 

utilized piezocomposite transducer had a central frequency at 

5 MHz with a radius of curvature of about 40 mm and an 

angular coverage of 270°. Uniform illumination was achieved 

with a ring type of light delivery using laser fiber bundles.  

H. Measurement of Phantoms and small animals (in-vivo)  

To verify the quantitative reconstruction capabilities of the 

proposed entropy maximization scheme, a star shaped 

(irregular) phantom was created. The phantom constituted of a 

tissue mimicking (7% by volume of Intralipid and calculated 

volume of diluted India ink added) agar core having the 

optical density of 0.25. Two tubular absorbers made up of 

India-ink with the absorption coefficient values of 2.5 OD 

(calibrations done with Ocean Optics USB 4000) were 

inserted in the phantom. The absorbers were placed at two 

different depths within the phantom (one at the center and the 

other at the edge of the imaging domain) to test the sensitivity 

of the proposed scheme in reconstructing the absorbers at 

different imaging distances from the sensing arrays. Under 

normal operating conditions, the fluence at the center of the 

imaging domain is significantly lower as compared to the 

boundary of the object imaged, owing to the optical 

attenuation of the incident irradiation. Hence, performing 

fluence correction becomes indispensable to assign 

appropriated intensity to the absorber at the center of the 

imaging domain. The proposed methods were further 

validated on the in-vivo mouse abdomen and brain datasets 

drawn from a standardized in-vivo murine whole body 

imaging database (10 mice/30 anatomical datasets) previously 

developed by Mandal et. al. [18]. The selected images were 

obtained at a laser wavelength of 760 nm and 800 nm, and the 

water (coupling medium) temperature was maintained at 34°C 

for all experiments. All animal experiments were conducted 

under supervision of trained technician in accordance with 

institutional guidelines, and with approval from the 

Government of Upper Bavaria. 

I. Figure of merit 

To develop an objective approach to evaluate imaging 

performance of different reconstruction methods, we used line 

plots on the reconstructed image (from phantom and tissue 

measurements). We also performed quantification using 

sharpness metric, defined as 
2 2

2 2

dI dI

dx dy
SM

n

 


     (13) 

The sharpness metric indicates the edges in the 

reconstructed image (I): the higher the value of SM, the 

sharper the reconstructed image. This figure of metric was 

used for evaluating the proposed method, as the non-negative 

constraint tend to introduce zeros in the reconstructed image. 

The number of non-negative values is also reported for 

comparing the different reconstruction methods. 

III. RESULTS 

Fig. 1 shows reconstructions of the star phantom, which 

reveal the efficacy of the proposed method vis-à-vis traditional 

L2-norm based reconstruction in generating positive values for 

both the initial pressure rise and absorption coefficient 

distribution. The reconstructed initial pressure rise and 

absorption coefficient distribution using the L2-norm based 

reconstruction is shown in Fig. 1(a) and 1(d) respectively. The 

reconstructed initial pressure rise and absorption coefficient 

distribution using the L2-norm based reconstruction (with 

non-negative constraint) is indicated in Fig. 1(b) and 1(e) 

respectively. The reconstructed initial pressure rise and 

absorption coefficient distribution using the entropy 



maximization based approach is represented in Fig. 1(c) and 

1(f) respectively. The reconstructions containing negative 

values are indicated with a red colormap, hence the negative 

pixels in Figs 1(a) and 1(d) are shown in red color. The 

proposed entropy maximization method (Fig. 1(f)) is able to 

provide accurate image representation with the ability to 

reconstruct the absorber (having OD of 2) at the center and the 

edge of the imaging domain along with reconstructing a star 

shaped background (having OD of 0.25). 

The negative values obtained using LSQR inversion is 

shown as red color in Fig. 1(a) and Fig. 1(d).The non-negative 

based L2-norm reconstruction is able to generate 

reconstruction results with positive values, but is not able to 

correctly reconstruct the internal volume of the star (tissue 

mimicking agar with 0.25 OD) phantom which is accurately 

reconstructed using entropy maximization. Fig. 1(g) shows the 

photograph of the phantom used from front-view (FV) and 

top-view (TV). Fig. 1(h) indicates the line plot along the 

vertical red dashed line shown in Fig. 1(b). Fig. 1(i) indicates 

the line plot along the horizontal blue dashed line shown in 

Fig. 1(b). The sharpness metric and the number of non-

negative values are shown in Table-1. The quantitative metric 

indicate that the proposed method is able to provide accurate 

image representation. Fig. 1(f) and the line plots in Figs 1(h) 

and 1(i) demonstrate that the maximum entropy based scheme 

is able to deliver better contrast while maintaining the 

background intensity than the standard L2-norm based 

reconstructions. The fluence correction was performed by 

using segmented (boundary) priors obtained automatically 

using deformable active contour models [30].  

 
Fig. 1: Comparison of entropy maximization scheme with standard non-

negative reconstruction using phantom data.  Reconstructed OA image of star 

phantom using the (a) L2-norm based reconstruction, (b) L2-norm based 

reconstruction with thresholding, (c) entropy maximization based 

reconstruction. Absorption coefficient distribution after fluence correction 

using (d) L2-norm based reconstruction, (e) L2-norm based reconstruction 

with thresholding, (f) entropy based reconstruction. (g). shows the photograph 

of the phantom used, (h) line profile along the vertical red dashed line 

indicated in 1(b), (i) line profile along the horizontal blue dashed line 

indicated in 1(b). The negative values are plotted in a different colormap (a 

and d) for visualization and colormaps indicate quantitative values (in a.u).  

Table-1: Merits of Maximum Entropy based reconstruction § 

Metric 

No. of Non-Negative 

Pixels 
Sharpness Metric 

L2-norm Non-

Negativity 

Maximum 

Entropy 

L2-norm Non-

Negativity 

Maximum 

Entropy 

Star 

Phantom 
 11963 16890 0.0075 0.0125 

Brain 7587 10741 0.121 0.0171 

Kidney 8224 15071 0.0092 0.0226 

§The table shows the number of non-negative pixels and sharpness metric 

obtained with the L2-norm (with non-negativity constraint) and the proposed 

maximum entropy method on phantom and in vivo small animal datasets. 

 

The maximum entropy based scheme depends on the initial 

guess used in the non-linear conjugate gradient scheme. The 

maximum entropy constraint involves a non-linear logarithmic 

term, and logarithm of a negative value results in an imaginary 

term, therefore having a positive value at the initial guess will 

always generates positive reconstruction distributions and thus 

plays an important role in intrinsically obtaining non-negative 

reconstruction.  The reconstruction results corresponding to 

the initial guess (A
T
b; A

T
 indicates transpose of system matrix) 

is indicated in Fig. 2(a), the image shows the real part of the 

solution. The reconstruction results corresponding to the initial 

guess ((||b||2/||A||1)*ones(N,1)) is indicated in Fig. 2(b). Fig. 2 

clearly indicates that the negative values in the reconstructions 

arises because of initial guess i.e. (||b||2/||A||1)*ones (N,1) gives 

non-negative results while A
T
b results in negative values.  

Hence, in all the reconstructions the initial guess was chosen 

to be (||b||2/||A||1)*ones(N,1) and the regularization parameter 

was set at 10 (chosen using L-curve method). Note that 

reconstructions in Fig. 2 involve performing additional fluence 

correction. The colormap in the case of mouse images are 

normalized to maximum and minimum values and the 

negative values are indicated in red color.  

 

 
Fig. 2: Dependence of initial guess on positivity constraint with entropy 

maximization scheme. Reconstructed OA image of mouse brain (head 

scanned in vivo) using two different initial guesses in entropy maximization 

algorithm (a) A’b (-ve values exists at initial guess) generates negative values 

and (b) ((||b||2/||A||1)*ones(N,1)) (only +ve value exist at initial guess) yields 

non-negative image. The negative values are plotted in a different colormap in 

(a) for visualization, colorbars indicates the rise of initial pressure (in a.u).  

 

The reconstruction results (corresponding to absorption 

coefficient distribution) pertaining to the mouse head and 

mouse abdominal regions using the standard and proposed 

method are shown in Fig. 3. The reconstruction result 



corresponding to L2-norm based scheme (solved using LSQR 

method) for the mouse head and abdominal region is indicated 

in Fig. 3(a) and 3(d) respectively, and the corresponding 

results for L2-norm based non-negative scheme (solved using 

LSQR method with thresholding) are given by Fig. 3(b) and 

3(e) respectively. The reconstruction results using the entropy 

maximization approach (Algorithm-1 with the integrated 

hybrid fluence correction) for the same anatomical regions is 

shown in Fig. 3(c) and Fig. 3(f) respectively. All the 

reconstructions were performed on a 200x200 pixel imaging 

domain which corresponds to a physical field of view of 

20mm x 20mm. The regularization parameter was set to 10 in 

all the maximum entropy based reconstructions. The optical 

properties used for fluence estimation was assumed to be 

homogenous inside the tissue and taken from literature [27]. 

Fig. 3(g) indicates the line plot along the red dashed line 

shown in Fig. 3(b) and Fig. 3(h) shows the line plot along the 

red dashed line indicated in Fig. 3(e). The sharpness metric 

and the number of non-negative values for these 

reconstructions are indicated in Table-1. These metric shows 

that the proposed method is able to provide accurate image 

reconstruction with lesser negative values and increased 

sharpness. Again the colormap is normalized to maximum and 

minimum values, while indicating the negative values in red. 

 

 
Fig. 3: Comparison of entropy maximization scheme with standard non-

negative reconstruction at two different mice regions. Reconstructed OA 

images using the (a) L2-norm based reconstruction, (b) L2-norm based 

reconstruction with thresholding, (c) entropy based reconstruction and fluence 

correction (using segmented prior) of murine head region; and (d) L2-norm 

based reconstruction, (e) L2-norm based reconstruction with thresholding, (f) 

entropy based reconstruction (using segmented prior) for the mouse 

abdominal region imaged in vivo. (g) line profile along the red dashed line 

indicated in 3(b) (h) line profile along the red dashed line indicated in 3(e). 

The negative values appearing in L2-norm based reconstruction scheme (a and 

d) are plotted in a different colormap (negative values marked in pink) for 

visualization, colorbars indicates the initial pressure rise (in a.u). An 8 week 

old nude mice (CD-1® Nude, Charles River Laboratories, Germany) used 

imaged at an wavelength of 760 nm (brain) and 800nm (abdomen). The white 

part in the colormap indicates maximum and black part represents the 

minimum. 

IV. DISCUSSION 

The reconstruction results for the star-shaped phantom and 

in vivo mouse scans indicate that the proposed entropy 

maximization scheme renders strictly positive image values 

that are also close to the a-priori known absorption values in 

the phantom. Employing a segmented image prior can 

effectively reduce the aberrations in image contrast by suitably 

mapping the light propagation pathway in two optically 

diverse domains (background and tissue), and enhance the 

performance of (optical) fluence correction methods [30], as 

demonstrated in Fig 1(f) and 3(f).  Moreover, when a global 

SoS is attribute to the entire imaging domain, small SoS 

variation causes aberration at the edge of the surfaces of the 

imaged object [31], the same two compartment model can be 

used to remove SoS mismatch. The figure of merits (Table-1) 

and the line plots indicate that the entropy maximization 

approach provides superior results in comparison with non-

negativity constrained reconstructions. Importantly, the 

proposed approach offers an opportunity to explore a family of 

differential type non-negative regularization methods (similar 

to entropy scheme). 

Entropy maximization scheme was evaluated with 

biological datasets acquired from an incomplete 270° 

tomographic detection angle wherein the acquired dataset 

consists of highly independent (incoherent) data. Some 

handheld OA imaging systems probes are built with even 

more limited tomographic detection angle, e.g. having 90° 

three dimensional acquisition [32], [33] or 145° two 

dimensional acquisition [34]. Performing accurate 

reconstructions with these clinical handheld systems tend to be 

difficult due to acquisition of limited independent data. 

Evaluating the performance of the entropy scheme with the 

limited independent data scenarios can enable utility of OA 

imaging in different clinical scenarios.  

The proposed method preserves the structural integrity (star 

phantom) and the anatomical structures (mouse data), and was 

successful in correcting the effects of variations in optical 

fluence. As part of future work, we aim to integrate the 

entropy maximization with more accurate light propagation 

modeling (such as Monte Carlo based schemes) to obtain 

better representation of the absorption coefficient with the 

reconstruction process accelerated by means of graphics 

processing units [35].  

The ability to resolve intrinsic chromophores like 

oxyhemoglobin, deoxyhemoglobin, fat, and water by 

acquiring data at multiple wavelengths is a key benefit of 

multispectral OA imaging. The unmixing of chromophores is 

achieved by a solving system of linear equations (direct or 

non-negatively constrained), or by non-linear unmixing using 

an integrated fluence correction. However, nearly all of these 

approaches use thresholding of negative values, making them 

suboptimal and error prone. Entropy maximization will be 

highly beneficial while performing the unmixing step, and can 

help purge out the inaccuracies occurring from truncated pixel 

information. Therefore, future work will involve comparing 

the different combination of reconstruction and unmixing with 

different solvers like LSQR, non-negative LSQR and entropy 



maximization to bring out value among these schemes. 

To conclude, the proposed scheme demonstrates superior 

reconstruction performance with no visible distortion of 

anatomical structures associated with delivering of non-

negative pixel values. Entropy maximization reconstruction 

thus tends to be physically relevant and more accurate in 

resolving the structures and chromophores in an imaged 

sample. The developed methodology has the potential to 

emerge as a suitable data processing tool for OA imaging, 

significantly benefiting pre-clinical biomedical and 

translational imaging.   
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