
 1 

Modeling heterogeneity in the genetic architecture of ethnically diverse groups using 

random effect interaction models 

Yogasudha Veturi
*†

, Gustavo de los Campos
‡§**

, Nengjun Yi
†
, Wen Huang

††
, Ana I. Vaz-

quez
†‡

 and Brigitte Kühnel
‡‡ 

*Department of Genetics, University of Pennsylvania, Philadelphia, PA, 19104, USA 

†
Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, 35205, 

USA 

‡Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 

48824, USA  

§Institute for Quantitative Health Science and Engineering, Michigan State University, East Lan-

sing, MI, 48824, USA 

**Department of Statistics and Probability, Michigan State University, East Lansing, MI, 48824, 

USA 

††Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA 

‡‡
Department of Molecular Epidemiology, Helmholtz Zentrum München, Germany 

IRB number for ARIC dataset is 15-745; r050661  

Study accession number for ARIC dataset: phs000280.v1.p1. 

  

 Genetics: Early Online, published on February 22, 2019 as 10.1534/genetics.119.301909

 Copyright 2019.

https://www.helmholtz-muenchen.de/ame/research-unit/team/team/ma/3463/-K%C3%BChnel/index.html


 2 

Running title: Cross-ethnic group effect heterogeneity  

Keywords: population structure, GWAS, random effect interactions, Bayesian spike slab, effect 

heterogeneity 

Corresponding author: Yogasudha Veturi, Department of Genetics, University of Pennsylvania, 

415 Curie Blvd, Philadelphia, PA 19104 yveturi@upenn.edu 

 

ABSTRACT. In humans, most genome-wide association studies have been conducted using data 

from Caucasians and many of the reported findings have not replicated in other populations. This 

lack of replication may be due to statistical issues (small sample size, confounding) or perhaps 

more fundamentally to differences in the genetic architecture of traits between ethnically diverse 

subpopulations. What aspects of the genetic architecture of traits vary between subpopulations 

and how can this be quantified?  We consider studying effect heterogeneity using Bayesian ran-

dom-effect interaction models. The proposed methodology can be applied using shrinkage and 

variable selection methods and produces useful information about effect-heterogeneity in the 

form of whole-genome summaries (e.g., the proportions of variance of a complex trait explained 

by a set of SNPs and the average correlation of effects) as well as SNP-specific attributes. Using 

simulations, we show that the proposed methodology yields (nearly) unbiased estimates when 

the sample size is not too small relative to the number of SNPs used. Subsequently, we used the 

methodology for the analyses of four complex human traits (standing height, high-density lipo-

protein, low-density lipoprotein, and serum urate levels) in European-Americans (EAs) and Afri-

can-Americans (AAs). The estimated correlations of effects between the two subpopulations 

were well below unity for all the traits, ranging from 0.73 to 0.50. The extent of effect heteroge-

neity varied between traits and SNP-sets. Height showed less differences in SNP effects between 
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AAs and EAs whereas HDL, a trait highly influenced by lifestyle, exhibited greater extent of ef-

fect heterogeneity. For all the traits, we observed substantial variability in effect heterogeneity 

across SNPs, suggesting that effect heterogeneity varies between regions of the genome. 

 

Population structure is a pervasive feature in plant, animal, and human populations (Gaggiotti et 

al. 2009; Pfenninger et al. 2011; Puckett et al. 2014). In population genetics, differentiation be-

tween subpopulations is often measured by comparing allele frequencies, e.g., using the ‘F-

statistic’ (Malécot 1947; Wright 1949 and Cockerham 1969). In genome-wide association studies 

(GWAS), population differentiation is predominantly viewed as a confounder (Astle and Balding 

2009) that can lead to spurious associations (Lander and Schork 1994; Deng 2001; Marchini et 

al. 2004; Liu et al. 2011). To address this problem a variety of methods have been proposed 

(Price et al. 2010). However, rather than a confounder, population stratification can act as an ef-

fect-modifier, leading to heterogeneity in the genetic architecture of traits. 

 The evolutionary dynamics involved in the processes that lead to population structure can 

result in subpopulations with heterogeneity in allele frequencies and linkage disequilibrium (LD) 

patterns (Gabriel 2002). Moreover, in some instances, ethnic background correlates with envi-

ronmental exposures (e.g., diet, income, lifestyle) and this can lead to genotype-by-environment 

interactions. All these differences between ethnic groups can induce heterogeneity in the genetic 

architecture of traits (de los Campos and Sorensen 2014). Quantifying the extent of effect-

heterogeneity between ethnically diverse groups is relevant across disciplines and can shed light 

on whether results obtained in one group are expected to replicate in others. This is particularly 

important when we consider that the vast majority of GWAS have been conducted using data 

from Caucasians and that results reported from these studies do not always replicate in other 
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populations, which may indicate differences in genetic architectures between ethnic groups 

(Greene et al. 2009a; Kraft et al. 2009; Ng et al. 2014).   

Several studies have demonstrated (or alluded to) effect heterogeneity between ethnic groups 

(Ntzani et al. 2012; de Candia et al. 2013; Li and Keating 2014; Brown et al. 2016). Most of 

these studies measured effect heterogeneity by estimating the average correlation of marker ef-

fects between two or more ethnically diverse groups.  

One may attempt to estimate effect correlations by quantifying the average correlation of es-

timated effects from GWAS conducted in different ethnic groups. However, estimation errors 

make the simple correlation of estimates of effects a seriously biased (towards zero) estimate of 

the correlation of (true) effects (see Appendix C). To overcome this problem, several studies 

have used multivariate Gaussian random regression models. Such methods have been considered 

in both animal and plant breeding (Wei and Werf 1994; García-Cortés and Toro 2006; Karoui et 

al. 2012; Olson et al. 2012; Christensen et al. 2014; Lehermeier et al. 2015) as well as in human 

genetics (e.g. de Candia et al., 2013; Lee et al., 2012). Another approach estimates the correla-

tion of effects using an extension of the LD-score regression (Brown et al. 2016).  

The methods described above provide whole-genome summaries such as SNP-heritability 

and average correlation of effects. However, they don’t shed light on how effect heterogeneity 

may vary across regions of the genome or between SNP sets. Moreover, the random regression 

methods commonly used to estimate effect-correlations assume that SNP effects follow Gaussian 

distributions. This assumption does not contemplate the possibility that some SNPs may have no 

effect in one or more than one group. To overcome this limitation, we consider modeling effect 

heterogeneity using a Bayesian random-effect interaction model that decomposes SNP effects 

into main and interaction components. Unlike previously used methods, the proposed approach 
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can be applied with both shrinkage and variable selection priors (e.g., Ishwaran and Rao 2005, 

Park and Casella 2008) and offers both whole-genome and SNP-specific measures of effect-

heterogeneity.  

Using simulations, we show that the proposed method yields nearly unbiased estimates when 

sample size (𝑛) is not too small relative to the number of markers (𝑝) used. Subsequently, we 

applied the proposed methodology to data from the ARIC (multi-ethnic Atherosclerosis Risk in 

Communities) study to quantify effect-heterogeneity between European and African ancestries 

(hereinafter referred to as European-Americans (EAs) and African-Americans (AAs), respective-

ly). These subpopulations have important differences in allele frequencies, LD decay (Shifman 

2003) and cultural and socio-economic factors that are linked to environmental exposures.  

Our results show that for the four traits there is varying extent of effect-heterogeneity (the 

correlation of effects was highest for height and lower for lipid traits). Moreover, we show that 

for HDL, LDL and serum urate there is a great deal of variability in effect heterogeneity across 

the genome. 

 

Materials and Methods 

Meuwissen et al. (2001) proposed to predict complex traits by regressing phenotypes on whole-

genome panels of SNPs. Their model was developed with reference to a homogeneous popula-

tion. Here, following (de los Campos et al. 2015b), we consider extending the whole genome 

regression model by including random-effect interactions between markers and groups. Consid-

ering two groups, the regression of phenotypes (𝒚𝑘 = {𝑦𝑘1, … , 𝑦𝑘𝑛𝑘
}, where 𝑘 = 1,2 indexes 

groups and 𝑛𝑘 denotes the number of individuals in the kth group) on p markers (e.g., SNPs) can 

be represented as follows: 
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[
𝒚1

𝒚2
] = [

1𝜇1

1𝜇2
] + [

𝑿1

𝑿2
] 𝒃0 + [

𝑿1

𝟎
] 𝒃1 + [

𝟎
𝑿2

] 𝒃2 + [
𝜺1

𝜺2
]  (1) 

where 𝜇1  and 𝜇2 are group-specific intercepts, 𝒃0 = {𝑏0𝑗}
𝑗=1

𝑝
 is a vector of ‘main effects’, 

𝒃1 = {𝑏1𝑗}
𝑗=1

𝑝
 and 𝒃2 = {𝑏2𝑗}

𝑗=1

𝑝
are group-specific interactions and 𝜺1 = {𝜀1𝑖}𝑖=1

𝑛1  and 𝜺2 =

{𝜀2𝑖}𝑖=1
𝑛2  are error terms. In our models, we assume uncorrelated IID Gaussian errors with group-

specific variances that is  𝜀1𝑖
𝑖𝑖𝑑
~

𝑁(0, 𝜎1
2) and 𝜀2𝑖

𝑖𝑖𝑑
~

𝑁(0, 𝜎2
2). 

Marker effects in groups 1 and 2 are defined by the sum of the main and group-specific 

terms, that is, 𝛽1𝑗 = 𝑏0𝑗 + 𝑏1𝑗 and 𝛽2𝑗 = 𝑏0𝑗 + 𝑏2𝑗, respectively. Since the number of markers is 

usually large relative to sample size, we treat both main and interaction effects as random. De-

pending on the distribution assigned to SNP effects, the model can induce variable selection, 

shrinkage, or a combination of both (Ishwaran and Rao 2005; Gianola et al. 2009; de los Campos 

et al. 2013). To illustrate, we considered two priors for main and interaction effects: a Gaussian 

distribution and a prior with a point of mass at zero and a Gaussian slab, also known as BayesC 

(Habier et al. 2011).  

In the Gaussian setting we assign independent Normal priors with null mean and with dif-

ferent variances for the main and interaction effects, that is 

    𝑏0𝑗
𝑖𝑖𝑑
~

𝑁(0, 𝜎𝑏0

2 ), 𝑏1𝑗
𝑖𝑖𝑑
~

𝑁(0, 𝜎𝑏1

2 ) and 𝑏2𝑗
𝑖𝑖𝑑
~

𝑁(0, 𝜎𝑏2

2 ).  

Above, 𝜎𝑏0

2 , 𝜎𝑏1

2  and 𝜎𝑏2

2  represent the prior variances of the main and interaction effects, respec-

tively. 

For the Spike-Slab prior we adopt the assumptions of the BayesC model (Habier et al. 

2011), with set-specific variances and proportions of non-zero effects, that is 

         𝑏0𝑗
𝑖𝑖𝑑
~

𝑝(𝜋0, 𝜎
~

𝑏0

2 ),  𝑏1𝑗
𝑖𝑖𝑑
~

𝑝(𝜋1, 𝜎
~

𝑏1

2 ) and 𝑏2𝑗
𝑖𝑖𝑑
~

𝑝(𝜋2, 𝜎
~

𝑏2

2 ), 
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where 𝑝(𝑏.𝑗|𝜋., 𝜎
~

𝑏.

2) is a mixture distribution of the form 𝑝(𝑏.𝑗|𝜋., 𝜎
~

𝑏.

2) = (1 − 𝜋.)1(𝑏.𝑗 = 0) +

𝜋.𝑁(0, 𝜎
~

𝑏.

2), for “.”=0,1,2.  Here, 𝜋. represents the proportion of non-null effects. 

Hyper-parameters. In the Gaussian model the hyper-parameters are the error variance and 

the three variances of effects, that is 𝛺 = {𝜎1
2, 𝜎2

2, 𝜎𝑏0

2 , 𝜎𝑏1

2 , 𝜎𝑏2

2 } . In BayesC the hyper-parameters 

also include the proportion of non-null effects; therefore:𝛺 = {𝜎1
2, 𝜎2

2, 𝜎
~

𝑏0

2 , 𝜎
~

𝑏1

2 , 𝜎
~

𝑏2

2 , 𝜋0, 𝜋1, 𝜋2}. 

These parameters control the extent of shrinkage and variable selection and how the architecture 

of effects may vary between groups. We treat these hyper-parameters as unknown and therefore 

assign prior distributions to them. For variance parameters, the conjugate prior is the scaled-

inverse chi-squared. However, this prior can have some influence on inference. Therefore, in-

stead we use a prior for variance parameters that is a transformation of the beta distribution (Ap-

pendix A). For the proportion of non-zero effects {𝜋0, 𝜋1, 𝜋2} we use independent identical beta 

priors. This allows us to accommodate different effect distributions for different traits and sets of 

SNPs. Further details about this are provided in the Analyses of Complex Human Traits sec-

tion below. 

The models described above can be used to estimate several parameters that are descriptive 

of the trait architecture. Whole-genome summaries of the trait architecture and of effect hetero-

geneity include the proportion of variance explained by SNPs (or genomic heritability, e.g., de 

los Campos et al. 2015) in each of the ethnic groups, the average correlation of effects and the 

average proportions of non-zero effects (either main effects, interaction terms or total effects). 

Samples from the posterior distribution can also be used to estimate SNP-specific parameters 

such as the posterior correlation of a SNP effect, 𝜌𝑗 = 𝐶𝑜𝑟( 𝛽1𝑗 , 𝛽2𝑗).  

Genomic variance and the average correlation of effects were estimated using the methods 

described by Lehermeier et al. (2017).  Briefly, at each iteration of an MCMC algorithm, we 
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used the samples of the main and interaction effects to form marker effects ( 𝛽1𝑗(𝑠) = 𝑏0𝑗(𝑠) +

𝑏1𝑗(𝑠) and 𝛽2𝑗(𝑠) = 𝑏0𝑗(𝑠) + 𝑏2𝑗(𝑠) where, s=1,…,N is an index for the N MCMC samples collect-

ed) to obtain samples from the posterior distribution of the correlation of effects 𝜌𝑠 =

𝐶𝑜𝑟(𝛽1𝑗(𝑠), 𝛽2𝑗(𝑠)), here 𝐶𝑜𝑟( ) represents Pearson’s product moment correlation. Likewise, at 

each iteration of the sampler, genomic values can be obtained from 𝒖1(𝑠) = 𝑿1𝜷1(𝑠)  and 

𝒖2(𝑠) = 𝑿2𝜷2(𝑠). Therefore, a sample for the posterior distribution of the genomic variances for 

each group was computed as 𝜎𝑔1(𝑠)
2 = (𝑛1 − 1)−1 ∑ (𝑢1𝑖(𝑠) − 𝑢1(𝑠))

2

𝑖  and 𝜎𝑔2(𝑠)
2 =

(𝑛2 − 1)−1 ∑ (𝑢2𝑖(𝑠) − 𝑢2(𝑠))
2

𝑖 , where 𝑢.(𝑠) = 𝑛. ∑ 𝑢.𝑖(𝑠)𝑖 . Finally, samples from the posterior 

distribution of the proportion of variance of the trait explained by a SNP-set were obtained using: 

𝑣𝑔1(𝑠)
2 =

𝜎𝑔1(𝑠)
2

𝜎𝑔1(𝑠)
2 +𝜎1(𝑠)

2  and   𝑣𝑔2(𝑠)
2 =

𝜎𝑔2(𝑠)
2

𝜎𝑔2(𝑠)
2 +𝜎2(𝑠)

2 . 

 

Data  

Our simulation and real data analyses were based on data from the ARIC study. ARIC is a pro-

spective epidemiologic study sponsored by the National Heart, Lung, and Blood Institute 

(NHLBI) conducted in four U.S. communities to study the causes of atherosclerosis and other 

cardiovascular risk factors such as blood lipids, lipoprotein cholesterols, and apolipoproteins. It 

has a total sample size of 15,792 (9,584 EA and 3,107 AA) men and women aged 45-64. A total 

of 13,113 individuals were genotyped using an Affymetrix array with a total of 934,940 SNPs. 

Genotype and phenotype data from the ARIC study was acquired through the dbGaP (IRB num-

ber 15-745; r050661 and study accession number phs000280.v1.p1).  
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Genotypes 

We retained SNPs that had minor allele frequency higher than 1% in at least one of the two eth-

nic groups, had higher than 95% calling rate, and were mapped to one of the 23 human chromo-

somes. After QC, we retained 828,822 SNPs. Individuals with a missing rate >5% in their geno-

types were removed. Individuals were classified as EA or AA based on self-reported ethnicity  

(also confirmed from principal components analyses, Figure S1). We removed individuals that 

had within-group genomic relationships higher than 0.075; this ensured that we retained enough 

number of distantly related individuals. The final data sets comprised only distantly related indi-

viduals including 6,627 EAs and 1,601 AAs. 

 

Simulations 

We simulated phenotypes using genotype data from the ARIC study from 6,627 EAs and 1,601 

AAs. Phenotypes were simulated under an additive genetic model with a heritability of 0.5 for 

both groups. We further considered scenarios with the number of markers (𝑛) varying from 100 

to 10,000 and the true correlations of effects between groups varying from 0.2 to 0.8. In a first 

simulation setting we assumed that all the markers had effects on both groups. In a second set-

ting, we assumed that 50% of the loci had effects on both groups, 20% had effects on EAs but 

not on AAs, 20% had effects on AAs but not on EAs and 10% had no effects on either group 

(non-causal variants). These simulations were conducted for 200 Monte Carlo replicates per set-

ting. Finally, we considered an additional scenario where heritability was lower in both groups 

(0.2) or lower in one of the groups (0.2 in EA and 0.5 in AA and vice versa). Further details of 

the simulation are given in Appendix B. 
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Analyses of Complex Human Traits 

We considered four complex phenotypes: height (cm), HDL (mmol/L) and LDL (mmol/L) cho-

lesterol and serum urate (mg/dL). Individuals with height < 147 cm, LDL > 10 mmol/L and se-

rum urate > 15 mg/dL were removed. We did not identify clear outliers for HDL.  Transfor-

mation of the traits was not considered necessary (Figure S2). Phenotypes were pre-corrected for 

ethnicity, age, sex and the first five marker-derived principal components. 

Models were fitted to subsets of SNPs selected based on single-marker regression (GWAS) 

p-values derived from independent data that did not include ARIC. For height, GWAS p-values 

were derived from the full release of the UK Biobank. For HDL and LDL p-values were from the 

Global Lipids Genetics Consortium (GLGC) computed after excluding data from ARIC. Finally, 

for serum urate, p-values were from the Global Urate Genetics Consortium (GUGC), also de-

rived without using data from ARIC. The simple ranking of markers based on association p-

values would lead to sets of highly redundant markers, i.e., markers in high LD (see Figure S3). 

To avoid this, we designed a windows-based selection algorithm where a window was defined as 

a set of consecutive SNPs that exceeded a given –log10(p-value) cutoff (this was done on a per-

trait basis). Windows were made on a per-trait basis at –log10(p-value) cutoffs of 2, 2.3, 2.6, 3, 5, 

and 8 (Table S1). SNPs that cleared a given –log10(p-value) cutoff were termed “significant” at 

that cutoff (See Figure S4).  

We fitted the interaction model to each of the four traits and each of the SNP-sets above de-

scribed. For sensitivity analyses, we also fitted the same models to randomly chosen sets of 

SNPs (of sizes 500, 1,000, 2,500, 5,000, and 10,000 SNPs, respectively). Finally, for further sen-

sitivity testing, we repeated the analysis with the EA ethnic group label randomly permuted. 
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Software 

Models were fit using a modified version of the BGLR (Pérez and de los Campos 2014) R pack-

age (available at: https://github.com/gdlc/BGLR-R and at https://cran.r-

project.org/web/packages/BGLR/index.html) that implements a weakly informative prior for var-

iance parameters based on a transformation of the beta distribution (de los Campos et al. 2009) 

described above. We ran the Monte Carlo Markov Chain algorithm for 45,000 iterations; the first 

15,000 iterations were discarded as burn-in and the remaining samples were thinned at a thinning 

interval of 5.  

Hyper-parameters. BGLR assigns a beta prior to the proportion of non-zero effects, we 

choose the shape parameters of the beta prior to be equal to 1, which gives a uniform prior in the 

0-1 interval. For variance parameters we devised a prior that is a modified version of the Beta 

prior (see Appendix A) and used shape parameters equal to 1.01 to obtain an almost uniform pri-

or for variance parameters within the interval [0,K] where K was twice the variance of the phe-

notype.  

 

Data availability  

Supplemental material has been uploaded to FigShare. File S1 contains supplementary figures, 

tables and Appendices. The IRB number for ARIC dataset is 15-745; r050661 and the study ac-

cession number for ARIC dataset: phs000280.v1.p1. 

 

Results 

https://github.com/gdlc/BGLR-R
https://cran.r-project.org/web/packages/BGLR/index.html
https://cran.r-project.org/web/packages/BGLR/index.html
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Simulations  

In both simulation settings, the proportion of variance explained by a SNP-set was estimated 

with almost no bias using both Gaussian and BayesC priors (see Figures 1 and S5 for the first 

and second simulation scenarios, respectively). The standard errors were higher for AAs as com-

pared to EAs, which was expected given that the sample size was smaller for AAs. As one would 

expect, the standard errors also increased with the number-of-loci/sample-size ratio. Using the 

BayesC prior, the estimates of proportion of variance explained by a SNP-set were mildly biased 

across all values of true effect-correlation when the number of QTL was greater than 10,000. 

There was a mild to moderate bias in the group with smaller sample size when the true propor-

tion of variance explained in this group went from high (0.8) to low (0.2). (see Figure 2 and Ta-

ble S2). 

FIGURE 1 

Estimates of effect correlations were also nearly unbiased (see Figures 2 and S6), especially 

when the true proportion of variance explained was high in group with smaller sample size. 

However, the standard errors were very large, particularly when the correlations were low. In 

scenarios involving less than 100 or more than 5,000 QTL, we observed small biases. (Figure 2 

and Figure S6). The average standard error of the estimated correlation was high with the small-

est (100) and the largest (10,000) numbers of QTL and lower for scenarios in between. With low 

simulated trait heritability (0.2) and small group sample size (AAs), we observed an upward 

(downward) bias when the simulated correlation was low (high) (see Table S3). 

FIGURE 2 

Analyses of Complex Human Traits 
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Since our simulations revealed that an 𝑛/𝑝 ratio of at least 1/3 results in nearly unbiased esti-

mates of proportion of variance explained by a SNP-set, we fit our model to subsets of markers 

instead of using whole-genome data (see methods for a description of how these subsets were 

obtained). Figure 3 shows the estimated proportion of variance explained by a SNP-set obtained 

using the BayesC prior, by trait, ethnicity and the set of SNPs used. (The results obtained with 

the Gaussian prior are displayed in Figure S7). As expected, the estimated proportion of variance 

explained by a SNP-set increased with the number of SNPs used. Interestingly, this parameter 

was systematically higher in EAs than in AAs for height and HDL, and the order was reversed in 

other traits (LDL and serum urate).  However, the credibility intervals between both ethnic 

groups overlapped for all traits except height. The estimated proportion of variance explained by 

a SNP-set obtained with the Gaussian prior were similar to the ones found with the BayesC prior 

(see Figure S7) for all traits except serum urate, which yielded larger estimates for AAs than 

those obtained using the BayesC prior. 

FIGURE 3 

The estimated average correlation of effects (Figure 4) ranged from 0.711 (for height with 

the SNP-set obtained with –log10(p-value) cutoff of 8) to 0.500 (for HDL with the SNP-set ob-

tained with a –log10(p-value) cutoff of 2.3). Overall the correlation of effects was highest for 

height and serum urate and lowest for LDL and HDL. In all traits except HDL, the correlation of 

effects tended to decrease as more SNPs were added in the model; however, the confidence re-

gions for the different SNP sets overlapped. The estimated correlation of effects with the Gaussi-

an prior for marker effects was similar to those obtained using the BayesC prior, with subtle dif-

ferences between the two priors for height, HDL and LDL (Figure S8). 

FIGURE 4 
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Figure 5 shows the estimated proportion of non-zero SNP effects obtained with the BayesC pri-

or, by trait, ethnic group and SNP-set. For both groups, the proportions of non-zero effects were 

high at large –log10(p-value) cutoffs and decreased as the number of markers included in the 

model increased. For height, the proportions of non-zero effects were similar between EAs and 

AAs. However, for LDL (and serum urate to a lesser extent) the decrease in the proportion of 

non-zero effects was stronger in EAs. Figure S9 displays the proportion of non-zero main and 

interaction effects. The proportion of non-zero main effects decreased as the number of SNPs 

increased and the proportion of non-zero interaction effects tended to remain constant (except for 

the LDL-interactions for EAs). Interestingly, the proportion of non-zero effects dropped very fast 

with the number of SNPs for HDL, LDL and serum urate but not for height. 

FIGURE 5 

Figures 3-5 (and the corresponding supplementary figure S9), correspond to overall summar-

ies (proportion of variance explained by a SNP-set, average correlation of effects, proportion of 

non-zero effects). However, the models used also render SNP-specific summaries. Figure 6 

shows the posterior mean of the correlation of effects between ethnic groups for individual SNPs 

by trait for the SNP set obtained using a –log10(p-value) cutoff of 2. We had no SNP with nega-

tive posterior correlation of effect. For height, the posterior correlation of individual-SNP effects 

ranged from 0.4-0.8. However, for HDL, LDL and serum urate, there was more variability 

among SNPs, with several SNPs having posterior correlation of effects greater than 0.8 and 

many with posterior correlation of effects smaller than 0.4.  

Figure S10 and S11 correspond to the proportion of variance explained and average correla-

tion of effects between EAs and AAs from randomly chosen sets of markers. The estimates of 



 15 

both, proportion of variance explained by a SNP-set (for EAs and AAs) as well as effect correla-

tions, are far lower than those obtained using GWAS-selected markers (Figure 3 and S7). 

Figures S12 and S13 correspond to the estimates of proportion of variance explained and the 

average correlation of effects from GWAS-selected markers by randomly dividing the EAs into 

two groups such that the sample size of one of two groups is same as that of the AA dataset. As 

expected, the estimates of the proportion of variance explained are similar within EAs and the 

estimates of effect correlation are much higher within EAs than between EAs and AAs across all 

traits (in particular, the effect correlation estimates are >0.90 for height across all SNP sets).  

FIGURE 6 

 

Discussion 

Genome-Wide Association (GWA) studies have been conducted predominantly in Caucasian 

populations (Haga 2010; Rosenberg et al. 2010). Although more recent works have recognized 

inclusion of diverse ethnic groups, especially African Americans (e.g. Brant et al., 2017; Park et 

al., 2017; Taylor et al., 2016) the total number of GWAS studies for African Americans is still 

fairly low compared to populations of European ancestry (Peprah et al. 2015) and replication of 

signals in African American populations is much less common (Marigorta and Navarro 2013). 

Moreover, the associations reported to be strong in Caucasians have been weaker (or even non-

significant) in other ethnic groups (Gudbjartsson et al. 2007; Omori et al. 2008; Yamada et al. 

2009; Barnholtz-Sloan et al. 2011; Tsai et al. 2014; Prasad et al. 2017) and some studies have 

reported effects with opposite sign in different populations (Lewis et al. 2008; Yamada et al. 

2009). More recent studies have also confirmed the presence of genetic heterogeneity between 

ethnic groups for various traits (Brown et al. 2016; de Vlaming et al. 2017; Zhou et al. 2018). 
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While some of these differences could be attributed to small sample size (some well-powered 

studies have shown strong overlaps in GWAS-significant variants between Europeans and other 

ethnic groups (Franceschini et al. 2013; Okada et al. 2014)), there is substantial evidence sup-

porting effect-heterogeneity. Understanding the reasons that underlie these differences and quan-

tifying the degree of similarity in the architecture of a trait across populations represents an im-

portant research goal. 

In humans, Shi et al. 2017 estimated local correlations between traits using individual-level 

data while Brown et al. 2016 considered quantifying the average correlation of effects between 

populations using summary-based association statistics. Their approach extended LD score re-

gression (Bulik-Sullivan et al. 2015) to multiple ethnic groups and has the advantage that it can 

be used with summary statistics. However,  some authors have questioned the assumptions of the 

LD score regression method (Speed et al. 2018) and accurate estimation requires using several 

thousands of SNPs. Thus, the method is not well-suited for studying effect similarity within ge-

nomic regions, something that the method proposed here can achieve. Also, the LD-score meth-

od requires access to good quality external reference panels (especially for non-European popu-

lations) to construct population LD matrices, assumes normal distribution of marker effects (in-

finitesimal model) and is not directly applicable to admixed populations (or populations that 

have long range LD).  

In this study, we propose to study ethnic differences in the architecture of traits using a ran-

dom effect Bayesian interaction model. The proposed approach can be used to estimate whole-

genome summaries such as (a) the proportion of variance explained by SNPs, (b) the average 

effect correlation, (c) proportion of non-zero effects, as well as finer features of the trait architec-

ture (e.g. SNP-specific correlation of effects). Similar approaches have been considered in ani-
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mal and plant breeding (e.g., Christensen et al., 2014; García-Cortés and Toro, 2006; Lehermeier 

et al., 2015; Wei and Werf, 1994) and in human genetics (e.g., de Candia et al., 2013; Lee et al., 

2012) for the analysis of data from heterogeneous populations. However, previous studies were 

based on Gaussian assumptions and only offered whole-genome summaries of the trait architec-

ture. The approach presented in this study is more flexible in that it can be used with both 

shrinkage and variable selection priors (Ishwaran and Rao 2005; Park and Casella 2008) and can 

be used to infer not only whole-genome features but also regional and SNP-specific features of 

the trait architecture.  

We evaluated the proposed methodology under two different priors (Gaussian and BayesC) 

using simulations and applied it to real human data to study the genetic architecture of four traits 

(Height, HDL, LDL, Serum urate) in EAs and AAs. Our simulation study (based on real EA and 

AA genotypes from ARIC) revealed that both Gaussian and BayesC priors yield nearly unbiased 

estimates of proportion of variance explained by a SNP-set and of effect correlations. We ob-

served mild to moderate upward (downward) bias in low (high) effect correlations when the pro-

portion of variance explained was low (0.2), the sample size was small (<2000) and the number 

of considered SNPs was large relative to sample size. Given the small sample size available for 

our real data analyses, and considering our simulation results, we applied the proposed method-

ology to subsets of SNPs pre-selected using GWAS results obtained from other (independent) 

data sets. 

From our real data analyses, we observed similar proportions of variance explained with both 

BayesC and Gaussian priors for marker effects (Figure 3 and S7). The Gaussian prior is a special 

case of the BayesC prior, thus BayesC is more flexible. Whether these two methods will render 

different estimates would critically depend on the trait architecture.   
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With the exception of height, the average proportions of variance explained across all marker 

sets were similar between EAs and AAs. For height, the average proportion of variance ex-

plained was greater among EAs than among AAs. This is likely due to the fact that the SNPs 

used for the analysis of height were selected using GWAS results entirely based on data from 

Caucasians (UK Biobank); the same trend was not observed for other traits perhaps because 

there was some mixture in ethnicity in the other GWAS consortia from which markers were cho-

sen (GLGC, GUGC). When we fit similar models using randomly chosen markers (Figure S10), 

we observed that the proportion of variance explained by randomly selected markers was smaller 

than that explained by regression on markers selected from GWAS results for both EAs and 

AAs. This showed that indeed, selection based on GWAS results leads to more informative 

markers in both populations.  

Our analyses also revealed important differences in correlation of effects between traits. The 

estimated correlation of effects ranged from 0.482-0.728, indicating the presence of genetic 

heterogeneity across all four traits, even for strongly associated markers (Figure 4). For height, 

the correlation of effects was highest when using SNPs that had the smallest GWAS p-value 

(likely SNPs with relatively large effect and not very extreme allele frequency), suggesting that 

the correlation of effects may be lower for SNPs with small effects and extreme allele frequen-

cies. Another possible explanation for effect heterogeneity could also be the tagging differences 

between EAs and AAs, especially in the polygenic tail for a given trait. 

Height had higher correlation of effects between EAs and AAs than serum urate and lipid 

traits, suggesting that height may have a more similar genetic architecture between EAs and AAs 

than the other traits (especially than the lipid traits). Furthermore, we found differences in the 

estimated proportion of non-zero effects between EAs and AAs for HDL, LDL, and serum urate 
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but not for height, reinforcing that the genetic architecture of height may be more similar be-

tween EAs and AAs in comparison to the other three traits (Figure 5 and S9).  

The proportion of non-zero effects markedly decreased with the -logP value; this is expected 

since relaxing the threshold used to pre-select SNPs is likely to lead to the inclusion of SNPs 

with no effect. This was particularly clear for lipid traits. This trend is largely driven by the pro-

portion of non-zero main effects for both ethnic groups (i.e. effects common to both ethnic 

groups – Figure S9). Finally, we also observed greater variability in posterior correlation of ef-

fects among lipid traits and serum urate in comparison to height (Figure 6). 

Genetic-by-environmental interaction (G×E) could lead to effect-heterogeneity in additive 

models. Indeed, if ethnicity correlates with lifestyle, diet, income and other factors that may in-

duce G×E, then SNP effects can become population-specific. Interestingly, the three traits that 

are more affected by diet and lifestyle (LDL, HDL and serum urate) showed stronger evidence of 

effect-heterogeneity than height.  Likewise, unaccounted epistasis, coupled with differences in 

allele frequencies, may also lead to effect-heterogeneity in additive models. Indeed, some au-

thors (Mackay and Moore 2014) have argued that the epistasis may be responsible for the ma-

jority of the small-effect additive effect affecting complex traits, and previous studies have at-

tributed the non-replication of genetic associations in different populations to epistasis (Greene et 

al. 2009b). Thus, epistatic gene action can also have a role in explaining differences in the allelic 

substitution effects of SNPs and can consequently induce effect-heterogeneity. 

In conclusion, we have proposed a versatile methodology based on random-effects interac-

tions that can apply non-Gaussian priors to marker effects for quantifying the extent of effect 

heterogeneity between ethnically diverse groups using a combination of variable selection and 

shrinkage. This proposed approach can yield estimates of proportions of variance explained by a 
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SNP-set, average correlation of effects, proportion of non-zero effects as well as SNP-specific 

attributes in genomic regions of interest. According to our simulations, the methodology renders 

nearly unbiased estimates provided that the n/p ratio is not much smaller than 1/3.  Of the traits 

considered in our study, effect heterogeneity was lower for height than for traits influenced by 

lifestyle. We postulate that differences in allele frequency and in LD patterns, together with epi-

stasis and G×E can contribute to effect heterogeneity between AAs and EAs.  
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Figures 

Figure 1. Average estimates of proportion of variance explained by a SNP-set obtained in the 

first simulation scenario, by prior and number of SNPs used. The simulated heritability was 

0.5, bars represent the average estimates over 200 Monte Carlo replicates and the vertical lines 

gives +/- standard errors. Results for the 2
nd

 simulation scenario are presented in Figure S5. 

 

Figure 2. Average estimates of the correlation of effects in the first simulation scenario by 

prior and number of SNPs used. The simulated heritability was 0.5; bars represent the average 

estimates over 200 Monte Carlo replicates and the vertical lines gives +/- standard errors. Results 

for the 2nd simulation scenario are presented in Figure S6. 

 

Figure 3. Proportion of variance explained by subsets of SNPs obtained with the BayesC-

interaction model, by trait, ethnicity and SNP set. Estimated (median) proportion of variance 

explained by a SNP-set (y-axis) is plotted by trait, ethnicity and log10(p-value) cutoff used to 
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choose markers from GWAS consortia (excluding ARIC). Numerals above the bars indicate the 

proportion of variance explained by either ethnic group and the corresponding number of SNPs 

used for model fitting (in parentheses at the bottom). Vertical lines give estimates of +/- posterior 

standard deviation.  

 

Figure 4. Estimated correlation of effects between African Americans (AAs) and European 

Americans (EAs) obtained with the BayesC-interaction model, by trait and SNP set. Esti-

mated correlation of effects between AAs and EAs (y-axis) is plotted by trait using markers se-

lected from GWAS consortia (excluding ARIC). In each plot, the numerals above the bars indi-

cate the median correlation of effects and the number of SNPs used for model fitting (in paren-

theses at the bottom). Vertical lines give estimates of +/- posterior standard deviation.  

 

Figure 5. Estimated proportion of non-zero effects between African Americans (AAs) and 

European Americans (EAs) obtained with the BayesC-interaction model, by trait and SNP 

set. Estimated proportion of non-zero effects between AAs and EAs (y-axis) is plotted by trait 

using markers selected from GWAS consortia (excluding ARIC) at 6 different –log10(p-value) 

cutoffs. In each plot, the numerals above the bars indicate the proportion of non-zero effects ob-

tained using either ethnic group and the corresponding number of SNPs used for model fitting (in 

parentheses at the bottom). Vertical lines give estimates of +/- posterior standard deviation.  

 

Figure 6. Posterior correlation of individual SNP effect between African Americans (AAs) 

and European Americans (EAs), by trait for SNPs that clear a –log10(p-value) of 2. Plots are 
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categorized by trait and in each plot, the estimated effect correlation of individual SNP effects 

(y-axis) is plotted against chromosome number (x-axis). 
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