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Abstract

Despite their importance in determining protein abundance, a
comprehensive catalogue of sequence features controlling protein-
to-mRNA (PTR) ratios and a quantification of their effects are still
lacking. Here, we quantified PTR ratios for 11,575 proteins across
29 human tissues using matched transcriptomes and proteomes.
We estimated by regression the contribution of known sequence
determinants of protein synthesis and degradation in addition to
45 mRNA and 3 protein sequence motifs that we found by associa-
tion testing. While PTR ratios span more than 2 orders of magni-
tude, our integrative model predicts PTR ratios at a median
precision of 3.2-fold. A reporter assay provided functional support
for two novel UTR motifs, and an immobilized mRNA affinity
competition-binding assay identified motif-specific bound proteins
for one motif. Moreover, our integrative model led to a new metric
of codon optimality that captures the effects of codon frequency
on protein synthesis and degradation. Altogether, this study shows
that a large fraction of PTR ratio variation in human tissues can be
predicted from sequence, and it identifies many new candidate
post-transcriptional regulatory elements.
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Introduction

Unraveling how gene regulation is encoded in genomes is central to

delineating gene regulatory programs and to understanding predis-

positions to diseases. Although transcript abundance is a major

determinant of protein abundance, substantial deviations between

mRNA and protein levels of gene expression exist (Liu et al, 2016).

These deviations include a much larger dynamic range of protein

abundances (Garc�ıa-Mart�ınez et al, 2007; Lackner et al, 2007;

Schwanh€ausser et al, 2011; Wilhelm et al, 2014; Cs�ardi et al, 2015)

and poor mRNA–protein correlations for important gene classes

across cell types and tissues (Fortelny et al, 2017; Franks et al,

2017). Moreover, deviations between mRNA and protein abun-

dances are emphasized in non-steady-state conditions driven by

gene-specific protein synthesis and degradation rates (Peshkin et al,

2015; Jovanovic et al, 2016). Therefore, it is important to consider

regulatory elements determining the number of protein molecules

per mRNA molecule when studying the gene regulatory code.

Decades of single-gene studies have revealed numerous sequence

elements affecting initiation, elongation, and termination of transla-

tion as well as protein degradation. Eukaryotic translation is canoni-

cally initiated after the ribosome, which is scanning the 50 UTR from

the 50 cap, recognizes a start codon. Start codons and secondary

structures in 50 UTR can interfere with ribosome scanning (Kozak,

1984; Kudla et al, 2009). Also, the sequence context of the start

codon plays a major role in start codon recognition (Kozak, 1986).
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The translation elongation rate is determined by the rate of decoding

each codon of the coding sequence (Sorensen et al, 1989; Gardin

et al, 2014; Hanson & Coller, 2018). It is understood that the low

abundance of some tRNAs leads to longer decoding time of their

cognate codons (Varenne et al, 1984), which in turn can lead to

repressed translation initiation consistent with a ribosome traffic

jam model (reviewed in Hanson & Coller, 2018). However, esti-

mates of codon decoding times in human cells and their overall

importance for determining human protein levels are highly debated

(Plotkin & Kudla, 2011; Quax et al, 2015; Hanson & Coller, 2018).

Secondary structure of the coding sequence and chemical properties

of the nascent peptide chain can further modulate elongation rates

(Qu et al, 2011; Artieri & Fraser, 2014; Sabi & Tuller, 2017; Dao Duc

& Song, 2018). Translation termination is triggered by the recogni-

tion of the stop codon. The sequence context of the stop codon can

modulate its recognition, whereby non-favorable sequences can lead

to translational read-through (Bonetti et al, 1995; McCaughan et al,

1995; Poole et al, 1995; Tate et al, 1996). Furthermore, numerous

RNA binding proteins (RBPs) and microRNAs (miRNAs) can be

recruited to mRNAs by binding to sequence-specific binding sites

and can further regulate various steps of translation (Baek et al,

2008; Selbach et al, 2008; Guo et al, 2010; Gerstberger et al, 2014;

Hudson & Ortlund, 2014; Cottrell et al, 2017). However, not only

predicting the binding of miRNAs and RBPs from sequence is still

difficult, but the role of few of these binding events in translation is

well understood.

Complementary to translation, protein degradation also plays an

important role in determining protein abundance. Degrons are

protein degradation signals which can be acquired or are inherent to

protein sequences (Geffen et al, 2016). The first discovered degron

inherent to protein sequence was the N-terminal amino acid

(Bachmair et al, 1986). However, the exact mechanism and its impor-

tance are still debated, with recent data in yeast indicating a more

general role of hydrophobicity of the N-terminal region on protein

stability (Kats et al, 2018). Further protein-encoded degrons include

several linear and structural protein motifs (Ravid & Hochstrasser,

2008; Geffen et al, 2016; Maurer et al, 2016), or phosphorylated

motifs that are recognized by ubiquitin ligases (M�esz�aros et al, 2017).

Altogether, numerous mRNA and protein-encoded sequence features

contribute to determining how many protein molecules per mRNA

molecule cells produce. However, it is known neither how compre-

hensive the catalogue of these sequence features is nor how they

quantitatively contribute to protein-per-mRNA abundances.

To address these questions in a human cell line, Vogel and

colleagues (Vogel et al, 2010) performed multivariate regression

analysis to predict protein abundances from mRNA abundances and

mRNA sequence features. This seminal work was based on tran-

scriptome and proteome data for a single cell type, Daoy medul-

loblastoma cells. Whether the conclusions drawn at the time can be

generalized genome-wide and to other human cell types remains an

open question. Moreover, transcriptomics and proteomics technolo-

gies at the time were not as sensitive and quantitative as they are

today, leaving reliable quantification only for 476 protein-coding

genes for further analysis. These 476 proteins were among the most

abundant proteins, therefore leading to possibly strong analysis

biases. Furthermore, this study focused on known sequence deter-

minants of protein-per-mRNA abundances and refrained from

discovering novel sequence elements.

Here, we exploited matched proteome and transcriptome expres-

sion levels for 11,575 genes across 29 human tissues (Fig 1A, Wang

et al, 2019) to predict protein-to-mRNA ratios (PTR ratios) from

sequence. To interpret our findings related to mRNA degradation

(Radhakrishnan & Green, 2016), translation, and protein degrada-

tion, we included mRNA half-life measurements (Tani et al, 2012;

Schueler et al, 2014; Schwalb et al, 2016), in addition to human

ribosome profiling of 17 independent studies (Dana & Tuller, 2015;

O’Connor et al, 2016) as well as protein half-life measurements

from immortal and primary cell lines (Zecha et al, 2018; Mathieson

et al, 2018; Fig 1A). We considered known post-transcriptional

regulatory elements and identified novel candidates in the 50 UTR,
coding sequence, and 30 UTR, by means of systematic association

testing. We also modeled the effect of codons on protein-to-mRNA

ratio, leading to a new quantitative measure of codon optimality

which we compared to existing metrics. Our integrative model esti-

mates the contribution of all these elements on protein-to-mRNA

ratio and predicts tissue-specific PTR ratios of individual genes at a

relative median error of 3.2-fold. Finally, we are providing initial

experimental results to assess the functional relevance of the novel

potentially regulatory elements.

Results

Matched transcriptomic and proteomic analysis of 29
human tissues

Using label-free quantitative proteomics and RNA-Seq, we profiled

the proteomes and transcriptomes of adjacent cryo-sections of 29

histologically healthy tissue specimens collected by the Human

Protein Atlas project (Fagerberg et al, 2014) that represent major

human tissues (Wang et al, 2019). To facilitate data analysis, we

modeled every gene with a single transcript isoform because there

was little evidence for widespread expression of multiple isoforms

and to avoid practical difficulties of calling and quantifying isoform

abundance consistently at mRNA and protein levels. The number of

genes with multiple quantified isoforms on protein level was small

(10% of the 13,664 genes with a protein detected in at least in one

tissue). Also, for 5,636 (43%) genes the same isoform was the most

abundant one across all tissues (out of 12,978 genes with at least

one mRNA transcript isoform expressed [FPKM > 1] in at least in

one tissue; Materials and Methods, Appendix Fig S1). Moreover,

4,303 (34%) genes had a perfect match between the RNA-Seq-

defined and the proteomics-defined major isoform in all the tissues

they were detected (out of 12,920 genes with matched protein and

mRNA measurements). For the remaining genes, there were some

mismatches between the RNA-Seq-defined and the proteomics-

defined major isoforms in a varying number of tissues, yet the

number of matched RNA-Seq-defined and proteomics-defined major

isoforms were larger than the unmatched ones in almost all tissues

(Appendix Fig S2). Since we were restricted by the small number of

isoform counts on proteome level, we defined the transcript

isoform with the largest average protein abundance across tissues

as its major transcript isoform. We used these major

transcript isoforms to compute all sequence features and mRNA

levels for all tissues (Materials and Methods). The mRNA levels

were estimated from RNA-Seq data by subtracting length and
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Figure 1. Variation of protein and mRNA levels across 29 human tissues.

A Overview of the datasets analyzed in this study. We analyzed the protein-to-mRNA ratios by considering a dataset of matched proteome and transcriptome of 29
human tissues (Wang et al, 2019). We further interpreted our findings with respect to ribosome occupancy datasets, reflecting translation elongation, protein half-life
datasets, and mRNA half-life datasets. Solid lines represent the dependencies in the basic gene expression kinetic model. Dashed line represents the coupling between
mRNA elongation and degradation rates (Radhakrishnan & Green, 2016).

B Proportion of the variance (Materials and Methods) explained by mRNA levels of all tissues (y-axis) against proportion of the variance explained by mRNA levels of
the same tissue (x-axis) of protein levels for 29 human tissues. The gray line is the identity line y = x. Ad (Adrenal), Ap (Appendices), Br (Brain), Co (Colon), Du
(Duodenum), En (Endometrium), Es (Esophagus), FT (Fallopian tube), Fa (Fat), GB (Gall bladder), He (Heart), Ki (Kidney), Li (Liver), Lu (Lung), Ly (Lymphnode), Ov
(Ovary), Pa (Pancreas), Pl (Placenta), Pr (Prostate), Re (Rectum), SG (Salivary gland), SI (Small intestine), SM (Smooth muscle), Sp (Spleen), St (Stomach), Te (Testis), Th
(Thyroid), To (Tonsil), UB (Urinary bladder).

C Same as in (B) for relative levels, i.e., the log-ratios of the levels with respect to the median level across tissues. The gray line is the identity line y = x.
D Distribution of the standard deviation across tissues of the PTR ratio (log10) for housekeeping genes (left) and other genes (right). The PTR ratio for housekeeping

genes varies significantly less than for other genes (Wilcoxon test). Shown are the quartiles (boxes and horizontal lines) and furthest data points still within 1.5 times
the interquartile range of the lower and upper quartiles (whiskers).

E Proportion of variance across tissues of PTR ratio (left) and mRNA (right) explained by the 15 latent factors fitted by joint optimization of the likelihood of both data
modalities (Argelaguet et al, 2018).

F Proportion of variance in mRNA and PTR ratio across tissues explained by each latent factor fitted by Multi-Omics Factor Analysis (MOFA) (Argelaguet et al, 2018).
Factors that are active in both mRNA and PTR ratio capture shared covariation across tissues, and factors that are active in only one capture the signal specific to
that modality.
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sequencing-depth-normalized intronic from exonic coverages (Mate-

rials and Methods). Subtracting intronic coverage led to slightly

improved correlations between mRNA and protein levels in every

sample (Appendix Fig S3), possibly because it better reflects the

concentration of mature mRNAs, which are the ones exposed to the

translation machinery. RNA-Seq technical replicates were summa-

rized using the median value. Requiring at least 10 sequencing-

depth-normalized reads per kilobase pair further improved the

correlation between mRNA and proteins, likely because low expres-

sion values on transcript and protein levels are associated with a

larger measurement error. Lastly, we restricted the analysis to tran-

scripts with a 50 UTR and 30 UTR longer than 6 nt to make sure that

all considered sequence features could be computed. Altogether,

this analysis led to matched quantifications of protein and mRNA

abundances for 11,575 genes across 29 tissues (Tables EV1–EV4),

where an average of 7,972 (69%, minimum 7,300 and maximum

8,869) PTR ratios were quantified per tissue.

Protein-to-mRNA ratio variation across genes in each tissue

How well mRNA levels explain protein levels and the importance of

post-transcriptional regulation in adjusting tissue-specific proteomes

has been highly debated over the last 10 years (Maier et al, 2009;

Lundberg et al, 2010; Schwanh€ausser et al, 2011; Li et al, 2014;

Wilhelm et al, 2014; Cs�ardi et al, 2015; Edfors et al, 2016; Fortelny

et al, 2017; Franks et al, 2017). In every tissue, the proportion of

variance of protein levels across genes explained by mRNA levels of

the same tissue (Fig 1B, x-axis, Materials and Methods) ranged from

20% (ovary) to 39% (liver). However, we observed that much larger

proportions of the variance could be explained by using mRNA pro-

files across all tissues (between 41% for pancreas and 56% for liver,

Fig 1B, y-axis, Materials and Methods, P < 10�132 for each tissue).

The reasons for this increase in explained variance are at least

twofold. Biologically, it is conceivable that co-expression patterns of

mRNAs can be predictive for post-transcriptional regulation because

functionally related genes are co-regulated at the mRNA level and at

the post-transcriptional level (Franks et al, 2017). Technically, this

increase may also be driven by the more robust nature of mRNA

profiles across all tissues compared to mRNA level measures in a

single tissue. This is consistent with observations by Cs�ardi et al

(2015) that de-noising of mRNA measurements of budding yeast can

enhance the explained variance of protein levels.

Protein-to-mRNA ratio variation of genes across tissues

Variation of the PTR ratio per gene across different tissues is more

relevant for understanding the tissue-specific post-transcriptional

regulation of protein expression than the variation between different

genes of a single tissue. Our analysis shows that the variation of the

PTR ratio of single genes across tissues was small in comparison with

the variation of PTR ratios across different genes (Fig EV1A and B).

To study the variations per gene across tissues, we defined the rela-

tive protein level as the log-ratio of the protein level compared to its

median across tissues. We similarly defined the relative mRNA level.

The relative mRNA levels of the same tissue explained only between

0% (ovary) and 43% (brain) of the relative protein level variance

suggesting that tissue-specific PTR regulation plays an important role

in determining tissue-specific protein levels (Fig 1C). These two

observations are consistent with earlier analyses which were also

performed across human tissues (Franks et al, 2017). More interest-

ingly, we found that between 7% (colon) and 51% (brain) of the

variance in relative protein levels could be explained when consider-

ing the relative mRNA levels of all tissues (Fig 1C, Materials and

Methods, every tissue with a significant increase P < 10�19, except

for pancreas), which again indicates that co-expression patterns of

mRNAs may be predictive of post-transcriptional regulation.

Evidence for co-regulation of PTR ratio was corroborated by gene set

enrichment analyses. Among the considered genes, housekeeping

genes defined by the Human Protein Atlas, which are abundantly

expressed in general, had fairly similar PTR ratios across tissues

(Fig 1D). Gene set enrichment analysis (FDR < 0.1) performed with

DAVID (Huang et al, 2009a,b) revealed that cellular protein complex

assembly, negative regulation of protein metabolic process, and regu-

lation of cytoplasmic transport were some of the biological processes

enriched for genes with low PTR ratio standard deviation (Fig EV1C).

Also, proteins localized in certain cellular components such as chap-

eronin-containing T-complex, whole membrane, and cytoskeleton

had significantly low PTR ratio standard deviation across tissues

(Fig EV1D). In contrast, genes with strongly varying PTR ratios

across tissues were enriched in biological processes that point toward

tissue-specific and cell-specific biology and include cilium organiza-

tion, glycolipid biosynthetic process, single–multicellular organism

process, and inflammatory response (Fig EV1E) and in cellular local-

izations that include extracellular space, intrinsic component of

membrane, and secretory vesicles and granules (Fig EV1F).

We next analyzed the covariation between mRNA levels and PTR

ratios of genes across tissues. Among 3,753 genes with valid PTR

ratio values in at least 15 tissues and with a strong variation of

mRNA levels and PTR ratios (standard deviations greater than three-

fold), 31 genes displayed positive and 569 genes displayed negative

correlation (FDR < 0.1) between these two measures. Also, Multi-

Omics Factor Analysis (Argelaguet et al, 2018) (Materials and Meth-

ods) showed that the latent factors explaining 60% of the across-

tissue variance of mRNA levels were only able to explain 35% of

the variance in PTR ratios (Fig 1E). Moreover, most of these latent

factors were specific to either mRNA or PTR ratio level indicating

that joint likelihood optimization failed to find significant factors

that capture the shared covariation between mRNA and PTR ratio

across tissues (Fig 1F). Together, these observations suggest that a

substantial amount of the regulation of PTR ratios is independent of

mRNA level regulation.

Tissue specificity of RNA binding proteins

We next investigated tissue-specific expression of RNA binding

proteins, which are among the major factors controlling protein

translation. Overall, 1,233 out of 11,575 inspected genes were

among the 1,542 RNA binding proteins manually curated by Gerst-

berger et al (2014). Of these, 825 RBPs were measured in all 29

tissues (Appendix Fig S4A). According to tissue specificity scores

defined by Gerstberger et al, 135 out of 1,233 RBPs were defined as

being tissue-specific (Table EV5) based on our RNA-Seq dataset,

which was consistent with the general observation that the majority

of the RBPs are ubiquitously expressed and typically at higher levels

than average cellular proteins (Vaquerizas et al, 2009; Gerstberger

et al, 2014; Kechavarzi & Janga, 2014). The 135 tissue-specific RBPs
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were significantly enriched in spermatogenesis, the multi-organism

reproductive process, DNA modification, and meiotic nuclear divi-

sion and localized in germ plasm, pole plasm, and P granule

(FDR < 0.1; Appendix Fig S4B and C).

Sequence features predictive of protein-to-mRNA ratio

To identify and quantify sequence determinants of protein-to-mRNA

ratio, we derived a model predicting tissue-specific PTR ratios from

mRNA and protein sequence alone. The model is a multivariate

linear model that includes a comprehensive set of mRNA-encoded

and protein-encoded sequence features known to modulate transla-

tion initiation, elongation, and termination, as well as protein stabil-

ity (Fig 2A and B, Materials and Methods, Table EV6). The model

also includes the GC content and the length of each gene region in

order to capture technical biases. Furthermore, the model includes

sequence features that we identified de novo through systematic

association testing between either median PTR ratios across tissues

or tissue-specific PTR ratio fold-changes relative to the median, and

the presence of k-mers, i.e., subsequences of a predefined length k,

in the 50 UTR, the coding sequence, the 30 UTR, and the protein

sequence (Materials and Methods). We report our findings below,

going from 50 to 30. The effects of each sequence feature on PTR log-

ratio are estimated using the joint model, thereby controlling for the

additive contribution of all other sequence features (Table EV7). We

underscore that these reported effects are estimated with a multi-

variate model from observational data. Hence, they may or may not

reflect the effects of creating or removing a single sequence feature

in a given gene because they are estimated from observational data,

because of potential regression artifacts such as spurious correla-

tions and regression-toward-the-mean, and also because of the

simplifying modeling assumption that the regulatory elements func-

tion independently of each other.

mRNA 50 UTR sequence features

Negative minimum RNA folding energy in 51-nt sliding windows, a

computational proxy for RNA secondary structure, associated with a

lower PTR ratio around the start codon (Fig 2C, up to 9% decrease,

FDR < 0.1, Materials and Methods). This negative association is in

agreement with mechanistic studies in E. coli showing that

secondary structures around the start codon impair translation by

sterically interfering with the recruitment of the large ribosome

subunit (Kudla et al, 2009). In contrast, negative minimum folding

energy in 51-nt windows associated positively with the PTR ratio

about 48 nt downstream of the start codon (Fig 2C, up to 7%

increase, FDR < 0.1). This positive association is consistent with

experiments showing that hairpins located downstream of the start

codon facilitate start codon recognition of eukaryotic ribosomes

in vitro (Kozak, 1990), presumably by providing more time for the

large ribosome subunit to be assembled.

Investigating every 3- to 8-mer in the 50 UTR, while controlling

for occurrence of other k-mers, revealed 6 k-mers significantly

associated with median PTR ratio across tissues, as well as 19

further k-mers associated with tissue-specific PTR ratio at a false

discovery rate (FDR) < 0.1 (Materials and Methods). The 6 k-mers

that were significantly associated with median PTR ratio across

tissues include AUG, the canonical start codon, for which at least

one occurrence out-of-frame relative to the main ORF associated

with about 18–33% lower median PTR ratios across tissues

(Fig 2D). This observation is consistent with previous reports that

out-of-frame AUGs in the 50 UTR (uAUG; Kozak, 1984) and

upstream ORFs (uORF; Morris & Geballe, 2000; Calvo et al, 2009;

Barbosa et al, 2013) associate with lower protein-per-mRNA

amounts. No significant associations could be found for the 796

transcripts with only in-frame uAUGs (Fig EV2A). Among 2,483

transcripts with a single uAUG or uORF, a single out-of-frame

uAUG is associated with a 20% reduced PTR ratio compared to a

single out-of-frame uORF (Fig EV2B), possibly because ribosomes

can re-initiate translation downstream with high efficiency after

translating a uORF (Morris & Geballe, 2000). These uAUGs are

significantly conserved (one-sided Wilcoxon test, P = 1 9 10�37)

compared to background flanking regions according to the Phast-

Cons score (Siepel et al, 2005) computed across 100 vertebrates

(Fig EV2C, Materials and Methods), which is consistent with

earlier conservation analyses of AUG triplets in mammalian and

yeast 50 UTRs (Churbanov et al, 2005).

While the out-of-frame uAUG associated significantly with

decreased PTR ratio in all 29 tissues, the other 24 50 UTR k-mers

showed significant effects on PTR ratio (FDR < 0.1) only in certain

tissues (Fig 2E). These 24 k-mers were found in between 215 tran-

scripts (2%) for AGCGGAA and 3,038 transcripts (26%) for

GCCGCC (Fig EV3A). To search for possible proteins binding these

k-mers, we queried the ATtRACT database (Giudice et al, 2016),

which is, to our knowledge, the most extensive database of RNA

binding motifs and contains 3,256 position weight matrices collected

for 160 human RNA binding proteins (Fig EV3A, Materials and

▸Figure 2. Predicting PTR ratios from sequence and 50 UTR results.

A Sequence features of 50 UTR, coding sequence, 30 UTR, and protein sequence considered in the model.
B The predictive model is a multivariate linear model that predicts tissue-specific PTR log-ratios using tissue-specific coefficients for the sequence features listed in (A).
C Effect of log2 negative minimum folding energy of 51-nt window on median log10 PTR ratio across tissues corrected for all other sequence features listed in (A) (y-

axis, Materials and Methods) versus position of the window center relative to the first nucleotide of the canonical start codon (x-axis) for genes with a 50 UTR and a
coding sequence longer than 100 nt. Statistically significant effects at P < 0.05 according to Student’s t-test and corrected by the Benjamini–Hochberg methods are
marked in red.

D Effect estimate (dot) and 95% confidence interval (bar) of the presence of at least one out-of-frame AUG in 50 UTR on log10 PTR ratio corrected for all other sequence
features listed in (A) (y-axis, Materials and Methods) per tissue (x-axis).

E Estimated effect of PTR ratio in each tissue (row) of the 25 50 UTR k-mers (column) associating with either median PTR ratio across tissues or tissue-specific gene-
centered PTR ratios. Color scale ranges from blue (negative effect) to red (positive effect). Gray marks non-significant (FDR ≥ 0.1) associations.

F Average 100-vertebrate PhastCons score (y-axis, Materials and Methods) per position relative to the exact motif match instances in 50 UTR (x-axis) for three example
k-mers that are significantly predictive of PTR ratios in specific tissues. P-values assess significance of the average 100-vertebrate PhastCons scores at the motif sites
compared to the two 10-nucleotide flanking regions (Materials and Methods). The motif logos are constructed using all matches of the considered k-mer up to one
mismatch in the 50 UTR sequences.
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Methods). However, no obvious association between these k-mers

and RNA binding motifs could be drawn as most of the matches

remain very distant (ATtRACT quality score < 0.1). A potential

reason is that the ATtRACT database covers a small fraction of all

human RBPs, which could consist of more than 1,500 proteins

(Gerstberger et al, 2014). Nonetheless, 11 out of 24 of our k-mers

were significantly more conserved than their flanking regions

(FDR < 0.1, Fig 2F, Appendix Fig S5) and 12 showed significant

enrichment for Gene Ontology (GO) terms (Appendix Fig S6),

supportive for a potential regulatory role. The appendix provides a

comprehensive description of these results.

Start and stop codon context

Significant associations of individual nucleotides with the PTR ratio

were detected in the [�5,6] nt interval around the start codon and

in the [�4,6] nt interval around the stop codon in at least one tissue

(FDR < 0.1; Fig EV2D and E). At nearly every position of the start

codon context, the nucleotide of the consensus sequence

gccRccAUGG (Kozak, 1986) showed the strongest association,

indicating selection for efficient start codon recognition. The stron-

gest effects were found at the third position upstream of the start

codon (27% lower PTR ratio for C than for the consensus A), reca-

pitulating mutagenesis data (Kozak, 1986), and at the second

nucleotide downstream of the start codon (23% lower PTR ratio for

A than for the consensus C). Moreover, effects of the start codon

context on the PTR ratio were largely independent of the tissue

(Fig EV2D) consistent with a ubiquitous role of the start codon

context likely due to structural interaction with the ribosome

(Svidritskiy et al, 2014).

The opal stop codon UGA was significantly associated with the

lowest median PTR ratio having in median 15% lower PTR ratios

than the ocher stop codon UAA (Fig EV2F; P = 1.2 9 10�5). Around

the stop codon, the two most influential positions were the +1

nucleotide at which a C associated with 15% lower PTR ratios than

the consensus G, and the -2 nucleotide, at which a G associated with

19% lower PTR ratios than the consensus A in median across

tissues (Fig EV2E). The inhibitory effect of a C at the +1 nucleotide,

which was observed for all three stop codons (Fig EV2G), is in line

with previous studies in prokaryotes and eukaryotes (Bonetti et al,

1995; McCaughan et al, 1995; Poole et al, 1995; Tate et al, 1996).

Also, structural data show that a C following the stop codon

interferes with stop codon recognition (Brown et al, 2015), thereby

leading to stop codon read-through. Moreover, our data indicate

that the nucleotide at the �2 position, which is also reported to be

highly biased in E. coli (Arkov et al, 1993), is significantly

associated with PTR ratio and deviation from the consensus nucleo-

tide A is associated with a reduced PTR ratio. Altogether, the start

and stop codon contexts demonstrate the sensitivity of the PTR ratio

analysis in detecting contributions to translation down to single-

nucleotide resolution.

Amino acid and synonymous codon usage

Codon frequency can affect PTR ratios in several ways. On the one

hand, synonymous codon usage modulates translation efficiency

(Gardin et al, 2014; Yu et al, 2015; Weinberg et al, 2016; Yan et al,

2016; Hanson & Coller, 2018). On the other hand, amino acid iden-

tity affects translation (Wilson et al, 2016; Hanson & Coller, 2018)

and protein half-life (Fang et al, 2014; Zecha et al, 2018). Among all

investigated sequence features, amino acid frequency had the largest

predictive power for PTR ratio in every tissue (explained variance

between 12 and 17%, median 15%; Figs 3A and EV3B). We defined

the amino acid effect on PTR ratio as the PTR ratio fold-change asso-

ciated with doubling the frequency of an amino acid in a gene

(Materials and Methods). The amino acid effects were large with a

twofold increase in amino acid frequencies associating with 40%

lower PTR ratio for serine (S) and 50% higher PTR ratio for aspartic

acid (D) (Fig 3A, Materials and Methods). Codon frequency, which

inherently encodes amino acid frequency and synonymous codon

usage, increased that explained variance on average by only 1% (ex-

plained variance between 13 and 20%, median 16%; Figs 3B and

EV3B). We defined the protein-to-mRNA ratio adaptation index

(PTR-AI) as the PTR ratio fold-change associated with doubling the

frequency of a codon in a gene (Materials and Methods). Synony-

mous codons coding for the same amino acids displayed different

PTR-AIs (Fig 3B). Moreover, the PTR-AI of individual codons

showed consistent amplitudes and directions across tissues (Fig 3B),

which contests the hypothesis of widespread tissue-specific post-

transcriptional regulation due to a varying tRNA pool among dif-

ferent tissues (Plotkin et al, 2004; Dittmar et al, 2006). We observed

differences of codon frequency in the 50 end of the coding sequence

▸Figure 3. mRNA coding region sequence features results.

A Distribution of the amino effect on PTR ratio per tissue, which is the PTR ratio fold-change associated with doubling the frequency of the amino acid (Materials and
Methods). Shown are the quartiles (boxes and horizontal lines) and furthest data points still within 1.5 times the interquartile range of the lower and upper quartiles
(whiskers).

B Same as (A) for codons (PTR-AI). The codons are grouped by the amino acid they encode and are sorted first by increasing amino acid effect, then by increasing
synonymous codon effect.

C Median codon decoding time (transformed to z-scores) across 17 independent ribosome profiling datasets (y-axis), grouped per amino acid (x-axis). Red dots display
the average amino acid decoding time (Materials and Methods). Amino acid types explain 70% of the variation in the decoding times of 61 codons.

D Median codon decoding time estimates (z-scores) across 17 independent human Ribo-Seq datasets (x-axis) significantly negatively correlate with average PTR-AI
across tissues (y-axis).

E Same as (A) for the distribution of the amino acid effect on protein half-lives, which is the protein half-life fold-change associated with doubling the frequency of the
amino acid, for five different cell types: HeLa cells (Zecha et al, 2018), B cells, NK cells, hepatocytes, and monocytes (Mathieson et al, 2018).

F Amino acid effect on protein half-lives (x-axis) significantly positively correlates with amino acid effect on PTR ratio (y-axis).
G Correlation network of the amino acid or codon frequency when applicable on PTR ratio, codon decoding time, and protein half-life. Significant Spearman

correlations (P < 0.05) are found between the effects on PTR ratio and codon decoding time, and between the effects on PTR ratio and protein half-life but not
between codon decoding time and protein half-life.

H Codon tRNA adaptiveness (x-axis), a widely used codon optimality metric, does not significantly correlate with PTR-AI (y-axis), which may be a new optimality metric
reflecting the combined effect of amino acid and synonymous codon usage on protein synthesis and degradation.
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compared to the rest of the coding region (Fig EV3C). However,

PTR-AI correlated significantly between these two regions

(Fig EV3D). We therefore did not distinguish the 50 end region of the

coding sequence from the rest of the coding sequence when consid-

ering codon frequencies in our model.

To relate the amino acid and synonymous codon effects to trans-

lation and protein degradation, both of which contribute to PTR

ratios, we first investigated codon decoding times, whereby long

decoding times would lead to lower translation output (Gustafsson

et al, 2012; Gardin et al, 2014; Ingolia, 2014; Yu et al, 2015;

Weinberg et al, 2016; Yan et al, 2016; Hanson & Coller, 2018). We

considered codon decoding time as the typical time ribosome takes

to decode a codon (Dana & Tuller, 2014), also sometimes referred to

as ribosome dwell time (O’Connor et al, 2016). We computed

(Materials and Methods) median codon decoding times across 17

ribosome profiling datasets (Dana & Tuller, 2015; O’Connor et al,

2016). Notably, amino acid identity explained 70% median codon

decoding time variance (Fig 3C), consistent with the dominant role

of amino acids on PTR ratio. The strong association between amino

acid identity and codon decoding time may be in part reflecting that

the amino acid content of the nascent polypeptide chain influences

translation elongation (Charneski & Hurst, 2013). Moreover, PTR-

AIs correlated significantly negatively with median codon decoding

times (Fig 3D, Spearman’s q = �0.27, P = 0.03, Fig EV4A). We also

found that median PTR-AIs correlated significantly positively with

predicted effects of codons on mRNA stability (Materials and

Methods) in K562 (Spearman’s q = 0.47, P = 4.7 9 10�5;

Fig EV4AB; Schwalb et al, 2016), in HEK293 (Spearman’s q = 0.48,

P = 9 9 10�5; Fig EV4AB; Schueler et al, 2014), and in HeLa Tet-off

cells (Spearman’s q = 0.52, P = 3 9 10�5; Fig EV4AB; Tani et al,

2012). This agreement of PTR-AIs and predicted effects of codons

on mRNA stability is consistent with the fact that codon composi-

tion is causally affecting mRNA degradation (Hoekema et al, 1987;

Presnyak et al, 2015; Bazzini et al, 2016; Mishima & Tomari, 2016)

in a way that is mediated by translation (Radhakrishnan & Green,

2016). Together, these results indicate that PTR-AIs capture the

effect of codons on translation.

We then asked whether our amino acid effects on PTR ratios

captured the effects of amino acids on protein degradation. To this

end, we first performed a linear regression of protein half-lives

measured in HeLa cells (Zecha et al, 2018), B cells, NK cells, hepa-

tocytes, and monocytes (Mathieson et al, 2018) on amino acid

frequency (Materials and Methods). We defined the amino acid

effect on protein half-life as the protein half-life fold-change associ-

ated with doubling the frequency of an amino acid in a gene. The

amino acid effects on protein half-life agreed well among these data-

sets (Fig 3E) with proportions of explained variance varying from

9% for monocytes to 19% for NK cells. Moreover, the amino acid

effects on protein half-life significantly correlated with the effects of

single amino acid substitutions on protein thermodynamic stability

(Dehouck et al, 2009, Fig EV5A; Spearman’s q = 0.18, P = 0.002)

and with amino acid hydrophobicity values (Fig EV5B; Spearman’s

q = 0.42, P = 0.04), a major force stabilizing the folding of proteins

(Nick Pace et al, 2014). This suggests that the associations of amino

acids with protein half-lives are in part functional and due to the

role of amino acids on protein thermodynamic stability, a strong

determinant of protein cytoplasmic degradation (D�ıaz-Villanueva

et al, 2015).

Overall, the amino acid effects on PTR ratio correlated signifi-

cantly with both the amino acid effects on protein half-life

(Spearman’s q = 0.6, P = 0.006; Fig 3F and G) and the average

amino acid decoding time (Spearman’s q = �0.41, P = 0.03;

Fig 3G, Materials and Methods). However, average amino acid

decoding times did not correlate significantly with the amino acid

effects on protein half-life (Spearman’s q = �0.22, P = 0.35).

Analogous results were obtained by taking a codon-centric rather

than an amino acid-centric point of view. Specifically, PTR-AI

correlated significantly with codon effects on protein half-life

(Spearman’s q = 0.56, P = 4.7e-06; Materials and Methods) on

the one hand, and with codon decoding time (Spearman’s

q = �0.27, P = 0.04; Fig 3D) on the other hand. However, codon

decoding time did not correlate significantly with codon effects

on protein half-life (Spearman’s q = �0.09, P = 0.45). Hence,

PTR-AI appears to capture a combination of apparently indepen-

dent effects of codon frequency on translation elongation and

amino acid frequency on protein stability. Notably, PTR-AI did

not correlate well with previous codon optimality measures,

including the frequency of codons in human coding sequences

(Appendix Fig S7, Spearman’s q = 0.2, P = 0.11, Materials and

Methods) and species-specific codon absolute adaptiveness (Sabi

& Tuller, 2017; Fig 3H, Spearman’s q = 0.23, P = 0.1), which are

based on genomic or transcriptomic data and strong modeling

assumptions. Altogether, these results indicate that a PTR ratio-

based measure of codon optimality, which captures the combined

effects of protein production and degradation, is an attractive

alternative to existing codon optimality measures and could help

resolving some of the debates about the role of codon optimality

in human cells.

Protein sequence features

Our model includes further protein sequence features beyond the

mere amino acid composition. Although the N-terminal amino acid

(which is known to affect protein stability via the N-end rule path-

way) significantly associated with the PTR ratio (Appendix Fig S8),

the N-terminal amino acid was not significant in the joint model,

possibly because the effect was confounded with the start codon

context. A recent study by Kats and colleagues (Kats et al, 2018) in

yeast indicated that the mean hydrophobicity of the first 15 amino

acids plays a more important role in protein stability than the N-end

rule pathway. We observed that mean hydrophobicity of the first 15

amino acids significantly associated with the PTR ratios of 8 tissues

(3% higher PTR ratio on average, FDR < 0.1; Fig 4), however posi-

tively, in apparent contradiction with its negative effect on protein

stability in yeast (Kats et al, 2018). This may be due to the multiple

roles of the 50 end of the coding region in gene expression regula-

tion, which also includes a role in translation (Tuller & Zur, 2015).

We also considered protein surface charge–charge interactions

because they can affect protein stability (Samantha et al, 2006; Chan

et al, 2012), and because the charged polypeptides in the ribosome

exit tunnel can influence ribosome elongation speed (Requi~ao et al,

2017). Consistently, we observed that a one unit increase in the

protein isoelectric point had a significant negative association with

the PTR ratio (median 5%) in several tissues (Materials and Meth-

ods, Fig 4; FDR < 0.1). Our analysis also confirmed, genome-wide,

the negative effect on PTR ratios of PEST regions, which are degrons

that are rich in proline (P), glutamic acid (E), serine (S), and
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threonine (T) (Rogers et al, 1986) that were present in 4,592

proteins (Materials and Methods), and estimated its median effect

across tissues to a 26% lower PTR ratio (Fig 4; FDR < 0.1).

De novo motif searching revealed two 2-mers and one 3-mer

associating with lower PTR ratios (11, 14, and 7% median effects

for CG, KRR, and NS, respectively, Fig 4, FDR < 0.1). The effect for

KRR is consistent with the association of stretches of positively

charged amino acids directly upstream of high ribosome occupancy

peaks in ribosome footprint data, suggesting that positively charged

amino acids slow down translation (Charneski & Hurst, 2013).

However, lysine (K) and arginine (R) are also the two amino acids

recognized by cleavage sites of trypsin, the enzyme used to digest

proteins prior to mass spectrometry. Although K and R as single

amino acids do not stand out as negatively associated with the PTR

ratio (Fig 3A), we cannot exclude a technical bias for the negative

association of the 3-mer KRR with PTR ratios. Furthermore, we

identified 6 linear protein motifs out of the 267 motifs from the ELM

database (Dinkel et al, 2016) using a feature selection method

(Materials and Methods). These 6 linear protein motifs contained 4

nuclear localization signals of the ELM database which associated

negatively with PTR ratios. It is unclear why these four nuclear

localization signals were associated negatively with PTR ratio

even though there is no significant PTR ratio difference between

nuclear (GO:0005634) and non-nuclear proteins (Appendix Fig

S9). One possibility is that these linear motifs are destabilizing

elements. Indeed, these 6 linear protein motifs were significantly

associated with shorter protein half-lives (Appendix Fig S10).

Also, nuclear proteins with the four nuclear localization signals

were associated with shorter half-lives compared to nuclear

proteins without these signals (Appendix Fig S10). We also note

that these linear motifs are KR-rich. Similar to the association of

the 3-mer KRR, this could reflect either that stretches of positively

charged amino acid slow down translation or a technical bias due

to the usage of trypsin as the protein digestion enzyme (Materials

and Methods, Fig 4).

mRNA 30 UTR sequence features

De novo motif searching in the 30 UTR revealed 20 k-mers signifi-

cantly associated with median PTR ratios across tissues or with

tissue-specific PTR ratio (FDR < 0.1; Fig 5A and B). This recovered

4 well-known mRNA motifs: the polyadenylation signal AAUAAA

(Proudfoot, 1991), the AU-rich elements UAUUUAU (Kruys et al,

1989; Qi et al, 2012) and AUUUUUA (Ma et al, 1996), and the bind-

ing site of the Pumilio family of proteins UGUAAAUA (Parisi & Lin,

2000). The polyadenylation signal AAUAAA associated with

between 13 and 28% increased PTR ratio across tissues (median
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Figure 4. Protein sequence features.

Heatmap showing tissue-specific associations of protein sequence features with higher [0, + 25] (red gradient) or lower [�70, 0] (blue gradient) PTR ratios. Stars represent

tissue-specific significance of the sequence feature with FDR < 0.1. Eukaryotic protein motif acronyms are CLV_PKCS_FUR_1 (Furin (PACE) cleavage site), LIG_KEPE_1

(Sumoylation site), TRG_NLS_BIPARTITE_1 (classical bipartite nuclear localization signal), and three classical monopartite nuclear localization signals:

TRG_NLS_MonoCore_2, TRG_NLS_MonoExtC_3, and TRG_NLS_MonoExtN_4.
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21%, FDR < 0.1; Fig 5A), consistent with one role of polyadenyla-

tion signals in translation (Piqu�e et al, 2008). The AU-rich element

UAUUUAU was found in 3,158 genes (27%) and associated with

lower PTR ratios by about 9% consistently across tissues, in agree-

ment with its function in mRNA destabilization and translational

silencing (Kruys et al, 1989; Qi et al, 2012). The Pumilio motif

UGUAAAUA was found in 1,320 genes (11%) and is the binding

target of members of the Pumilio family of proteins which regulate

translation and mRNA stability in a wide variety of eukaryotic

organisms (Parisi & Lin, 2000). In addition to these four evolutionar-

ily conserved motifs (Appendix Fig S11), we identified 7 motifs,

namely ACCAAA, CCAAAG, CUCAGG, GGGCUGCG, GGAGCC,

GGCCCUG, and UUCUGAG; these are also significantly conserved

with respect to the background flanking regions (Appendix Fig S10).

While some of these conserved motifs were not previously reported

in the literature, some of the obtained k-mers may possibly be the

binding motifs of RBPs with a post-transcriptional role. One notable

example is the k-mer ACACUA, which matches a recognition site of

the QKI protein according to the ATtRACT database (quality

score = 1.0), which is highly enriched in the brain (Human Protein

Atlas; Uhlen et al, 2015) and important for myelinization (Aberg

et al, 2006), mRNA stability, and protein translation (Teplova et al,

2013). Another example is the well-conserved ACCAAA, present in

3,655 genes (32%), possibly being the target motif of RBMX

(ATtRACT quality score = 1.0) which plays several roles in the

regulation of post-transcriptional processes (Kanhoush et al, 2010).

The appendix provides a full analysis per motif based on their

number of occurrences, phylogenetic conservation scores

(Appendix Fig S11), and a gene set enrichment analysis for the

genes having the consensus motif (Appendix Fig S12).

An interpretable model explaining PTR ratios from sequence

The multivariate linear model combining all these sequence features

predicted PTR ratios at a median relative error of 3.2-fold on held-

out data (10-fold cross-validation), which is small compared to the

overall variation of PTR ratios (200-fold for the 80% equi-tailed

interval). This model explained 22% (median across tissues) of the

variance (Fig 5C). Moreover, we observed that the predicted PTR

ratios moderately positively correlated with the mRNA levels

(Fig 5D; Spearman’s q = 0.26). Hence, our model supports the

hypothesis that highly transcribed genes also have optimized

sequences for post-transcriptional up-regulation, hence yielding

higher amounts of proteins, which is consistent with earlier work by

Vogel and colleagues (Vogel et al, 2010). Combining these sequence

features together with the mRNA profiles in a single linear model

explained 58% of the variance of tissue-specific protein levels in

average (minimum 49% in pancreas, maximum 63% in liver; Mate-

rials and Methods), increasing the proportions of variance of tissue-

specific protein levels explained with mRNA profiles alone (shown

in Fig 1B) by 10% in average (P = 3 9 10�9, Wilcoxon test).

Extended model with experimentally characterized elements

There are thousands of further sequence elements that could play a

role in controlling the PTR ratios, including the binding sites of any

of the 2,599 catalogued human miRNAs (Chou et al, 2018), the

binding sites of the estimated 1,542 RNA binding proteins

(Gerstberger et al, 2014), and elements subject to mRNA modifi-

cations and post-translational modifications of certain amino acids.

In this context, derivation of a more comprehensive yet inter-

pretable model of PTR ratio from sequence is difficult. One reason

is that the sequence determinants driving the binding of these

factors and these modifications are poorly charted. Another reason

is that binding sites of RBPs and miRNAs often co-occur due to

cooperative and competitive binding (Jacobsen et al, 2010; Chang &

Hla, 2011; Jiang & Coller, 2012; Ciafr�e & Galardi, 2013), which

makes untangling the effects of individual sequence elements diffi-

cult. Nevertheless, in order to explore the degree to which the

prediction of the PTR ratio from sequence could be improved in

principle, we considered a model that was not based on sequence

alone, rather also including experimental characterization of such

interactions and modifications of mRNA and proteins. This

extended model included (i) N6-methyladenosine (m6A) mRNA

modification, an abundant modification enhancing translation

(Wang et al, 2015); (ii) binding evidence for 296 miRNAs from the

miRTarBase database (Chou et al, 2018) with more than 200 targets

in our dataset (Materials and Methods); (iii) whether proteins are

part of protein complexes, which is known to stabilize proteins

(Mueller et al, 2015; Ishikawa et al, 2017); (iv) binding evidence to

112 RNA binding proteins (RBPs) (Van Nostrand et al, 2016); and

(v) phosphorylation, methylation, acetylation, SUMOylation, and

ubiquitination of certain amino acids (Hornbeck et al, 2015). This

analysis showed that with the inclusion of these experimentally

characterized features, the proportion of variance of PTR ratio

increased to a median across tissues of 27% (Fig 5E; min 24%,

max 31%). Moreover, combining the extended set of features

together with the mRNA profiles in a single linear model explained

62% of the variance of tissue-specific protein levels in average

(minimum 53% in pancreas, maximum 68% in tonsil; Materials

and Methods). However, these increased proportions of variance

explained do not imply that these experimentally characterized

features are not driven by regulatory elements encoded in sequence.

Rather, they may reflect that our primary regression of PTR ratio on

sequence features was not powerful enough to capture those under-

lying, potentially complex, regulatory sequence elements.

Analysis of explained variance of individual feature groups indi-

cated that amino acid frequency alone explained on average 15% of

the variance in PTR ratios (min 12%, max 15%; Figs 5E and EV5C).

This is followed by protein acetylation sites, binding sites of 112

RBPs (Van Nostrand et al, 2016), CDS length, protein ubiquitination

sites, and linear protein motifs (Figs 5E and EV5D). These results

suggest that sequence elements affecting protein stability may be

the dominant features predictive of PTR ratios. In line with this

possibility, we observed that the explained variance in PTR ratio by

these sequence features highly correlated (Spearman’s q = 0.59,

P = 0.001) with their explained variances in protein half-lives

(Fig 5F) in five cell types (Mathieson et al, 2018; Zecha et al, 2018).

The proportion of variance in PTR ratio explained by the binding

evidence to 112 RNA binding proteins (Van Nostrand et al, 2016)

varied from 3 to 6% across tissues (median 5%), while 150 latent

variables of 296 miRNAs’ binding evidence explained on average

only 1%. Overall, these RBPs appeared to be ubiquitously expressed

since 81 out of the 112 RBPs (77%) were detected expressed at the

proteome level and at the mRNA level in all tissues. Ubiquitous

expression of RBPs and the frequent co-binding of RBPs and

miRNAs may be two reasons why tissue-specific effects of RBP bind-

ing on PTR ratio did not show significant correlations with the
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corresponding tissue-specific RBP expression levels (Fig EV5C,

Appendix Fig S13). Nevertheless, in 16 of these RBPs, there was a

significant difference between their across-tissue covariation with

their target and non-target genes (Appendix Fig S14, Materials and

Methods). The binding of these regulatory elements was among the

top mRNA features explaining the tissue-specific mRNA levels and

mRNA half-lives of three different cell types (Fig EV5E and F). The

binding of the considered 112 RBPs explained on average 18% (min

13%, max 21%) and features representing miRNA binding

explained on average 5% (min 4%, max 7%) of the variance in

tissue-specific mRNA levels (Fig EV5E). Consistent with that, RBP

binding explained on average 17% of the variance (min 12%, max

22%) in mRNA half-lives of K562, HEK293, and HeLa Tet-off cells

(Fig EV5F). Likewise, features representing miRNA binding

explained 5% (median, min 4%, max 5%) of the variance in mRNA

half-lives of these three cell lines. Altogether, the differences and

similarities in the explained variances of mRNA levels, mRNA half-

life, PTR ratio, and protein half-life suggest that the RBPs and

miRNAs considered in our model may be more effective in regulat-

ing mRNA stability rather than PTR ratios.

Of note, the proportion of variance explained is driven by the

combination of effect size, frequency, and variability of the features

across genes. Hence, sequence features which play a crucial role for

translation, like the Kozak sequence, can only explain 3% of the

genome-wide PTR ratio variation by itself because it is already opti-

mized for most of the genes in the genome. Also, the 50 and 30 UTR
motifs explain a small fraction of the variance between genes

although their effect size can be large (Figs 2E and F and 5A and B)

because they typically occur in a small number of genes.

Independent confirmation of the model

As a starting point to assess the validity of our model and the

derived predictions, we employed a threefold approach, consisting

of the confirmation of the prediction with an independent transcrip-

tomic and proteomic dataset, a reporter assay measuring the depen-

dence of the expression of a reporter protein on the presence of the

50 or 30 UTR sequence motifs, and an immobilized mRNA affinity

competition-binding assay to identify motif-specific RNA binding

proteins and to measure their interaction strength. The effect of indi-

vidual sequence features estimated on an independently generated

dataset comprising matched RNA-Seq and proteomics data on 2,854

genes from six patient-derived fibroblasts (Kremer et al, 2017)

agreed well with the median effects estimated across the 29 tissues

(Materials and Methods, Spearman’s q = 0.57, P < 2.2 9 10�16).

This was also true when restricting the analysis to the codons

(Spearman’s q = 0.7, P < 2.2 9 10�16; Fig 6A), indicating that PTR-

AI is reproducible across datasets.

Next, we assessed the effects of motifs in a dual reporter assay in

which the nine tested motifs (Tables EV8 and EV9) were inserted in

the 50 UTRs or 30 UTRs of Gaussia luciferase constructs (Materials

and Methods). The same plasmid also expressed a secreted alkaline

phosphatase as control. This assay showed significant effects for

two positive controls: the out-of-frame upstream AUG and the out-

of-frame upstream ORF, i.e., an upstream AUG with an in-frame

stop codon within the 50 UTR (Fig 6B; P < 0.0001). For the remain-

ing tested motifs, control constructs containing scrambled versions

of the tested motif were also assayed (Appendix Figs S15 and S16,

Table EV10). Two tested motifs (UUCCG and CUGUCCU) showed

significant effects in the direction predicted by the model (Fig 6C

and D, FDR < 0.1, Materials and Methods). Most motifs had small

predicted effects, so that significance was difficult to attain in such

assays. Taking this into account, four further motifs, including two

positive controls, the AU-rich 30 UTR motif UAUUUAU and the

Pumilio response elements, as well as the new motifs CCCACCC

and GGCCCCUG, showed effects consistent with the model predic-

tion (Appendix Figs S15 and S16, Materials and Methods) both in

direction and in amplitude.

Lastly, we investigated whether one of these motifs, the 50 UTR
motif CUGUCCU, was a potential recognition site of RNA binding

proteins. To this end, we performed a series of competition-binding

assays with motif-containing RNA oligomers immobilized on

Sepharose beads to capture RNA binding proteins from HEK293 cell

extracts in the presence of different concentrations of free motif-

containing ligands. The captured RNA binding proteins were

analyzed by label-free quantitative proteomics. The resulting data

allowed the estimation of EC50 values and dissociation constants

(Kd) akin to affinity chromatography-based chemical proteomics

approaches (Bantscheff et al, 2007; M�edard et al, 2015). The assay

was also performed for two positive controls, the polyadenylation

signal AAUAAA and the AU-rich element UAUUUAU. Reversed or

randomized sequences were used as negative controls. Example

◀ Figure 5. 30 UTR results and model summary.

A Estimated effect of PTR ratio in each tissue (row) of the 20 30 UTR k-mers (column) associating with either median PTR ratio across tissues or tissue-specific gene-
centered PTR ratios. Color scale ranges from blue (negative effect) to red (positive effect). Gray marks non-significant (FDR ≥ 0.1) associations.

B First and third columns: motif information content logos for the 20 k-mers of panel A, obtained by motif consensus sequence search in 11,575 50 UTR sequences
allowing for one mismatch (Materials and Methods). Second and fourth columns: number and percentage of transcripts consensus motif sequence among the 11,575
transcripts (first line) and best significantly matching RNA binding protein motif of the database ATtRACT (Giudice et al, 2016) together with the ATtRACT motif
quality score Q (value between 0 and 1, the higher the better; Materials and Methods).

C Observed PTR ratios of all tissues (y-axis) versus predicted PTR ratios by the interpretable sequence model (x-axis) which includes 18 sequence feature groups
representing 204 post-transcriptional regulatory elements.

D Observed mRNA levels of all tissues (y-axis) correlates with predicted PTR ratios by the interpretable sequence model (x-axis) which includes 18 sequence feature
groups representing 204 post-transcriptional regulatory elements. This observation supports the hypothesis that genes that are highly transcribed are also optimized
for post-transcriptional regulation leading to higher protein levels.

E Proportion of variance in tissue-specific PTR ratios explained (R2) by separate linear models representing one sequence feature group in each tissue. The first row
(labeled “ALL”) corresponds to the linear model combining all of the features displayed in the consecutive rows.

F Median proportion of variance in tissue-specific PTR ratios explained (x-axis, R2) by each sequence feature group shown in (D) highly correlates with median
proportion of variance explained in protein half-lives of five different cell types (y-axis). Most of the explained variance in PTR ratios is dominated by sequence
elements that are highly predictive of protein half-lives. The proportion of variance explained by each sequence feature group is shown in Fig EV5.

ª 2019 The Authors Molecular Systems Biology 15: e8513 | 2019 13 of 25

Basak Eraslan et al Sequence determinants of protein per RNA Molecular Systems Biology

Published online: February 18, 2019 



CPSF complex

Prolyl 4-hydroxylases

Spliceosomal
proteins

39S ribosomal 
proteins, 
mitochondrial

poly(rC) 
binding 
proteins

Ribosomal 
proteins

E

F

RNA degradation

Spliceosomal
proteins

G

H

Log EC50

1 nM

A

B

C

D

AAUAAA

ACCAAA

ACUCUG

AUUUUUA

CAAACAGA

CCUGUA

GGCCCCUG

GGGCUGCG UACUAAGA

UAUUUAU

UGUAAAUA

AUG

CACGU

CUGUCCU

GCCGCCGGCGCCCG

0.3

0.5

0.7

0.9

1.1
1.3
1.5
1.7
1.9
2.1

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Codon

Median effect across tissues

E
ffe

ct
 in

 fi
br

ob
la

st
 c

el
ls

=0.7, P < 2.2e-16

0.1

0.2

0.4
0.6
1.0

1.8
2.4

00:00:00 00:02:30 00:05:00

Time (minutes)

G
Lu

c
/ S

E
A

P
 

in
te

ns
ity

No uAUG

Out-of-frame
uORF

Out-of-frame
uAUG

12

16

20

24

0:00:00 0:02:30 0:05:00 0:07:30 0:10:00

G
Lu

c
/ S

E
A

P
 

in
te

ns
ity

CUGUCCU Scrambled CUGUCCU

Time (minutes)

14

18
22
26
30
34
38
42

0:00:00 0:02:30 0:05:00 0:07:30 0:10:00

Inserted motif UUCCG Scrambled UUCCG

G
Lu

c
/ S

E
A

P
 

in
te

ns
ity

Time (minutes)

Figure 6. Independent validations.

A Comparison of codon (red), 30 UTR (green) and 50 UTR (blue) motif median effects on PTR ratio across 29 human tissues (x-axis) and effects on PTR ratios in an
independent matched proteome and transcriptome dataset (Kremer et al, 2017). Because one does not expect effect of tissue-specific motifs to necessarily
reproduce in Fibroblasts, the plot is restricted to the motifs that show significant association with PTR ratio in at least five tissues.

B Reporter assay of the AUG in 50 UTR. Ratio of GLuc over SEAP intensities normalized per experiment (y-axis, n = 18, Materials and Methods) per time point (x-axis)
and construct: no insertion (pink), inserted out-of-frame AUG (green), and inserted uORF, i.e., inserted AUG with an inserted stop codon in-frame in the 50 UTR
(blue). Shown are the quartiles (boxes and horizontal lines) and furthest data points still within 1.5 times the interquartile range of the lower and upper quartiles
(whiskers). Original GLuc over SEAP intensities for all tested motifs in Appendix Figs S15 and S16.

C As in (B) for inserted 50 UTR motif CUGUCCU (pink) or a scrambled version of it (blue, UUUGCCC).
D As in (B) for inserted 50 UTR motif UUCCG (pink) or a scrambled version of it (blue, CUUCG).
E Proteome-wide competition-binding assay results for the polyadenylation signal motif AAUAAA and the cleavage and polyadenylation specificity factor (CPSF) complex.
F–H AAUAAA, UAUUUAU, and CUGUCCU motif-specific RNA binding proteins (and their complex partners) and their interaction strength to the free RNA probe; node

color: pEC50; physical and functional interactions of proteins derived from STRING.
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data for one positive control, the polyadenylation signal AAUAAA,

are shown in Fig 6E. The protein intensities for six protein complex

members of the cleavage and polyadenylation factor, which binds to

the AAUAAA motif, decrease in a sigmoidal fashion in response to

the concentration of the free motif-containing ligand, showing that

their binding to the probe is AAUAAA-dependent and allowing for

estimating EC50 and dissociation constants. Moreover, the relative

intensities of these 6 members align, which is consistent with these

6 proteins to bind to the AAUAAA motif as part of a single complex.

In contrast, the relative intensity of the DEAD box protein 5 DDX5 is

independent of the concentration of the free motif-containing ligand

indicative of unspecific binding to the AAUAAA motif, potentially to

the bead itself.

In total, we identified 253 proteins which directly or indirectly

(e.g., as complex members) interacted with the tested RNA motifs

in a sequence-specific or sequence-independent manner. Of these,

88 proteins are annotated as RNA binding proteins (RBPDB v.

1.3.1) and 247 proteins have annotations as RNA processing or

binding proteins, nuclear localization, or (mitochondrial) ribosomal

proteins (according to DAVID version 6.7; Huang et al, 2009a,b).

For further analyses, we defined sequence-specific binding proteins

based on their estimated Kd values. In order to be motif-specific,

we required that the Kd of the protein–RNA interaction be at least

10 times more potent than the next best motif or negative control.

The competition-binding experiments identified 50 motif-specific

interactors of the consensus polyadenylation signal sequence

AAUAAA (Table EV11), 32 of which are known to bind poly(A)

tails and 12 have an annotated RNA binding domain. The results

unambiguously recapitulate that the motif is bound tightly by the

cleavage and polyadenylation specificity factor (CPSF) complex

(Mandel et al, 2006; Fig 6F). For the second positive control, the 30

UTR AU-rich motif UAUUUAU (Chen & Shyu, 1995), the assay

identified 38 interacting proteins (Fig 6G). These include the zinc-

finger RNA binding proteins ZFP36L1 and ZFP36L2 (Kd of 24 and

11 nM, respectively), which are known to destabilize several cyto-

plasmic AU-rich element (ARE)-containing mRNA transcripts by

promoting their poly(A) tail removal or deadenylation, and hence

provide a mechanism for attenuating protein synthesis (Hudson

et al, 2004; Adachi et al, 2014). The competition assay also

revealed interaction of many further proteins including ZCCHC11,

MEX3C, MEX3D, CNBP, SKIV2, and TTC37 that are involved in

mRNA decay consistent with the primary function of the AU-rich

element.

The 50 UTR motif CUGUCCU is one of the novel motifs with a

predicted positive effect on median PTR ratio (1.33), which also

showed a significant positive effect in the reporter assay. For this

motif, we identified and quantified the interaction with 30 binding

partners, including 19 proteins of the 39S mitochondrial ribosomal

subunit, five proteins of the 40S ribosome complex, and four

proteins with a KH domain known to be involved in splicing

(Fig 6H). The ribosomal proteins bind the 50 UTR motif tightly with

an affinity of 68 nM (�31 nM std. dev.). One might speculate that

the presence of this motif enhances the interaction of the 50 UTR
with the mitoribosome as well as with the small subunit of the cyto-

plasmic ribosome, which plays a key role in translation initiation

(Aitken & Lorsch, 2012), thus leading to a higher efficiency in trans-

lation initiation. Two other proteins bound by the motif are

ANGEL2, a protein known to bind the 30 UTR of mRNAs and result

in their stabilization, and IGF2BP3, a protein which may recruit and

cage target transcripts to cytoplasmic protein–RNA complexes. Like

other IGF2BPs, IGF2BP3 may thereby modulate the rate and location

at which target transcripts encounter the translational apparatus

and shield them from endonuclease attacks or microRNA-mediated

degradation (Vikesaa et al, 2006; W€achter et al, 2013). Overall, the

binding partners found by this pull-down assay are ubiquitously

expressed and have a positive effect on translation, which is in

agreement with the sign of the estimated effect of the motif and its

lack of tissue specificity.

Discussion

Our multivariate regression analysis estimated the contribution

within and across tissues of 18 sequence feature groups representing

204 post-transcriptional regulatory elements. Altogether the model

predicts the PTR ratio of individual genes at a median precision of

3.2-fold from sequence alone, while the PTR ratio spans about 200-

fold across 80% of the genes. For most known regulatory elements,

the estimated effects were consistent with the literature, such as the

effects of the secondary structures in the upstream CDS, upstream

AUGs, individual nucleotides in the start and stop codon context,

and de novo identified 30 UTR motifs AATAAA, TATTTAT, and

TGTAAATA, providing support to the functional interpretability of

the model. A list of references supporting the functional evidence of

sequence elements of the model on PTR ratio is provided in

Table EV12. Moreover, this analysis led to the identification of novel

candidate regulatory elements in 50 UTR and 30 UTR, whose effects

are estimated to be in the range of well-known canonical motifs.

Follow-up experiments provided initial functional support for these

motifs. Moreover, our extended model comprising 269 additional

experimentally characterized sequence features indicates that post-

translational protein modifications substantially contribute to PTR

ratios and would constitute an important set of features for model-

ing in more detail in the future.

There are limitations to this approach that should be noted. The

model is additive on the logarithmic scale. However, regulatory

elements likely function depending on the sequence context, the

presence of other regulatory elements, and their respective distance

along the transcript but also in space. Given the amount of varia-

tions across genes, such non-additive effects are very hard to be fit-

ted. Hence, the effect of mutating a particular sequence element on

a given gene may differ from the expected effect estimated by the

linear model. Also, the conserved sequence elements we found

associated with PTR ratio may be functional but actually play a dif-

ferent role because high PTR ratios correlate with other selected

traits such as high mRNA levels. Experiments will help in resolving

these questions. Nonetheless, our study provides interesting

conserved sequence elements to follow up with mechanistic studies.

We have also performed matches to the ATtRACT database, as an

indication of possible RBP recognizing these motifs. ATtRACT

matches, even with the highest scores, can be lenient. Also, this

database suffers from the general poor charting of RBP binding

sites. As a result, we shall take these matches as indicative and with

caution. Another limitation is that most tissues investigated have

been obtained from different donors (Wang et al, 2019). While it is

reasonable to expect that tissue-specific effects dominate the
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differential expression signal between these samples, one cannot

exclude donor-specific effects as well.

Our regression approach led to a new codon metric, PTR-AI, for

protein-to-mRNA ratio adaptation index, which estimates the effect

of doubling the frequency of a codon in a gene on its protein-to-

mRNA ratio. Using PTR-AI, codons, which inherently encode amino

acids and synonymous codon usage, are the lead explanatory vari-

able explaining about 16% of the PTR ratio variance across genes

almost in every tissue we inspected. Amino acid frequency and

synonymous codon usage affect PTR ratios via various mechanisms.

Amino acid identity affects translation (Wilson et al, 2016; Hanson &

Coller, 2018) and protein half-life (Fang et al, 2014; Zecha et al,

2018), while synonymous codon usage influences translation effi-

ciency due to variation in the translation elongation rates of different

codons (Gustafsson et al, 2012; Gardin et al, 2014; Ingolia, 2014; Yu

et al, 2015; Weinberg et al, 2016; Yan et al, 2016; Hanson & Coller,

2018). Highly expressed genes contain relatively high proportions of

codons recognized by abundant tRNAs with efficient codon–anti-

codon base-pairing. Based on this observation, several codon opti-

mality metrics have been suggested (Sharp & Li, 1986; dos Reis et al,

2004; Pechmann & Frydman, 2013; Sabi & Tuller, 2017). However,

all of these rely on some assumptions and simplifications, such as

the codon adaptation index defining a set of highly expressed genes

as a reference set or the tRNA adaptation index overlooking the

supply and demand relationship for charged tRNAs. PTR-AI does not

correlate well with codon genomic frequency or tAI adaptiveness,

whereas it does correlate well with the codon decoding times esti-

mated from several ribosome profiling datasets. Furthermore, we

have shown that PTR-AI also captures the effects of amino acids on

protein stability. Consequently, we suggest that PTR-AI is a more

reliable codon optimality metric than previous metrics.

Our findings do not support the hypothesis of tissue-specific

codon optimality. It has been suggested that there is tissue-specific

codon-mediated translational control due to differential synony-

mous codon usage in human tissue-specific genes, which corre-

lates with varying tRNA expression among different tissues

(Plotkin et al, 2004; Dittmar et al, 2006). However, other studies

found no evidence for optimization of translational efficiency by

cell-type-specific codon usage in human tissues (S�emon et al,

2006; Rudolph et al, 2016). Our tissue-specific PTR-AIs, which are

estimated by fitting our model separately for each tissue, do not

display high variation across tissues. This result is coherent with

negligible tissue-specific enrichments of expressed codons in

human transcriptomes (S�emon et al, 2006; Rudolph et al, 2016),

showing that tissue-specific expression is neither due to the tran-

scription nor due to the translation of genes with particular codon

contents. Further corroborating this finding, genes with high-effect

codons tended both to have a high median level of protein expres-

sion and to be ubiquitously expressed. These genes were enriched

for housekeeping functions. A possible explanation of these find-

ings is that housekeeping genes have evolved for optimal coding

sequence to reach high protein expression levels. Because of the

ubiquitous role of housekeeping genes, their codon content in turn

constrains the pool of tRNA to be rather constant across tissues.

These explanations are consistent with the recent massive genomic

editing experiment results, which show that codon bias of highly

expressed genes maintains the efficiency of global protein transla-

tion in the cell (Frumkin et al, 2018). The lack of tissue specificity

of PTR-AIs we reported here does not contradict the differential

tRNA pool regulation between proliferative and differentiating cells

(Gingold et al, 2014), since our tissues are essentially constituted

of non-proliferative cells.

In every tissue investigated, protein-to-mRNA ratios were higher

for genes with high mRNA expression levels, leading to an approx-

imately quadratic relationship between protein and mRNA levels

across genes (Wang et al, 2019) and a larger dynamic range of

expression among proteins than mRNAs. Our model partially

explains this apparent amplification from sequence features,

thereby showing that high protein expression levels are reached

because of high mRNA levels and because of genetically encoded

elements favoring the synthesis and stability of proteins. Regula-

tory elements that affect both the mRNA levels and protein-per-

mRNA copy numbers could further contribute to this apparent

amplification. Codons are known to play such a dual role since

they affect translation on the one hand, and mRNA stability on the

other hand. The mechanistic basis for these cross-talks between

translation and mRNA stability is not fully understood. It is possi-

ble that regression approaches similar to those employed by us

could help in revealing further sequence elements acting on both

levels. A similar super-linear relationship had been reported before

for the unicellular eukaryotes in baker’s yeast (Lackner et al,

2007) and fission yeast (Cs�ardi et al, 2015), which appears to be

absent in the prokaryote E. coli, respecting which mRNA and

protein levels across genes obey a nearly linear relationship

(Taniguchi et al, 2010). Prokaryotic transcription and translation

are coupled processes, which do not allow post-transcriptional

regulation to have an effective role in determining steady-state

protein levels. In contrast, these two processes are highly uncou-

pled and have specialized mechanisms in eukaryotes, which are

favored by the compartmentalization of eukaryotic cells. We

suggest that the uncoupling of transcription and translation under-

lies a fundamental difference in the relationship between protein

and mRNA levels across genes in eukaryotes compared to prokary-

otes and may allow protein copy numbers of eukaryotic cells to

span a much larger dynamic range. Further matched transcriptome

and proteome datasets for a larger range of prokaryotes would

help to support this model.

A comprehensive post-transcriptional regulatory code is impor-

tant for interpreting regulatory genetic variations in personal

genomes and in genetic engineering for biotechnological or gene

therapy applications. Our study provides an important contribution

by modeling codon effects, identifying novel sequence elements

with potential function, and giving a framework for quantifying and

assessing the role of new elements on protein-per-mRNA copy

number. In the future, we expect further approaches including the

analysis and integration of perturbation-based data and the mapping

of post-translational regulatory elements in order to complement

and refine the present analysis.

Materials and Methods

Protein levels, mRNA levels, and PTR ratios

The protein data in MaxQuant file “proteinGroups.txt” (see the

“Data and Code Availability” section) are filtered such that the
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Reverse, Only.identified.by.site, and Potential.contaminant columns

are not equal to “+”. Moreover, we restricted to unambiguously

identified gene loci by requiring the number of Ensembl Gene IDs in

the Fasta.headers column to equal 1. To calculate protein expression

levels, IBAQ values equal to zero were set as missing values (NA).

Next, IBAQ values were adjusted to have in each tissue the same

median than the overall median by adding in the logarithmic scale a

tissue-specific constant.

About 10% of the genes were reported to have 2 or more tran-

script isoforms in the MaxQuant file “proteinGroups.txt”. We

defined as major transcript isoform per gene the transcript isoform

reported in the MaxQuant file “proteinGroups.txt” that had the

largest sum of IBAQ values across all tissues. We used these major

transcript isoforms for all tissues, to compute all sequence features

and to compute mRNA levels.

For each tissue, only the mRNA replicates which had a match-

ing protein sample were used throughout the analysis. Paired-end

raw read files were quality-checked with FastQC software (Babra-

ham Bioinformatics – FastQC A Quality Control tool for High

Throughput Sequence Data, https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/), and the overrepresented adapter sequences

were trimmed using the Trim Galore software (Babraham Bioinfor-

matics – Trim Galore!, https://www.bioinformatics.babraham.ac.uk/

projects/trim_galore/). After that, resulting read files were checked

again with FastQC and the reads were mapped with STAR alignment

software (Dobin et al, 2013) to human genome annotation Hg38.83,

with the parameter of maximum number of multiple alignments

allowed for a read to be equal to 1 (–outFilterMultimapNmax).

To estimate the mature mRNA levels, for each sample (each

replicate in each tissue) the number of reads that map to exonic and

intronic regions of the transcript (which was decided to be used

based on the major protein isoform) was counted separately

(Table EV2) and then normalized by the total exonic and intronic

region lengths, respectively. Next, the intronic counts normalized

by the intronic region length were subtracted from exonic counts

normalized by the exonic region length. The resulting normalized

exonic counts per sample (i.e., each replicate of each tissue) were

corrected by the library size factor obtained with the Bioconductor

package DESeq2 and further log-transformed (log10). Finally, techni-

cal replicates were summarized by taking the median value. We set

a cutoff of 10 reads per kilobase pair for a transcript to be treated as

transcribed, which further improved the correlation between mRNA

and proteins, possibly because of the poorer sensitivity of proteo-

mics for lowly expressed genes or because of higher technical noise

in low ranges of expression for RNA-Seq and for proteomics. Tissue-

specific PTR ratios were computed as the logarithm in base 10 of

the ratio of the normalized protein levels over the normalized

mRNA levels.

mRNA isoform level quantification

In order to obtain tissue-specific mRNA transcript isoform FPKM

levels, we used Kallisto (Bray et al, 2016) with Gencode

annotation Hg38.83 using default parameters. For each gene, the

major isoform in a specific tissue was defined to be the

isoform with the largest FPKM value among all isoforms with

FPKM > 1. Thereon, the number of major isoforms across the 29

tissues with unique Ensembl Transcript IDs was counted per gene.

Explained variance of protein levels and relative protein levels by
mRNA levels

For protein levels, we performed a linear regression of log-trans-

formed protein levels against either log-transformed mRNA levels of

the matching tissue or the complete log-transformed mRNA levels

across all tissues. Explained variance was reported as adjusted R2,

and statistical significance was assessed using the chi-square test for

nested linear models. For relative protein levels, the same was done

for log-transformed and median-centered protein levels against log-

transformed and median-centered mRNA levels.

Multi-omics factor analysis on mRNA levels and PTR ratios

Multi-omics factor analysis (MOFA; Argelaguet et al, 2018) was

applied to mRNA levels and PTR ratio matrices (7,822 by 29) of the

7,822 genes detected expressed at the mRNA level and at the protein

level in at least 15 tissues. The mRNA levels and PTR ratios were

mean-centered per gene across tissues before the fitting was

performed.

Sequence features

50 UTR folding energy analysis (secondary structure proxy)

The sequence spanning 100 nt 50 and 100 nt 30 of the first nucleo-

tide of the canonical start codon was extracted for all transcripts

with a valid PTR value in at least one tissue. The folding energies

were computed via Vienna-RNAfold package (Lorenz et al, 2011)

with 51-nt-wide sliding window for each center position in [�75,

+75] nt relative to the first nucleotide of the canonical start codon.

The effect and P-values of the log2-transformed negative minimum

folding energy values at each position on median PTR across tissues

were assessed individually with a linear regression model, in which

all the analyzed sequence features were included as covariates.

P-values were corrected for multiple testing using Benjamini–

Hochberg correction (Benjamini & Hochberg, 1995).

Kozak sequence and stop codon context analysis

Linear regression was performed on every nucleotide in a [�6, +6]

nt window around the canonical start and stop codons.

Codon frequency

Codon frequency was encoded as the log2 of the frequency of each

of the 61 coding codons (number of codons divided by coding

sequence length). Using the frequency in natural scale led to a

decreased explained variance by 1%. In addition, codon pair

frequencies were modeled in the design matrix as the first 2 princi-

pal components of the codon pair frequency matrix consisting of

3,721 features.

Linear protein motifs

Linear protein motifs were downloaded from the ELM database

(Dinkel et al, 2016) as regular expressions. We classified proteins as

containing an ELM motif if the regular expression matched at least

once in the protein sequence. Thereafter, we selected the ELM motifs

significantly associating with PTR ratios in at least one tissue by utiliz-

ing LASSO feature selection (Tibshirani, 1996) where the PTR ratios

were corrected for the core sequence features, which we defined as
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the motifs identified de novo, the 50 UTR folding energies at positions

0 and +48, start codon context, codon frequencies, codon pair bias

indicators, stop codon context, UTR and CDS region lengths, PEST

motifs, protein isoelectric point, and protein N-end hydrophobicity.

N-terminal residue

The second residue of the protein sequence was extracted.

Protein 50 end hydrophobicity

The mean hydrophobicity value of the amino acids 2–16 at the 50

end of the protein was calculated by the hydropathy index per

amino acid values reported in Kyte and Doolittle (1982).

Protein isoelectric point

Protein isoelectric points for 11,575 protein considered in our model

were computed with the IPC-Isoelectric Point Calculator software

(Kozlowski, 2016).

PEST-region

We classified protein sequences as “PEST-region containing” if the

EMBOSS program epestfind (Rogers et al, 1986; Rice et al, 2000)

identified at least one “PEST-no-potential” hit.

De novo motif Identification

Similar to Eser et al (2016), de novo motif identification was

performed separately for 50 UTR, CDS, and 30 UTR regions by using

a linear mixed model in which the effect of each individual k-mer

on the median PTR ratios across tissues was assessed while control-

ling for the effect of the other k-mers (random effects) and region

length and region GC percent (fixed effects). In order to identify k-

mers which display more tissue-specific effects, the same approach

was applied to tissue-specific median-centered (median being taken

per gene across tissues) log-transformed PTR ratios. The model was

fitted with the GEMMA software (Zhou et al, 2013). Motif search

was executed for k-mers ranging from 3 to 8, and the P-values were

adjusted for multiple testing with Benjamini–Hochberg’s false

discovery rate computed across the P-values of all tissues jointly.

Significant motifs at FDR < 0.1 were subsequently manually assem-

bled based on partial overlap.

Multivariate linear model (interpretable model)

The multivariate linear model is:

yij ¼ b0j þ xT
i bj þ eij; (1)

where yij is the tissue-specific PTR ratio (log10) of gene i and tissue

j, and xT
i is the ith row of the matrix X of sequence feature predic-

tors which contains 61 features for individual codon frequencies

(in log2 scale), 36 features for Kozak sequence position–nucleotide

pairs, 39 features for stop-codon-context position–nucleotide pairs,

three features for CDS, 50 UTR and 30 UTR lengths (in log2 scale),

three features for CDS, 50 UTR and 30 UTR GC percentages, 20

features for 30 UTR motifs, 25 features for 50 UTR motifs (including

upstream AUG), three features for CDS amino acid motifs, six

features for linear protein motifs, three features for 50 UTR folding

energy, two features for codon pair bias, one feature for PEST

motifs, one feature for protein isoelectric point, and one feature for

protein N-terminal hydrophobicity. The intercept b0j and the vector

bj of the model coefficients for the jth tissue were estimated by

ordinary least squares, i.e., minimizing the squared of the errors

eij.
To predict the tissue-independent effects of the sequence

features, we considered the model:

yij ¼ b0j þ xT
i bþ eij; (2)

where the intercepts b0j varied by tissue while the coefficients of

the sequence features (the vector b) were kept equal across tissues.

The intercept b0j and the vector b of the model coefficients were

estimated by ordinary least squares, i.e., minimizing the squared

of the errors eij.
The explained variance (R2) of the PTR ratio by the sequence

features was obtained by 10-fold cross-validation where in each fold

the held-out data were used to have the PTR ratio predictions based

on the linear regression model fit obtained from the remaining nine

partitions.

Effect of amino acids on PTR ratio

To estimate the effect of doubling the frequency of an amino acid in

any gene on its log10 PTR ratio, we performed a modified version of

the regression defined by equation 1 (for tissue-specific effects) and

a modified version of the regression defined by equation 2 (general

effect), whereby the amino acid log2 frequencies were considered as

features instead of the codon log2 frequencies.

PTR-AI

The tissue-specific protein-to-mRNA ratio index (tissue-specific

PTR-AI) of a codon is computed as ten to the power of the esti-

mated coefficient of the log2 frequency of this codon in the regres-

sion described by equation 1, where j is the index of the tissue of

interest. It is an estimation of the fold-change on PTR ratio for a

specific tissue obtained if one would double the frequency of this

codon in any gene. The protein-to-mRNA ratio index (PTR-AI) of a

codon is computed as ten to the power of the estimated coefficient

of the codon log2 frequency in the regression described by equa-

tion 2. It is an estimation of the fold-change on PTR ratio in any

tissue obtained if one would double the frequency of this codon in

any gene.

Motif analysis

Tissue-specific motif effects

In the design matrix, all of the de novo identified motifs except

“AUG” and “AAUAAA” are encoded as the number of motif sites in

the sequence of the mRNA region (i.e., 50 UTR, CDS, 30 UTR).

“AUG” and “AAUAAA” are encoded as binary, hence whether the

motif is available in 50 UTR and 30 UTR regions, respectively. The

tissue-specific effect of the motif is assessed by fitting all sequence

features considered jointly in the linear model, with the tissue-

specific PTR ratios being the response variables.

Gene ontology enrichment

Enrichment for gene ontology categories (Ashburner et al, 2000)

as of January 21, 2016, was performed using the Fisher exact
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test and corrected for multiple testing using the Benjamini–Hoch-

berg correction.

Systematic motif search in RNA binding protein databases

Motif consensus sequences are searched in the RNA binding protein

database ATtRACT (Giudice et al, 2016) by using the database Web

interface at https://attract.cnic.es/searchmotif. The RNA binding

protein with the highest quality score, if any, was reported as bind-

ing candidate of the motif.

Motif 1 nucleotide mismatch logos

The sequences of each motif instance with at most 1 nucleotide

mismatch were obtained from transcript mRNA sequences. The

logos were created with R ggseqlogo package.

Motif conservation analysis

Phylogenetic conservation scores for human annotation hg38

(phastConst100way from http://hgdownload.cse.ucsc.edu/goldenpa

th/hg38/phastCons100way), which reports conservation across 99

vertebrates aligned to the human genome, were downloaded, and

the conservation scores per nucleotide were extracted for each of

the motif instances without any mismatch. The significance of the

enrichment scores at the motif sites compared to 10 nucleotides

flanking regions was tested with a one-sided Wilcoxon test across

all consensus motif occurrences in the given mRNA region (i.e.,

50 UTR or 30 UTR).

Codon decoding time and average amino acid decoding time

Codon decoding times for 16 human ribosome profiling datasets

were obtained from RUST values (O’Connor et al, 2016). We

estimated decoding time using the RUST ratio defined by the

RUST A-site values over the RUST expected value (personal

communication with Patrick O’Connor). We also included decod-

ing times in the HEK293 cell line estimated by Dana and Tuller

(2015). To estimate the average decoding times per codon, for

each dataset i we converted the decoding times into z-scores

(i.e., subtracting the mean and dividing by the standard devia-

tion) and then used the median z-score per codon across data-

sets as the average normalized decoding time of the codon. The

average amino acid decoding time was defined as the average

codon decoding time per amino acid weighted by the codon

genomic frequency.

mRNA half-life

To estimate codon effects on mRNA half-life, for K562 cells we

first called a major isoform as the highest expressed isoforms of

Gencode v24 coding transcripts in the total RNA samples of

Schwalb and colleagues (Schwalb et al, 2016) according to

Kallisto (Bray et al, 2016). The half-life was estimated as the ratio

of 5 min labeled TT-seq sample over total RNA-Seq sample (two

replicates) after correcting library size with spike-in. For HeLa

Tet-off cells, we used the isoforms reported by the authors (Tani

et al, 2012), and for HEK293 cells (Schueler et al, 2014), we used

the dominant major isoforms across the 29 tissues we have

inspected. We then fitted a linear model with log10 mRNA half-

life as response variable against log2 frequency of codons with

region length and GC content of 50 UTR, CDS, and 30 UTR as

further covariates.

Protein half-life

Protein half-lives for B cells, NK cells, hepatocytes, and monocytes

(Mathieson et al, 2018) were identified only by gene name and not

by isoforms, and those for HeLa cells (Zecha et al, 2018) by gene

names and UniProt protein identifiers. We therefore mapped our

transcript isoforms to these datasets by gene identifiers. We esti-

mated the associations of the sequence features with protein half-life

by multivariate regression where the response variable was the

cell-type-specific log10-transformed protein half-life.

Coding sequence 50 end codon frequency analysis

We considered the 10,778 transcripts with CDS length greater than

460 nucleotides. Starting from the second codon, the log2 frequen-

cies of 61 coding codons are calculated in each of the 11 non-over-

lapping 15-codon-long windows. For Fig EV3C, the frequency

values are centered per codon across windows. In order to

compare the effect of twofold codon frequency increase in the first

window (codons from 2 to 16) versus the effect of the twofold

codon frequency increase in the rest of the coding sequence, the

codon frequencies of the whole coding sequence are replaced by

the respective frequency values in the global interpretable model.

The median effect of the codons across tissues is displayed in

Fig EV3D.

Explained variance of protein levels by mRNA levels and
sequence features

We performed a linear regression of log-transformed protein levels

against the complete log-transformed mRNA levels across all tissues

and the sequence features. We also performed a linear regression of

log-transformed protein levels against the complete log-transformed

mRNA levels across all tissues, the sequence features, and the non-

sequence features. Explained variance was reported as adjusted R2.

Non-sequence features

m6A mRNA modification

We classified mRNAs as m6A-modified if at least one m6A peak for

the same gene locus in untreated HepG2 cell line was reported in

Supplementary Table 6 of Dominissini et al (2012).

Protein complex membership

We classified each protein as a protein complex member if it was a

subunit of at least one annotated protein complex in the CORUM

(Ruepp et al, 2010) mammalian protein complex database (release

version 02.07.2017).

Protein post-translational modification

We downloaded protein acetylation, methylation, phosphorylation,

SUMOylation, and ubiquitination data from the Phosphosite data-

base (release version 02.05.2018) (Hornbeck et al, 2015) and calcu-

lated the number of modification sites per modification type for

each protein. For proteins whose modification information was not
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available in the downloaded dataset, we assigned 0 instead. The

covariate for each of these features was defined as the log2 of the

number of modifications plus 1 (pseudocount).

RNA binding protein targets

We classified transcripts as targets of 112 RBPs if they contained at

least one peak in the eCLIP dataset of Van Nostrand et al (2016) as

processed earlier (Avsec et al, 2018).

RNA binding protein across-tissue covariation with target genes:

Among 112 RBPs whose binding evidences were used in our inte-

grated model, 64 of them were expressed in at least 15 tissues with

an mRNA level standard deviation across tissues > 0.1. In order to

see across-tissue expression covariation between these RBPs and

their target genes, for each RBP we calculated the Spearman’s rho

between its protein level expression and mRNA levels in other genes

(again expressed in at least 15 tissues and with mRNA ratio stan-

dard deviation > 0.1). The significance of the correlation coefficient

distribution difference between target and non-target genes was

assessed with two-sided Wilcoxon test.

miRNA targets

Many miRNAs in the miRTarBase database (Chou et al, 2018) have

very few reported targets, leading to no improvement explained

variance. Therefore, we filtered for the miRNAs which have at least

200 experimentally validated target genes in our dataset and classi-

fied the genes accordingly as targets for these miRNAs. Due to high

collinearity between binding evidences of different miRNAs, we

applied PCA to the 11,575 9 296 binding evidence matrix and

selected as features the 150 first principal components that

explained 95% of the variance in the target genes of 296 miRNAs.

Independently matched transcriptome–proteome dataset

We used data from Kremer et al (2017). As originally reported,

these data showed strong technical effects. To be on the safe side,

we restricted the analysis to six samples (sample IDs: #65126,

#73804, #78661, #80248, #80254, and #81273) that belonged to the

same cluster.

Validation of RNA motifs using a GLuc/SEAP reporter assay

We assayed the expression of one reporter gene on a plasmid (Gaus-

sia luciferase, GLuc) as a function of the presence of a motif, while

the second, constitutively expressed reporter gene (secreted alkaline

phosphatase, SEAP) was used as internal control for variation in

transfection efficiency and plasmid number. The pEZX-GA01 vector

and the pEZX-GA02 vector (GeneCopoeia), containing Gaussia luci-

ferase (GLuc) as a reporter and a constitutively expressed secreted

alkaline phosphatase (SEAP) as an internal control, served as basic

vectors of our 50 UTR and 30 UTR constructs, respectively. We

cloned the SV40 promoter and the 50 UTR motifs upstream of Gaus-

sia luciferase ORF between the EcoRI and the XhoI sites of the

pEZX-GA01 vector and 30 UTR downstream of the Gaussia luciferase

stop codon between the EcoRI and the XhoI sites of the plasmid

pEZX-GA02. The list of the motifs and controls used in the study is

available in Table EV8. The luciferase assay was performed using

Secrete-PairTM Dual Luminescence Assay Kit (GeneCopoeia). A total

of 100,000 HEK293-FT cells per construct were plated in 12-well

plates. The following day, cells were transfected with 1 lg of DNA

of each construct using Lipofectamine 2000 transfection reagent

(Life Technologies) according to the manufacturer’s protocol. The

medium was changed 24 h after transfection, and the cell culture

medium was collected 48 h after transfection. GLuc and SEAP activ-

ities were measured with the Secrete-PairTM Dual Luminescence

Assay Kit (GeneCopoeia) according to the manufacturer’s protocol

on Cytation3 imaging reader (BioTek). Each construct was

measured in three technical and three biological replicates in two

independent experiments with intensity measurements collected on

at 5 time points (0, 2, 4, 7, and 10 min).

For each motif separately, we assessed the per-experiment signif-

icance of the effect of the motif versus its scrambled counterpart

with a two-level nested ANOVA model fitted as a linear mixed

model in which the response is the log-intensity ratio of GLuc over

SEAP. In each of these motif-specific models, the motif type (motif

versus scrambled motif) is treated as the fixed effect while the repli-

cate identifier is treated as the random effect (Table EV9,

Appendix Figs S15 and S16). Thereafter, we combined the P-values

of the replicate experiments using Fisher’s method (Fisher, 1925)

and corrected for multiple testing with Benjamini–Hochberg correc-

tion (Benjamini & Hochberg, 1995).

Competition-binding assay to identify RNA
motif-binding proteins

The experiments were performed in three biological replicates and

in two independent experiments. HEK293-FT cells were grown in

DMEM medium supplemented with 10% (v/v) FBS, 1% (w/v)

non-essential amino acids, 1% (w/v) L-glutamine, and 1% (w/v)

G418 (Geneticin; Thermo). Confluent cells were harvested by

mechanical detachment followed by centrifugation and washing

with cold Dulbecco’s phosphate-buffered saline containing Ca2+

and Mg2+. Cell extraction and preparation of the lysate for the

competition-binding assay were performed as described (M�edard

et al, 2015). The preparation of RNA-beads for affinity purification

of RNA binding proteins was performed as follows: NHS-

Sepharose beads (Amersham Biosciences) were washed with

DMSO (4 9 10 ml/ml beads) and reacted with RNA oligos with 50

amino modifier C6 (Table EV11) (50 nmol/ml beads; Integrated

DNA Technologies, Inc.) for 20 h on an end-over-end shaker in

the dark in the presence of triethylamine (30 ll/ml beads) in

DMSO and H2O (1.8 vol of DMSO and 0.2 vol ddH2O for 1 vol of

beads). Next, aminoethanol (50 ll/ml beads) was added and the

mixture was kept shaking for an extra 20 h in the dark. The beads

were washed with DMSO (10 ml/ml beads) and ethanol

(3 9 10 ml/ml beads) and stored in ethanol (1 ml/ml beads) at

4°C.

The competition-binding assay itself, the quantitative label-free

LC-MS/MS analysis, and curve fitting were also developed accord-

ing to M�edard et al (2015). Briefly, the diluted cell lysates (2.5 mg

of total proteins/well) were incubated for 1 h at 4°C in an end-over-

end shaker with 0 nM (water control), 0.3, 1, 3, 10, 30, 100,

300 nM, 1, 3, 10, and 30 lM of the free RNA oligos dissolved in

RNase-free water. The preincubation step was followed by incuba-

tion with 20 ll settled beads for 30 min at 4°C. The water control

lysate was recovered and incubated similarly with RNA oligo beads
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as a pull-down of pull-down experiment to calculate the depletion

factor. The bound proteins were subsequently eluted with 60 ll of
29 NuPAGE LDS sample buffer (Invitrogen, Germany) containing

50 mM DTT. Eluates were alkylated with CAA, and in-gel digestion

was performed. The resulting peptides were measure using nanoflow

LC-MS/MS by directly coupling a nanoLC-Ultra 1D+ (Eksigent) to an

Orbitrap Elite mass spectrometer (Thermo Fisher Scientific).

Peptides were delivered to a trap column (75 lm 9 2 cm, self-

packed with Reprosil-Pur C18 ODS-3 5 lm resin; Dr. Maisch,

Ammerbuch) at a flow rate of 5 ll/min in solvent A (0.1% formic

acid in water). Peptides were separated on an analytical column

(75 lm 9 40 cm, self-packed with Reprosil-Gold C18, 3 lm resin;

Dr. Maisch, Ammerbuch) using a 100-min linear gradient from 4 to

32% solvent B (0.1% formic acid, 5% DMSO in acetonitrile) in

solvent A1 (0.1% formic acid, 5% DMSO in water) at a flow rate of

300 nl/min (Hahne et al, 2013). Full scans (m/z 360–1,300) were

acquired at a resolution of 30,000 in the Orbitrap using an AGC target

value of 1e6 and maximum injection time of 100 ms. Tandem mass

spectra were generated for up to 15 peptide precursors. These

peptide precursors were selected for fragmentation by higher energy

collision-induced dissociation (HCD) using 30% normalized collision

energy (NCE) and analyzed in the Orbitrap at a resolution of 7,500

resolution using AGC value of 2e5 and maximum injection time of

100 ms. For peptide and protein identification and label-free quan-

tification, the MaxQuant suite of tools version 1.5.3.30 was used.

The spectra were searched against the UniProt human proteome

database with carbamidomethyl (C) specified as a fixed modifi-

cation. Oxidation (M) and Acetylation (Protein N-Term) were

considered as variable modifications. Trypsin/P was specified as the

proteolytic enzyme with two maximum missed cleavages. Label-free

quantification (Cox et al, 2014) and the match between runs func-

tion was enabled. The FDR was set to 1% at both PSM and protein

level. Protein intensities were normalized to the respective water

control, and IC50 and EC50 values were deduced by a four-para-

meter log-logistic regression using an internal pipeline that utilizes

the “drc” package (Ritz et al, 2015). A Kd was calculated by multiply-

ing the estimated EC50 with a protein-dependent correction factor

(depletion factor) as previously described (M�edard et al, 2015).

Data and Code Availability

Transcriptome sequencing and quantification data are available at

ArrayExpress under accession ID E-MTAB-2836 (www.ebi.ac.uk/ar

rayexpress/experiments/E-MTAB-2836/). The raw mass spectromet-

ric data and the MaxQuant result files are available from the PRIDE

database under accession number PXD010153 for the pull-down

dataset and PXD010154 for the tissue profiling dataset (https://

www.ebi.ac.uk/pride/archive/projects/PXD010153 and https://

www.ebi.ac.uk/pride/archive/projects/PXD010154).

Analysis scripts are available at https://github.com/EraslanBas/

HumanTransProt.

Expanded View for this article is available online.
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