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Abstract We investigate the global dynamics of a general Kermack-McKendrick-
type epidemic model formulated in terms of a system of renewal equations.
Specifically, we consider a renewal model for which both the force of infec-
tion and the infected removal rates are arbitrary functions of the infection
age, τ , and use the direct Lyapunov method to establish the global asymp-
totic stability of the equilibrium solutions. In particular, we show that the
basic reproduction number, R0, represents a sharp threshold parameter such
that for R0 ≤ 1, the infection-free equilibrium is globally asymptotically sta-
ble; whereas the endemic equilibrium becomes globally asymptotically stable
when R0 > 1, i.e. when it exists.

Keywords global stability, Lyapunov, renewal, Kermack-McKendrick

1 Introduction

The classic Kermack-McKendrick paper (Kermack and McKendrick, 1927) is
a seminal contribution to the mathematical theory of epidemic modelling.
Within, the authors formulate a general epidemic model in which the infec-
tiousness of infected individuals and the rate at which they recover or are
removed is an arbitrary function of the infection age, τ ; from this, they derive
several fundamental results including the conditions for an epidemic outbreak
and the final size equation. As a consequence of their general formulation, the
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analysis and conclusions of the Kermack-McKendrick paper encompass a wide
class of epidemic models, including countless incarnations that have since ap-
peared in the infectious diseases modelling literature (e.g. the SIR and SEIR
models).

In this article we revisit the classic Kermack-McKendrick model (Ker-
mack and McKendrick, 1927) and further investigate the system properties
and global dynamics in the presence of demographic influences. Our main
result, which is derived in section 3, is to show that the basic reproduction
number R0 represents a sharp threshold parameter that determines the global
stability of the infection-free and endemic equilibria. Specifically, we find that
when R0 ≤ 1 the infection-free equilibrium point is the unique equilibrium
in the nonnegative orthant and is globally asymptotically stable within this
region. Conversely, when R0 > 1 an endemic solution emerges in the interior
of this region which is globally asymptotically stable away from the invariant
S-axis. Both of these results are proved by the direct Lyapunov method, that
is, by identifying appropriate Lyapunov functionals.

Lyapunov functions have previously been used to establish the global asymp-
totic stability properties of SIR, SIS and SIRS models (see e.g. (Korobeinikov,
2004)) for which the population is either constant (Korobeinikov and Wake,
2002; O’Regan et al, 2010) or varying (Li and Muldowney, 1995; Li et al, 1999).
These results have also been extended to SEIR and SEIS models in (Fan et al,
2001; Li and Muldowney, 1995; Li et al, 1999; McCluskey, 2008), and epi-
demic models with multiple parallel infectious stages (Korobeinikov, 2008) or
strains (Bichara et al, 2013). However, these results have each been established
within the context of compartmental-type epidemic models for which the per-
capita flow rates between the stages of infection are assumed to be constant
and infectiousness is fixed for the duration of their infectious period.

Only recently, by using an approach that relied on both the direct Lya-
punov method and semigroup theory, were (Magal et al, 2010) able to de-
termine the global stability properties of equilibria in infection-age models.
This work has since been expanded (McCluskey, 2008, 2009, 2010a) and ex-
tended to models with general incidence functions (Chen et al, 2016; Huang
and Takeuchi, 2011; McCluskey, 2010b; Soufiane and Touaoula, 2016) and
multiple parallel infectious stages (Wang and Liu, 2012) or strains (Martcheva
and Li, 2013). Here, we provide an alternative treatment given in terms of the
original renewal formulation of the Kermack-McKendrick model.

In the next section we briefly describe the renewal system variables, param-
eters and their governing equations, and then discuss the system phase-space.
Then, in section 3, we derive the main result of this article where we introduce
a set of Lyapunov functionals which we use to establish the global asymptotic
stability of the infection-free and endemic equilibria.
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2 Model description

In the renewal formulation of the Kermack-McKendrick model we need only
explicitly consider a class of susceptible (i.e. infection-näıve) individuals, S,
who each experience a time-dependent force of infection F (t).1 By definition,
the force of infection is the per-capita rate at which susceptibles become in-
fected. Therefore the incidence at time t, v(t), is given by

v(t) = F (t)S(t),

where S(t) is the number of susceptibles and v(t) describes the rate at which
new infected individuals appear at time t. Assuming then that individuals who
have been infected for τ units of time on average contribute an amount A(τ)
to the force of infection, we find that the total force of infection at time t,
F (t), can be written in terms of a renewal equation:

F (t) =

∫ ∞
0

A(τ)v(t− τ) dτ,

=

∫ ∞
0

A(τ)F (t− τ)S(t− τ) dτ.

Here v(t − τ) represents the number of individuals who became infected at
time t− τ .

In general, the infectivity kernel A ≥ 0 is an arbitrary function of the
infection age τ whose definition motivates us, in analogy with (Magal et al,
2010), to define

τ̄ = sup {τ ≥ 0 : A(τ) > 0} , (1)

the maximum infection age at which an individual can contribute to the force
of infection. In this case we need only look back to this maximum infection
age to calculate F (t):

F (t) =

∫ τ̄

0

A(τ)v(t− τ) dτ,

=

∫ τ̄

0

A(τ)F (t− τ)S(t− τ) dτ. (2)

To complete the model description we assume that in addition to removal
by infection, individuals are recruited into the susceptible class at a constant
rate λ and die naturally at a constant per-capita rate µ. Combining these
rates, we find that

dS(t)

dt
= λ− µS(t)− F (t)S(t), (3)

assuming that infection leads to permanent immunity. Given (3), it is straight-
forward to show that S(t) > 0 for t > 0 provided it is nonnegative initially.

1 The dynamics of the class of infected individuals, I, is implicitly captured through the
force of infection, F (t).
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An important parameter that governs the system trajectory is the basic
reproduction number R0, defined as the expected number of secondary cases
caused by a single (typical) infectious individual in a fully susceptible popula-
tion. Given the definition of A(τ) and the expression for F (t) (equation (2)),
the functional form of R0 is naturally given by

R0 = S0

∫ τ̄

0

A(τ) dτ (4)

where
S0 = λ/µ

is the steady-state susceptible population in the absence of infection (see be-
low).

Before introducing suitable initial conditions for the system, we emphasize
that in order to solve (2) and (3) we must have knowledge of the entire past
history of F and S over the interval τ ∈ [−τ̄ , 0]. Therefore, the state of our
system P = (S,F) belongs to an infinite-dimensional phase-space Ω, which
can appropriately be chosen as

Ω = C0
+([−τ̄ , 0])× L1

+(−τ̄ , 0).

With this choice of state-space, standard arguments show that the model (2)-
(3) is well defined.

Given Ω, a suitable choice of initial conditions is given by

S0 ∈ C0
+([−τ̄ , 0]) and F0 ∈ L1

+(−τ̄ , 0).

The system equations (2)-(3) induce a continuous semiflow Φt : Ω → Ω where
the trajectory is given by (St(·),Ft(·)) ∈ Ω with

St(s) = S(t+ s), Ft(s) = F (t+ s), s ∈ [−τ̄ , 0].

We point out that in this notation, the pair (St(0),Ft(0)) = (S(t), F (t)) repre-
sents the most recent value in the history of a state along the system trajectory
at time t, namely (St(·),Ft(·)) ∈ Ω. In this case the model equations (2)-(3)
can be understood as rules for updating the most recent values of the histories
of F and S respectively.

Lemma 1 If the infectivity kernel A is of bounded variation, that is A ∈
BV ([0, τ̄ ]), system trajectories (St(·),Ft(·)) generated by model equations (2)-
(3) that originate in Ω are eventually compact. That is, Φt′ : Ω → Ωc where
Ωc ⊂ Ω is some compact set and t′ is sufficiently large.

Proof of Lemma 1. First, we rewrite equation (2) using our updated notation:

F (t) =

∫ τ̄

0

A(τ)Ft(−τ)St(−τ) dτ.

By corollary 1 of theorem 2 in (Mikusiński and Ryll-Nardzewski, 1951) —
which states that the convolution of a function of bounded variation with a
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bounded function is continuous — we have that F (t > 0) ∈ C0
+ for F0 ∈ L1

+

and S0 ∈ C0
+. Substituting this result into (3) we find that S(t > 0) ∈ C1

+.
Therefore, it follows that Φt>τ̄ : Ω → C1

+([−τ̄ , 0])× C0
+([−τ̄ , 0]).

Consider now the interval t > τ̄ . By theorem 5 of (Mikusiński and Ryll-
Nardzewski, 1951) — which states that the convolution of a function of bounded
variation with a continuous function is absolutely continuous — we have that
F (t > τ̄) ∈ AC+. Therefore, Φt>2τ̄ : Ω → Ωc where

Ωc = C1
+([−τ̄ , 0])×AC+([−τ̄ , 0]). (5)

Henceforth we assume that A ∈ BV+([0, τ̄ ]) such that the system trajectory
is eventually compact and the ω-limit set of (2)-(3) is non-empty.

Continuing, of particular interest within the larger, forward invariant phase-
space Ω, is the interior region Ω̂ ⊂ Ω for which new infections will arise either
at the present time or at some time in the future. That is,

Ω̂ =

{
(S,F) ∈ Ω : ∃ a ∈ [0, τ̄ ] s.t.

∫ τ̄

0

A(τ + a)F(−τ)S(−τ) dτ > 0

}
.

Conversely, we can also segregate the boundary, ∂Ω, of the phase-space, for
which no new infections can arise and for which the infection will be eradicated

∂Ω = Ω \ Ω̂.

Finally, it is easy to verify that the fixed states of the system (2)-(3) are
given by

P0 = (S0,F0) = (S0, F 0) =

(
λ

µ
, 0

)
,

P̄ = (S̄, F̄) = (S̄, F̄ ) =

(
λ

µR0
, µ(R0 − 1)

)
. (6)

Importantly, we see that the endemic equilibrium point, P̄ , only exists in the
interior region Ω̂ for R0 > 1; for the limiting case R0 = 1, the endemic and
infection-free equilibria coincide.

Ultimately, our goal will be to establish that i) when R0 ≤ 1 all system tra-
jectories of (2)-(3) within Ω asymptotically approach the infection-free equi-
librium point P0 ∈ ∂Ω and ii) when R0 > 1 trajectories that originate in Ω

asymptotically approach the endemic equilibrium P̄ ∈ Ω̂, except those that
originate in ∂Ω which approach P0.
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3 Global stability analysis

3.1 Infection-free equilibrium

Theorem 1 The infection-free equilibrium point P0 of the system (2)-(3) is
globally asymptotically stable in Ω for R0 ≤ 1. However, if R0 > 1, solutions
of (2)-(3) starting sufficiently close to P0 in Ω leave a neighbourhood of P0,
except those starting within the boundary region ∂Ω which approach P0.

Proof of Theorem 1. To verify theorem 1 we defineD = Φτ̄ (Ω) where, from (3),
we have S(0) > 0 for (S,F) ∈ D. Note, D is closed and forward invariant, and
any trajectory originating in Ω enters D either at, or before t = τ̄ .

Consider the Lyapunov functional U : D → R+ defined by

U(S,F) = g

(
S(0)

S0

)
+

∫ τ̄

0

η(τ)F(−τ)S(−τ) dτ

where

g(x) = x− 1− log x and η(τ) =

∫ τ̄

τ

A(s) ds. (7)

In particular we have η(τ̄) = 0,

η(0) =
R0

S0
and η′(τ) = −A(τ) (8)

where a ′ denotes differentiation with respect to τ . Importantly, the functional
U(S,F) ≥ 0 is well defined since S(0) > 0, and has a global minimum at the
infection-free equilibrium P0.

Next, let (St(·),Ft(·)) be a trajectory of the model (2)-(3) with initial
condition in D. With St(s) = S(t+ s) and Ft(s) = F (t+ s) we may write

U(St(·),Ft(·)) = g

(
St(0)

S0

)
+

∫ τ̄

0

η(τ)Ft(−τ)St(−τ) dτ,

= g

(
S(t)

S0

)
+

∫ τ̄

0

η(τ)F (t− τ)S(t− τ) dτ.

In order to compute the time derivative of U(St,Ft) we rewrite this as

U(St(·),Ft(·)) = g

(
S(t)

S0

)
+

∫ t

t−τ̄
η(t− s)F (s)S(s) ds. (9)
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Differentiating each term in (9) along system trajectories separately, we
first have

d

dt

[
g

(
S(t)

S0

)]
=

(
1

S0
− 1

S(t)

)
dS(t)

dt
,

=
λ

S0
− µ S(t)

S0
− F (t)

S(t)

S0
− λ

S(t)
+ µ+ F (t),

= µ

(
2− S(t)

S0
− S0

S(t)

)
− F (t)

S(t)

S0
+ F (t),

= −µ S(t)

S0

(
1− S0

S(t)

)2

− F (t)

(
S(t)

S0
− 1

)
(10)

where in the second line we have substituted in the identity λ = µS0.
Next we differentiate the second term in (9) to obtain

d

dt

(∫ t

t−τ̄
η(t− s)F (s)S(s) ds

)
= η(0)F (t)S(t)− η(τ̄)F (t− τ)S(t− τ)

+

∫ t

t−τ̄

dη(t− s)
dt

F (s)S(s) ds,

= R0F (t)
S(t)

S0
−
∫ t

t−τ̄
A(t− s)F (s)S(s) ds,

= R0F (t)
S(t)

S0
− F (t) (11)

where in the second line we have substituted in (8) and in the last line we have
used the definition of F (t), equation (2).

Finally, combining (10) and (11) yields

d

dt
U(St,Ft) = −µ St(0)

S0

(
1− S0

St(0)

)2

− (1−R0)Ft(0)
St(0)

S0
. (12)

We emphasize that we know for a trajectory (St,Ft) ∈ D ⊂ Ω, that for t > 0
we already have Ft ∈ C0([−τ̄ , 0]), such that this expression is well defined and
U is a proper Lyapunov functional on the closed domain D.

Importantly, for R0 ≤ 1 we have dU/dt ≤ 0. The derivative U̇(t) = 0 if
and only if St(0) = S0 and either (a) R0 = 1 or (b) Ft(0) = 0. Therefore,
the largest invariant subset in Ω for which U̇ = 0 is the singleton {P0}. By
Lemma 1 the orbit is eventually precompact hence, by the infinite-dimensional
form of LaSalle’s extension of Lyapunov’s global asymptotic stability theo-
rem (Smith, 2010, Theorem 5.17), the infection-free equilibrium point P0 is
globally asymptotically stable in Ω for R0 ≤ 1.

Conversely, if R0 > 1 and Ft(0) > 0, the derivative U̇ > 0 if S(t) is
sufficiently close to S0. Therefore, solutions starting sufficiently close to the
infection-free equilibrium point P0 leave a neighbourhood of P0, except those
starting in ∂Ω. Since U̇ ≤ 0 for solutions starting in ∂Ω these solutions ap-
proach P0 through this subspace.
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3.2 Endemic equilibrium

Theorem 2 If R0 > 1 the endemic equilibrium point P̄ is globally asymptot-
ically stable in Ω̂ (i.e. away from the boundary region ∂Ω).

Proof of Theorem 2. First, in theorem 1 we observed that F (t) for t > 0 is
bounded away from zero when R0 > 1, such that for R0 > 1 the semiflow
Φt : Ω̂ → Ω̂. Therefore, in analogy with theorem 1 we define D̂ = Φτ̄ (Ω̂)
which is a closed, forward-invariant set for R0 > 1. Moreover S,F > 0 for
(S,F) ∈ D̂ and any trajectory originating in Ω̂ enters D̂ at the latest at time
t = τ̄ , provided R0 > 1.

In this case we define W : D̂ → R+

W (S,F) = g

(
S(0)

S̄

)
+

∫ τ̄

0

χ(τ)g

(
F(−τ)S(−τ)

F̄ S̄

)
dτ

where g(x) has been defined previously in (7) and

χ(τ) = F̄ S̄

∫ τ̄

τ

A(s) ds.

Immediately we have that χ(τ̄) = 0,

χ(0) = F̄ and χ′(τ) = −F̄ S̄A(τ).

Once again, note that W (S,F) is well defined on D̂.
Similar to before, we let (St(·),Ft(·)) be a trajectory of the model with

initial condition in D̂ and adopt the notation St(s) = S(t + s) and Ft(s) =
F (t+ s). We may then write

W (St(·),Ft(·)) = g

(
S(t)

S̄

)
+

∫ τ̄

0

χ(τ) g

(
F (t− τ)S(t− τ)

F̄ S̄

)
dτ

which we at once rewrite as

W (St(·),Ft(·)) = g

(
S(t)

S̄

)
+

∫ t

t−τ̄
χ(t− s) g

(
F (s)S(s)

F̄ S̄

)
ds. (13)

Once again we differentiate each term separately. Beginning with the first
term in (13) we have

d

dt

[
g

(
S(t)

S̄

)]
=

(
1

S̄
− 1

S(t)

)
dS(t)

dt
,

=
λ

S̄
− µ S(t)

S̄
− F (t)

S(t)

S̄
− λ

S(t)
+ µ+ F (t),

= µ

(
2− S(t)

S̄
− S̄

S(t)

)
+ F̄

(
1− S̄

S(t)

)
+ F (t)

(
1− S(t)

S̄

)
,

= −µ S(t)

S̄

(
1− S̄

S(t)

)2

+ F̄

(
1− S̄

S(t)

)
+ F (t)

(
1− S(t)

S̄

)
(14)
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where in the third line we have substituted in the identity λ = µS̄ + F̄ S̄.
Turning to the second term we find

d

dt

[∫ t

t−τ̄
χ(t− s) g

(
F (s)S(s)

F̄ S̄

)
dτ

]
= χ(0) g

(
F (t)S(t)

F̄ S̄

)
− χ(τ̄) g

(
F (t− τ̄)S(t− τ̄)

F̄ S̄

)
+

∫ t

t−τ̄

dχ(t− s)
dt

g

(
F (s)S(s)

F̄ S̄

)
ds,

= F̄ g

(
F (t)S(t)

F̄ S̄

)
− F̄ S̄

∫ t

t−τ̄
A(t− s)g

(
F (s)S(s)

F̄ S̄

)
ds.

Substituting in the definition g(x) = x − 1 − log x and equation (2) this ex-
pression becomes

d

dt

[∫ t

t−τ̄
χ(t− s) g

(
F (s)S(s)

F̄ S̄

)
ds

]
= F (t)

(
S(t)

S̄
− 1

)
− F̄

[
log

(
F (t)S(t)

F̄ S̄

)
− S̄

∫ t

t−τ̄
A(t− s) log

(
F (s)S(s)

F̄ S̄

)
ds

]
.

(15)

The final term in the square brackets can be bounded using Jensen’s in-
equality2:

S̄

∫ t

t−τ̄
A(t− s) log

(
F (s)S(s)

F̄ S̄

)
ds ≤ log

[
S̄

∫ t

t−τ̄
A(t− s)F (s)S(s)

F̄ S̄
ds

]
,

= log

(
F (t)

F̄

)
.

Importantly, we note that equality between the left- and right-hand sides oc-
curs if and only if F (t)S(t) = F̄ S̄. Substituting this result back into the
expression above we find

log

(
F (t)S(t)

F̄ S̄

)
− S̄

∫ t

t−τ̄
A(t− s) log

(
F (s)S(s)

F̄ S̄

)
ds

≥ log

(
F (t)S(t)

F̄ S̄

)
− log

(
F (t)

F̄

)
,

= log

(
S(t)

S̄

)
,

≥ 1− S̄

S(t)

2 For a concave function ϕ(·) the following inequality holds (Jensen, 1906):

ϕ

(∫ ∞

0
h(t)f(t) dt

)
≥
∫ ∞

0
h(t)ϕ (f(t)) dt

where h(t) is a normalized probability distribution.
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where in the last line we have used log x ≥ 1 − 1
x , where equality requires

S(t) = S̄.
This condition implies that

d

dt

[∫ t

t−τ̄
χ(t− s) g

(
F (s)S(s)

F̄ S̄

)
ds

]
≤ F (t)

(
S(t)

S̄
− 1

)
− F̄

(
1− S̄

S(t)

)
.

(16)
Finally, combining (14) and (16) yields

d

dt
W (St,Ft) ≤ −µ

St(0)

S̄

(
1− S̄

St(0)

)2

,

≤ 0. (17)

From equation (17) we see that the largest invariant subset in Ω̂ for which
Ẇ = 0 consists only of the endemic equilibrium point P̄ . By Lemma 1 the orbit
is eventually precompact hence, by LaSalle’s extension of Lyapunov’s asymp-
totic stability theorem, the endemic equilibrium point P̄ is globally asymptot-
ically stable in Ω̂.

4 Conclusions

In this article we investigated the global dynamics of the general Kermack-
McKendrick model which we formulated in terms of a set of renewal equa-
tions. Firstly, we discussed how when the basic reproduction number R0 ≤ 1
the infection-free equilibrium point P0 is the unique equilibrium in Ω =
C0

+([−τ̄ , 0]) × L1
+(−τ̄ , 0). In contrast, when R0 > 1, an endemic equilibrium

solution emerges in in the interior region Ω̂ ⊂ Ω for which a positive frac-
tion of the population remains infected. By introducing appropriate Lyapunov
functionals we established that the infection-free and endemic equilibria are
globally asymptotically stable within Ω and Ω̂ when R0 ≤ 1 and R0 > 1,
respectively. These results generalize a number of previous investigations into
the global stability of epidemic models.

One of the goals of this article was to promote the use of more general
epidemic model formulations beyond ordinary differential equation (compart-
mental) descriptions — that are ubiquitous in the infectious diseases mod-
elling literature — by providing additional tools and theory relevant to the
renewal formulation. However, whilst the infected removal and transmission
rates in the model we investigated in this article are left as arbitrary functions
of the infection age τ , the assumptions regarding the demographic properties
of the population are more restrictive. In particular, the model that we have
analyzed (eqns. (2) and (3)) assumes that the age distribution of our popu-
lation is exponential, i.e. that the natural mortality rate µ is constant. For
many settings, particularly developed countries, this assumption may be un-
realistic. Therefore, it would be interesting to investigate whether the analysis
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presented here could be extended to epidemic models for which the natural
mortality rate µ→ µ(a) is an arbitrary function of an individual’s chronologi-
cal age, a. Research in this direction dates back to at least (Thieme, 1991) (see
also (Müller and Kuttler, 2015; Thieme, 2011)) who found that Hopf bifurca-
tions arise when an individual’s infectivity is dependent on their chronological
age a. Whether this applies to age-structured models in general is a promising
avenue of future research.
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valeurs moyennes. Acta Mathematica 30(1):175–193

Kermack WO, McKendrick AG (1927) A contribution to the mathematical
theory of epidemics. In: Proceedings of the Royal Society of London A:
mathematical, physical and engineering sciences, The Royal Society, vol 115,
pp 700–721

Korobeinikov A (2004) Global properties of basic virus dynamics models. Bul-
letin of Mathematical Biology 66(4):879–883

Korobeinikov A (2008) Global properties of SIR and SEIR epidemic models
with multiple parallel infectious stages. Bulletin of Mathematical Biology
71(1):75–83

Korobeinikov A, Wake G (2002) Lyapunov functions and global stability for
SIR, SIRS, and SIS epidemiological models. Applied Mathematics Letters
15(8):955–960

Li MY, Muldowney JS (1995) Global stability for the SEIR model in epidemi-
ology. Mathematical biosciences 125(2):155–164

Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model
with varying total population size. Mathematical Biosciences 160(2):191–
213

Magal P, McCluskey C, Webb G (2010) Lyapunov functional and global
asymptotic stability for an infection-age model. Applicable Analysis
89(7):1109–1140



12 Michael T. Meehan et al.

Martcheva M, Li XZ (2013) Competitive exclusion in an infection-age struc-
tured model with environmental transmission. Journal of Mathematical
Analysis and Applications 408(1):225 – 246

McCluskey CC (2008) Global stability for a class of mass action systems al-
lowing for latency in tuberculosis. Journal of Mathematical Analysis and
Applications 338(1):518–535

McCluskey CC (2009) Global stability for an SEIR epidemiological model
with varying infectivity and infinite delay. Mathematical Biosciences and
Engineering 6(3):603–610

McCluskey CC (2010a) Complete global stability for an SIR epidemic model
with delay: distributed or discrete. Nonlinear Analysis: Real World Appli-
cations 11(1):55–59

McCluskey CC (2010b) Global stability for an SIR epidemic model with de-
lay and nonlinear incidence. Nonlinear Analysis: Real World Applications
11(4):3106 – 3109
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