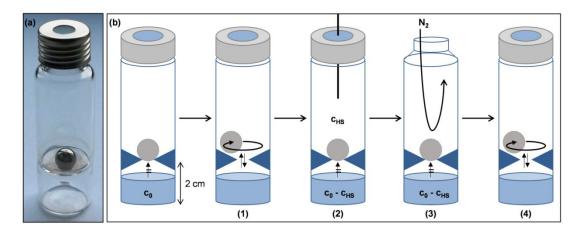
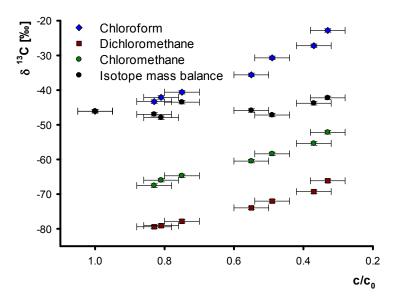
SUPPORTING INFORMATION

Reductive dehalogenation of trichloromethane by two different Dehalobacter restrictus strains reveals opposing dual element isotope effects

Benjamin Heckel^{a,b*}, Elizabeth Phillips^c, Elizabeth Edwards^d, Barbara Sherwood Lollar^c, Martin Elsner^{a,b}, Michael J. Manefield^e, Matthew Lee^{e*}


^aInstitute of Groundwater Ecology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany

^bChair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Marchioninistrasse 17, D-81377 Munich, Germany


^cDepartment of Earth Sciences 22 Russell St, University of Toronto, Toronto Ontario, M5S 3B1, Canada

^dDepartment of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada

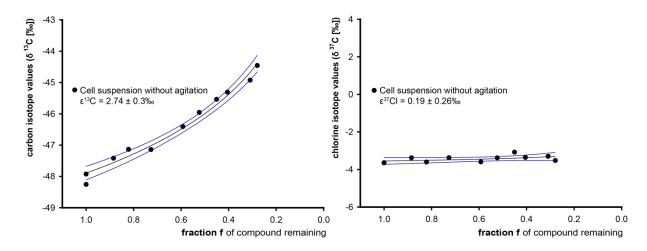

^eSchool of Civil and Environmental Engineering's Water Research Centre (WRC), University of New South Wales, Sydney, NSW 2052, Australia

Figure S1: (a) Modified headspace vial. (b) Schematic illustration of the stepwise water-air and hexadecane-air partitioning, respectively: (1) equilibration in agitator; (2) automated headspace sampling; (3) exchange of headspace with gentle nitrogen stream; (4) repeat (1)-(3)

Figure S2: Changes of carbon isotope values during the reaction of TCM with Vitamin B12 of TCM and all products plotted against the depletion of the Substrate.

Figure S3: Carbon (left panel) and chlorine (right panel) isotope effects of TCM transformation induced by the cell suspension experiment without agitation