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The knowledge on the genetic background of refractive error and myopia has expanded
dramatically in the past few years. This white paper aims to provide a concise summary of
current genetic findings and defines the direction where development is needed.

We performed an extensive literature search and conducted informal discussions with key
stakeholders. Specific topics reviewed included common refractive error, any and high
myopia, and myopia related to syndromes.

To date, almost 200 genetic loci have been identified for refractive error and myopia, and risk
variants mostly carry low risk but are highly prevalent in the general population. Several
genes for secondary syndromic myopia overlap with those for common myopia. Polygenic
risk scores show overrepresentation of high myopia in the higher deciles of risk. Annotated
genes have a wide variety of functions, and all retinal layers appear to be sites of expression.

The current genetic findings offer a world of new molecules involved in myopiagenesis. As
the missing heritability is still large, further genetic advances are needed. This Committee
recommends expanding large-scale, in-depth genetic studies using complementary big data
analytics, consideration of gene-environment effects by thorough measurement of environ-
mental exposures, and focus on subgroups with extreme phenotypes and high familial
occurrence. Functional characterization of associated variants is simultaneously needed to
bridge the knowledge gap between sequence variance and consequence for eye growth.
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1. SUMMARY

For many years, it has been recognized that myopia is highly
heritable, but only recently has significant progress been

made in dissecting the genetic background. In particular
genome-wide association studies (GWAS) have successfully
identified many common genetic variants associated with
myopia and refractive error. It is clear that the trait is complex,
with many genetic variants of small effect that are expressed in
all retinal layers, often with a known function in neurotrans-
mission or extracellular matrix. Exact mechanisms by which
these genes function in a retina-to-sclera signaling cascade and
other potential pathways remain to be elucidated. The
prediction of myopia from genetic risk scores is improving,
but whether this knowledge will affect clinical practice is yet

unknown. This Committee recommends expanding large-scale
genetic studies to further identify the molecular mechanisms
through which environmental influences cause myopia (gene-
by-environment effects), with an ultimate view to develop
targeted treatments.

2. KEY POINTS

1. Refractive errors including myopia are caused by a
complex interplay between many common genetic
factors and environmental factors (near work, outdoor
exposure).

2. Early linkage studies and candidate gene studies have
identified up to 50 loci and genes, but findings remained
mostly unverified in replication studies.
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3. Large consortia performing GWAS enabled identifica-
tion of common genetic variants associated with
refractive error and myopia.

4. The Consortium for Refractive Error and Myopia
(CREAM) and 23andMe published findings from GWAS
separately, and later combined studies in a GWAS meta-
analysis, identifying 161 common variants for refrac-
tive error but explaining only approximately 8% of the
phenotypic variance of this trait.

5. Polygenic risk scores based on these variants indicate
that persons at high genetic risk have an up to 40 times
increased risk of myopia compared with persons at
low genetic risk.

6. The genetic loci appear to play a role in synaptic
transmission, cell-cell adhesion, calcium ion binding,
cation channel activity, and the plasma membrane.
Many are light-dependent and related to cell-cycle and
growth pathways.

7. Pathway analysis confirms the hypothesis for a light-
induced retina-to-sclera signaling pathway for myopia
development.

8. Genome-environment-wide interaction studies (GE-
WIS) assessing variant 3 education interaction effects
identified nine other loci. Evidence for statistical
interaction was also found; those at profound genetic
risk with higher education appeared particularly
susceptible to developing myopia.

9. As most of the phenotypic variance of refractive errors
is still unexplained, larger sample sizes are required
with deeper coverage of the genome.

10. The ultimate aim of genetic studies is to discern the
molecular signaling cascade and open up new avenues
for intervention.

3. INTRODUCTION

Although myopia is strongly determined by environmental
factors, the trait has long been known to run in families,
suggesting a genetic predisposition. The heritability of
refractive error, using spherical equivalent as a quantitative
trait, has been determined in a number of families and twin
studies.1–8 The estimates resulting from these studies calculat-
ed heritabilities from 15% to 98%.5,7–10 However, it is
important to note that this does not necessarily imply that
most refractive error is genetic; familial clustering also can be
determined by other factors.11

Like many other traits, common myopia has a complex
etiology that is influenced by an interplay of genetic and
environmental factors.12 The current evidence, as summarized
in this review, indicates that it is likely to be caused by many
genes, each contributing a small effect to the overall myopia
risk. The evidence for this has been confirmed by large
GWAS.1–5,7,13,14 Several high, secondary syndromic forms of
myopia, such as Marfan, Stickler, and Donnai-Barrow, form the
exception, as they inherit predominantly in a Mendelian
fashion with one single, highly penetrant, causal gene.15

This white paper aims to address the recent developments
in genetic dissection of common refractive errors, in particular
myopia. Up until the era of GWAS, identification of disease-
associated genes relied on studies using linkage analysis in
families or investigating variants in candidate genes. In myopia,
these were singularly unsuccessful, and before 2009, there
were no genes known for common myopia occurring in the
general population. However, with the advent of GWAS, many
refractive error genes associated with myopia have been
identified, providing potential new insights into the molecular

machinery underlying myopia, and perhaps promising leads for
future therapies.

4. HERITABILITY

Eighty years ago, Sir Duke-Elder was one of the first to
recognize a ‘‘hereditary tendency to myopia.’’16 Since then,
evidence for familial aggregation has been delivered by various
familial clustering, twin, and offspring studies,1–4 and a genetic
predisposition became more widely recognized. Strikingly, the
estimates of myopia heritability vary widely among studies,
with values as low as 10%9,10 found in a parent-offspring study
in Eskimos, to as high as 98% in a study of female twin pairs5,7,8

(Table 1). Differences in study design and method of analysis
may account for this, but it is also conceivable that the
phenotypic variance determined by heritable factors is high in
settings in which environmental triggers are limited, and low
where they are abundant. Based on literature, heritability of
myopia is probably between 60% and 80%.

Variation in corneal curvature and axial length contribute to
the degree of myopia.17 Twin studies also estimated a high
heritability for most of the individual biometric parame-
ters.18,19 Correlations between corneal curvature and axial
length were at least 64%,20 suggesting a considerable genetic
overlap between the parameters.

Studies addressing the inheritance structure of myopia and
its endophenotypes identified several models, mostly a
combination of additive genetic and environmental ef-
fects.6,18,21,22 Genome-wide complex trait analysis, using
high-density genome-wide single-nucleotide polymorphism
(SNP) genotype information, was performed in young children
from the Avon Longitudinal Study of Parents and Children
(ALSPAC), and results suggested that common SNPs explained
approximately 35% of the variation in refractive error between
unrelated subjects.23 SNP heritability calculated by linkage
disequilibrium score regression in the CREAM Consortium was
21% in European individuals but only 5% in Asian individuals,
which could be due to the low representation of this
ancestry.24

In conclusion, the genetic component of myopia and ocular
biometry is well recognized, but its magnitude varies in studies
depending on the population being studied, the study design,
and the methodology. It is important to note that the recent
global rise of myopia prevalence is unlikely to be due to
genetic factors, but the degree of myopia may still be under
genetic control.25

5. LINKAGE STUDIES

A number of linkage studies for myopia were performed in
families and high-risk groups before the GWAS era (Fig. 1).26

Linkage studies have searched for cosegregation of genetic

TABLE 1. Heritability Estimates of Refractive Error

Subjects Study

Heritability Estimate

(6SE or 95% CI)

Monozygous and

dizygous twin

pairs

Dirani et al. 20066 0.88 6 0.02 (men) (SE)

Hammond et al. 200121 0.86 (0.83–0.89)

Lyhne et al. 20017 0.89–0.94 (0.82–0.96)

Sibling pair Guggenheim et al. 2007152 0.90 (0.62–1.12)

Peet et al. 2007153 0.69 (0.58–0.85)

Full pedigree Klein et al. 200919 0.62 6 0.13

Parent-offspring

pair

Lim et al. 2014154 0.30 (0.27–0.33)
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markers (such as cytosine-adenine [CA] repeats) with the trait
through pedigrees, and has been successfully applied for many
Mendelian disorders.27 In families with an autosomal dominant
inheritance pattern of myopia, this approach helped to identify
several independent loci for (high) myopia: MYP 1 to
20,26,28–30 as well as several other loci.31–36 Fine-mapping of
several of these loci led to candidate genes, such as the IGF1

gene located in the MYP3 locus.12 Although validation of the
same markers failed in these candidate genes, other variants
appeared associated with common myopia, suggesting genetic
overlap between Mendelian and complex myopia.37 Linkage
studies using a complex inheritance design found five
additional loci.38–42

With the development of new approaches for gene finding,
linkage analysis with CA-markers became unfashionable.
Nevertheless, segregation and linkage analysis of a variant or
region in pedigrees is still a common procedure for fine-
mapping or dissection of disease haplotypes.

6. SECONDARY SYNDROMIC MYOPIA

Myopia can accompany other systemic or ocular abnormalities.
The secondary syndromic myopias are generally monogenic
and have a wide spectrum of clinical presentations. Table 2
summarizes the known syndromic conditions that present
with myopia, and Table 3 summarizes the known ocular
conditions.43 Among these disorders are many mental retarda-
tion syndromes, such as Angelman (Online Mendelian Inher-
itance in Man database [OMIM] #105830), Bardet-Biedl (OMIM
#209900), and Cohen (OMIM #216550) and Pitt-Hopkins
syndrome (OMIM #610954). Myopia also can be a character-
istic feature in heritable connective tissue disorders, such as
Marfan (OMIM #154700), Stickler (OMIM #108300, #604841,
#614134, #614284), and Weill-Marchesani syndrome (OMIM
#277600, #608328, #614819, #613195), and several types of
Ehlers-Danlos syndrome (OMIM #225400, #601776).

A number of inherited retinal dystrophies also present with
myopia, most strikingly X-linked retinitis pigmentosa caused by
mutations in the RPGR-gene (retinal G protein–coupled
receptor) (see Ref. 44 for common gene acronyms) and
congenital stationary night blindness.45 Other eye disorders
accompanied by myopia are ocular albinism (OMIM #300500)
and Wagner vitreoretinopathy (OMIM #143200).

Most genes causing syndromic forms of myopia have not
(yet) been implicated in common forms of myopia, except for
collagen type II alpha 1 chain (COL2A1)46,47 and fibrilin 1
(FBN1).24,48 However, a recent study screened polymorphisms
located in and around genes known to cause rare syndromic
myopia, and found them to be overrepresented in GWASs on
refractive error and myopia.49 This implies that although rare,
pathogenic mutations in these genes have a profound impact
on the eye; more benign polymorphisms may have only subtle
effects on ocular biometry and refractive error.

7. CANDIDATE GENE STUDIES

Candidate genes are generally selected based on their known
biological, physiological, or functional relevance to the disease.
Although sometimes highly effective, this approach is limited
by its reliance on existing knowledge. Another caveat not
specific for this approach is that genetic variability across
populations can make it difficult to distinguish normal
variation from disease-associated variation.13 In addition,
candidate gene studies are very prone to publication bias,
and therefore published results are highly selected.

Numerous genes have been investigated in candidate gene
studies for refractive error traits. Table 4 summarizes all studies
that reported statistically significant associations for myopia or
ocular refraction. Genes that encode collagens (COL1A1,
COL2A1),46,47 transforming growth factors (TGFb1, TGFb2,
TGFb-induced factor homeobox 1 [TGIF1]),50–52 hepatocyte
growth factor and its receptor (HGF, CMET),53–55 insulin-like

FIGURE 1. Historic overview of myopia gene finding. Genes identified using WES are marked as purple. Other loci (linkage studies, GWAS) are
marked as red.
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growth factor (IGF1),56,57 matrix metalloproteinases (MMP1,
MMP2, MMP3, MMP9, MMP10),58,59 the lumican gene
(LUM),60 and the ocular developmental gene PAX6,61 all
showed promise in candidate gene studies. Unfortunately, like

TABLE 2. Overview of Secondary Syndromic Forms of Myopia:
Systemic Syndromes Associated With Myopia

Title

Gene and

Inheritance Pattern

Acromelic frontonasal dysostosis ZSWIM6 (AD)

Alagille syndrome JAG1 (AD)

Alport syndrome COL4A5 (XLD); COL4A3 (AR/

AD)

Angelman syndrome UBE3A (IP); CH

Bardet-Biedl syndrome ARL6; BBS1; BBS2; BBS4; BBS5;

BBS7; BBS9; BBS10; BBS12;

CEP290; LZTFL1; MKKS;

MKS1; SDCCAG8; TMEM67;

TRIM32; TTC8; WDPCP (AR)

Beals syndrome FBN2 (AD)

Beaulieu-Boycott-Innes

syndrome

THOC6 (AR)

Bohring-Opitz syndrome ASXL1 (AD)

Bone fragility and contractures;

arterial rupture and deafness

PLOD3 (AR)

Branchiooculofacial syndrome TFAP2A (AD)

Cardiofaciocutaneous syndrome MAP2K2 (AD)

Cohen syndrome VPS13B (AR)

Cornelia de Lange syndrome NIPBL (AD); HDAC8 (XLD)

Cowden syndrome PTEN (AD)

Cranioectodermal dysplasia IFT122 (AR)

Cutis laxa ATP6V0A2; ALDH18A1 (AR)

Danon disease LAMP2 (XLD)

Deafness and myopia SLITRK6 (AR)

Desanto-Shinawi syndrome WAC (AD)

Desbuquois dysplasia CANT1 (AR)

Donnai-Barrow syndrome LRP2 (AR)

DOORS TBC1D24 (AR)

Ehlers-Danlos syndrome COL5A1 (AD); PLOD1 (AR);

CHST14 (AR); ADAMTS2 (AR);

B3GALT6 (AR); FKBP14 (AR)

Emanuel syndrome CH

Fibrochondrogenesis COL11A1 (AR)

Gyrate atrophy of choroid and

retina with/without

ornithinemia

OAT (AR)

Hamamy syndrome IRX5 (AR)

Homocystinuria CBS (AR)

Joint laxity; short stature;

myopia

GZF1 (AR)

Kaufman oculocerebrofacial

syndrome

UBE3B (AR)

Kenny-Caffey syndrome FAM111A (AD)

Kniest dysplasia COL2A1 (AD)

Knobloch syndrome COL18A1 (AR)

Lamb-Shaffer syndrome SOX5 (AD)

Lethal congenital contracture

syndrome

ERBB3 (AR)

Leukodystrophy POLR1C; POLR3A; POLR3B;

GJC2 (AR)

Linear skin defects with

multiple congenital anomalies

NDUFB11; COX7B (XLD)

Loeys-Dietz syndrome TGFBR1; TGFBR2 (AD)

Macrocephaly/megalencephaly

syndrome

TBC1D7 (AR)

Marfan syndrome FBN1 (AD)

Marshall syndrome COL11A1 (AD)

Microcephaly with/without

chorioretinopathy;

lymphedema; and/or mental

retardation

KIF11 (AD)

TABLE 2. Continued

Title

Gene and

Inheritance Pattern

Mohr-Tranebjaerg syndrome TIMM8A (XLR)

Mucolipidosis GNPTAG (AR)

Muscular dystrophy TRAPPC11; POMT; POMT1;

POMT2; POMGNT1;

B3GALNT2; FKRP; DAG1;

FKTN (AR)

Nephrotic syndrome LAMB2 (AR)

Noonan syndrome A2ML1; BRAF; CBL; HRAS;

KRAS; MAP2K1; MAP2K2;

NRAS; PTPN11; RAF1; RIT1;

SOS1; SHOC2; SPRED1 (AD)

Oculocutaneous albinism TYR (AR)

Oculodentodigital dysplasia GJA1 (AR)

Pallister-Killian syndrome CH

Papillorenal syndrome PAX2 (AD)

Peters-plus syndrome B3GLCT (AR)

Pitt-Hopkins syndrome TCF4 (AD)

Pontocerebellar hypoplasia CHMP1A (AR)

Poretti-Boltshauser syndrome LAMA1 (AR)

Prader-Willi syndrome NDN (PC); SNRPN (IP); CH

Pseudoxanthoma elasticum ABCC6 (AR)

Renal hypomagnesemia CLDN16; CLDN19 (AR)

SADDAN FGFR3 (AD)

Schaaf-Yang syndrome MAGEL2 (AD)

Schimke immunoosseous

dysplasia

SMARCAL1 (AR)

Schuurs-Hoeijmakers syndrome PACS1 (AD)

Schwartz-Jampel syndrome HSPG2 (AR)

Sengers syndrome AGK (AR)

Short stature; hearing loss;

retinitis pigmentosa and

distinctive facies

EXOSC2 (AR)

Short stature; optic nerve

atrophy; and Pelger-Huet

anomaly

NBAS (AR)

SHORT syndrome PIK3R1 (AD)

Short-rib thoracic dysplasia

with/without polydactyly

WDR19 (AR)

Shprintzen-Goldberg syndrome SKI (AD)

Singleton-Merten syndrome IFIH1 (AD)

Small vessel brain disease with/

without ocular anomalies

COL4A1 (AD)

Smith-Magenis syndrome RAI1 (AD)

Spastic paraplegia HACE1 (AR)

Split hand/foot malformation CH

Stickler syndrome COL2A1 (AD); COL11A1 (AD);

COL9A1 (AR); COL9A2 (AR)

Syndromic mental retardation SETD5 (AD); MBD5 (AD);

USP9X (XLD); NONO (XLR);

RPL10 (XLR); SMS (XLR);

ELOVL4 (AR); KDM5C (XLR)

Syndromic microphthalmia OTX2; BMP4 (AD)

Temtamy syndrome C12orf57 (AR)

White-Sutton syndrome POGZ (AD)

Zimmermann-Laband syndrome KCNH1 (AD)

AD, autosomal dominant; AR, autosomal recessive; CH, chromo-
somal; IP, imprinting defect; XLD, 3 linked dominant; XLR, 3 linked
recessive.
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myopia linkage studies, these studies generally lacked valida-
tion by independent studies.62 Meta-analyses combining data
from several candidate gene studies provided evidence for a
consistent association between a single SNP in the PAX6 gene
and extreme and high myopia.63 Meta-analyses of the LUM and
IGF1 genes did not confirm an association.64,65

8. GENOME-WIDE ASSOCIATION STUDIES

Since the first GWAS in 2005,66 more than 3000 human GWAS
have examined more than 1800 diseases and traits, and
thousands of SNP associations have been found. This has
greatly augmented our knowledge of human genetics and
complex diseases.14 GWAS genotyping arrays can identify
millions of SNPs across the genome in one assay; these variants
are generally common and mostly not protein coding. Effect
sizes of SNPs associated with disease are mostly small,
requiring very large study samples to reach statistical
significance.13,14 Fortunately, technological advances have

lowered the costs of genotyping considerably over the years,67

and GWAS on hundreds of thousands of individuals are
becoming more common.

8.1 GWAS of Refractive Errors and Myopia

GWAS for myopia have been performed using myopia as a
dichotomous outcome or refractive error as a quantitative trait.
Several endophenotypes have also been considered: spherical
equivalent, axial length, corneal curvature, and age of diagnosis
of myopia.

Figure 2 provides an overview of all associated loci and
nearby genes, their frequency, and effect sizes.

8.1.1 Myopia Case-Control Design. The case-control
design using (high) myopia as a dichotomous outcome has
been especially popular in East Asia. The first case-control
GWAS was performed in a Japanese cohort in 2009.68 It
comprised 830 cases of pathologic myopia (defined as axial
length >26 mm) and 1911 controls from the general
population. The strongest association was located at 11q24.1,
approximately 44 kb upstream of the BH3-like motif contain-
ing, cell death inducer (BLID) gene, and conferred odds of
higher myopia of 1.37 (95% confidence interval [CI] 1.21–
1.54). Subsequently, a GWAS meta-analysis of two ethnic
Chinese cohorts was performed in 287 cases of high myopia
(defined as ��6 diopters [D]) and 673 controls. The strongest
association was for an intronic SNP within the catenin delta 2
(CTNND2) gene on 5p15.2.69 Neither of these associations met
the conventional GWAS threshold (P � 5 3 10�8) for statistical
significance due to small sample size. Nevertheless, the locus at
5p15 encompassing the CTNND2 gene was later confirmed by
other Asian studies.70–72

Li et al.73 studied 102 high myopia cases (defined as ��8 D
with retinopathy) and 335 controls in an ethnic Chinese
population. The strongest association (P¼ 7.70 3 10�13) was a
high-frequency variant located in a gene desert within the
MYP11 myopia linkage locus on 4q25. In a similar ethnic Han
Chinese population of 419 high myopia cases (��6 D) and 669
controls, Shi et al.73,74 identified the strongest association (P¼
1.91 3 10�16) at an intronic, high-frequency variant within the
mitochondrial intermediate peptidase (MIPEP) gene on 13q12.
Neither hit has been replicated, even in studies with similar
design, phenotypic definition, and ethnic background.

In 2013, two papers reported loci for high myopia in Asian
populations and these were successfully replicated. Shi et al.75

studied a Han Chinese population of 665 cases with high
myopia (� �6 D) and 960 controls. Following two-stage
replication in three independent cohorts, the most significantly
associated variant (P ¼ 8.95 3 10�14) was identified in the
vasoactive intestinal peptide receptor 2 (VIPR2) gene within
the MYP4 locus, followed by three other variants within a
linkage disequilibrium block in the syntrophin beta 1 (SNTB1)
gene (P¼ 1.13 3 10�8 to 2.13 3 10�11). Khor et al.76 reported a
meta-analysis of four GWAS including 1603 cases of ‘‘severe’’
myopia and 3427 controls of East Asian ethnicity. After
replication and meta-analysis, the SNTB1 gene was confirmed,
and a novel variant within the ZFHX1B gene (also known as
zinc finger E-box binding homeobox 2 [ZEB2]) reached
genome-wide significance (P ¼ 5.79 3 10�10).

In 2018, a pathologic myopia case-control study was
performed in cohorts of Asian ancestry, using participants
with �5.00 D or more myopia with an axial length >26 mm.
Fundus photographs were graded pathologic or nonpathologic
(Ncases¼ 828, Ncontrols¼ 3624). The researchers found a novel
genetic variant in the coiled-coil domain containing 102B
(CCDC102B) locus (P¼ 1.46 3 10�10), which was subsequent-
ly replicated in an independent cohort (P ¼ 2.40 3 10�6). This
gene is strongly expressed in the RPE and choroid. As myopic

TABLE 3. Overview of Secondary Syndromic Forms of Myopia: Ocular
Syndromes Associated With Myopia

Title

Gene and

Inheritance Pattern

Achromatopsia CNGB3 (AR)

Aland Island eye disease GPR143 (XLR)

Anterior-segment dysgenesis PITX3 (AD)

Bietti crystalline corneoretinal

dystrophy

CYP4V2 (AD)

Blue cone monochromacy OPN1LW; OPN1MW (XLR)

Brittle cornea syndrome ZNF469; PRDM5 (AR)

Cataract BFSP2; CRYBA2; EPHA2 (AD)

Colobomatous macrophthalmia

with microcornea

CH

Cone dystrophy KCNV2 (AD)

Cone rod dystrophy C8orf37 (AR); RAB28 (AR);

RPGR (XLR); CACNA1F (XLR)

Congenital microcoria CH

Congenital stationary night

blindness

NYX (XLR); CACNA1F (XLR);

GRM6 (AR); SLC24A1 (AR);

LRIT3 (AR); GNB3 (AR);

GPR179 (AR)

Ectopia lentis et pupillae ADAMTSL4 (AR)

High myopia with cataract and

vitreoretinal degeneration

P3H2 (AR)

Keratoconus VSX1 (AD)

Leber congenital amaurosis TULP1 (AR)

Microcornea, myopic

chorioretinal atrophy, and

telecanthus

ADAMTS18 (AR)

Microspherophakia and/or

megalocornea, with ectopia

lentis and/or secondary

glaucoma

LTBP2 (AR)

Ocular albinism OCA2 (AR)

Primary open angle glaucoma MYOC; OPTN (AD)

Retinal cone dystrophy KCNV2 (AR)

Retinal dystrophy C21orf2 (AR); TUB (AR)

Retinitis pigmentosa RP1 (AD); RP2 (XLR); RPGR

(XLR); TTC8 (AR)

Sveinsson chorioretinal atrophy TEAD1 (AD)

Vitreoretinopathy ZNF408 (AD)

Wagner vitreoretinopathy VCAN (AD)

Weill-Marchesani syndrome ADAMTS10 (AR); FBN1 (AD);

LTBP2 (AR); ADAMTS17 (AR)
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maculopathy is the primary cause of blindness in high myopia,
further functional investigation could be valuable.77

In Europe, a French case-control GWAS was performed on
192 high myopia cases (� �6 D) and 1064 controls, and a
suggestive association was identified within the MYP10 linkage
locus, 3 kb downstream of protein phosphatase 1 regulatory
subunit 3B (PPP1R3B). However, this association did not reach
genome-wide statistical significance, and no previously report-
ed loci were replicated.78 Later, in 2016, the direct-to-
consumer genetic testing company 23andMe (Mountain View,
CA, USA) published a large GWAS on self-reported myopia
(Ncases¼106,086 and Ncontrols¼85,757; all European ancestry),
and identified more than 100 novel loci for myopia.79 Because
this study was intended for association analyses between traits,
precise locus definitions, post-GWAS quality control, and
replication were not performed.

8.1.2 Quantitative Design on Spherical Equivalent.
Studies that considered refractive error as a quantitative trait,
and included subjects from the general population who
displayed the entire range of refractive error, have been more
successful. In 2010, the first GWAS for spherical equivalent
were carried out in two European populations: a British cohort
of 4270 individuals and a Dutch cohort of 5328 individuals.80,81

Two loci surpassed the GWAS threshold and were replicated:
one near the RASGFR1 gene on 15q25.1 (P¼2.70 3 10�09) and
the other near GJD2 on 15q14 (P ¼ 2.21 3 10�14).
Subsequently, a meta-analysis was performed on 7280 individ-
uals with refractive error from five different cohorts, which
included various ethnic populations across different conti-
nents, and findings were replicated in 26,953 samples. A novel
locus including the RBFOX1 gene on chromosome 16 reached
genome-wide significance (P ¼ 3.9 3 10�9).82

TABLE 4. Summary of Candidate Gene Studies Reporting Positive Association Results With Myopia

Gene Study Ethnicity

Independent

Confirmation

Replication

in GWAS

APLP2 Tkatchenko et al. 2015131 Caucasian – –

BMP2K Liu et al. 2009155 Chinese – –

CHRM1 Lin et al. 2009156 Han Chinese X157 –

CHRM1 Guggenheim et al. 2010158 Caucasian X157 –

CMET Khor et al. 200955 Chinese – –

COL1A1 Inamori et al. 2007159 Japanese – –

COL2A1 Mutti et al. 200746 Caucasian – –

COL2A1 Metlapally et al. 200947 Caucasian – –

CRYBA4 Ho et al. 2012160 Chinese – –

HGF Han et al. 200654 Han Chinese – –

HGF Yanovitch et al. 2009161 Caucasian – –

HGF Veerappan et al. 201053 Caucasian – –

IGF1 Metlapally et al. 201057 Caucasian – –

LUM Wang et al. 200660 Chinese – –

LUM Chen et al. 2009162 Han Chinese – –

LUM Lin et al. 2010164 Chinese – –

LUM Guggenheim et al. 2010158 Caucasian – –

MFN1 Andrew et al. 2008164 Caucasian X165 –

MMP1 Wojciechowski et al. 2010130 Amish – –

MMP1 Wojciechowski et al. 201359 Caucasian – –

MMP10 Wojciechowski et al. 201359 Caucasian – –

MMP2 Wojciechowski et al. 2010130 Amish – –

MMP2 Wojciechowski et al. 201359 Caucasian – –

MMP3 Hall et al. 200958 Caucasian – –

MMP9 Hall et al. 200958 Caucasian – –

MYOC Tang et al. 200763 Chinese – –

MYOC Vatavuk et al. 2009167 Caucasian – –

MYOC Zayats et al. 2009168 Caucasian – –

PAX6 Tsai et al. 2008169 Chinese – –

PAX6 Ng et al. 2009170 Han Chinese – –

PAX6 Han et al. 2009171 Han Chinese – –

PAX6 Miyake et al. 2012172 Japanese – –

PAX6 Kanemaki et al. 2015173 Japanese – –

PSARL Andrew et al. 2008164 Caucasian – –

SOX2T Andrew et al. 2008164 Caucasian –

TGFb1 Lin et al. 200650 Chinese – X24

TGFb1 Zha et al. 2009174 Chinese – X24

TGFb1 Khor et al. 201056 Chinese – X24

TGFb1 Rasool et al. 2013175 Indian – X24

TGFb2 Lin et al. 200951 Han Chinese – –

TGIF Lam et al. 200352 Chinese – –

TGIF1 Ahmed et al. 201452,176 Indian – –

LAMA1 Zhao et al. 2011177 Chinese – –

UMODL1 Nishizaki et al. 2009178 Japanese – –

X indicates independent conformation or replication in GWAS study with reference included.
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These collaborations paved the way for the formation of a
large consortium to achieve higher statistical power for gene
finding. CREAM was established in 2010 and included
researchers and cohorts from the United States, Europe, Asia,
and Australia. Its first collaborative work was replication of
SNPs in the previously identified 15q14 loci.83 Other studies
followed this approach, and confirmed 15q14 as well as the
15q25 locus.84,85 Subsequently, CREAM conducted a GWAS
meta-analysis based on HapMapII imputation86 with 35
participating studies comprising 37,382 individuals of Europe-
an descent and 12,332 of Southeast Asian ancestry with data on
GWAS and spherical equivalent. This study enabled replication
of GJD2, RASGRF1, and RFBOX1 and identification of 23 novel
loci at genome-wide significance: BICC1, BMP2, CACNA1D,
CD55, CHD7, CHRNG, CYP26A1, GRIA4, KCNJ2, KCNQ5,
LOC100506035, LAMA2, MYO1D, PCCA, TJP2, PTPRR,
SHISA6, PRSS56, RDH5, RORB, SIX6, TOX, and ZMAT472.87

Meanwhile, 23andMe performed a contemporaneous large
GWAS on 55,177 individuals of European descent by using a
survival analysis, based on the first release of 1000G88 (a
catalog of human genetic variation). Its analysis was based on
self-reported presence of myopia and age of spectacle wear as a
proxy for severity. 23andMe also replicated GJD2, RASGRF1,
and RFBOX1 and identified 11 new loci: BMP3, BMP4, DLG2,
DLX1, KCNMA1, LRRC4C, PABPCP2, PDE11A, RGR, ZBTB38,
ZIC2.89 Of the 22 loci discovered by CREAM, 8 were replicated
by 23andMe, and 16 of the 20 loci identified by 23andMe were
confirmed by CREAM. This was surprising, as the studies used
very different phenotyping methods. In addition, the effect
sizes of 25 loci were very similar, despite analyses on different
scales: diopters for CREAM and hazard ratios for 23andMe.90

After these two publications, replication studies provided
validation for KCNQ5, GJD2, RASGRF1, BICC1, CD55,
CYP26A1, LRRC4C, LAMA2, PRSS56, RFBOX1, TOX, ZIC2,
ZMAT4, and B4GALNT2 in per-SNP analyses, and for GRIA4,
BMP2, BMP4, SFRP1, SH3GL2, and EHBP1L1 in gene-based
analyses.91–96

Although CREAM and 23andMe found a large number of
loci, only approximately 3% of the phenotypic variance of
refractive error was explained.87,89 Larger GWAS meta-analyses
were clearly needed, and the two large studies combined
efforts. This new GWAS meta-analysis was based on the phase 1
version 3 release of 1000G, included 160,420 participants, and
findings were replicated in the UK Biobank (95,505 partici-
pants). Using this approach, the number of validated refractive
error loci increased to 161. A high genetic correlation between
European and Asian individuals (>0.78) was found, implying
that the genetic architecture of refractive error is quite similar
for European and Asian individuals. Taken together, these
genetic variants accounted for 7.8% of the explained pheno-
typic variance, leaving room for improvement. Even so,
polygenic risk scores, which are constructed by the sum of
effect sizes of all risk variants per individual depending on their
genotypes, were well able to distinguish individuals with
hyperopia from those with myopia at the lower and higher
deciles. Interestingly, those in the highest decile had a 40-fold
greater risk of myopia. The predictive value (area under the
curve) of these risk scores for myopia versus hyperopia,
adjusted for age and sex, was 0.77 (95% CI 0.75–0.79).

The next step will include GWAS on even larger sample
sizes. Although this will improve the explained phenotypic
variance, it is unlikely that GWAS will uncover the entire

FIGURE 2. Effect sizes of common and rare variants for myopia and refractive error. Overview of SNPs and annotated genes found in the most recent
GWAS meta-analysis.24 The x-axis displays the minor allele frequency of each SNP; y-axis displays the effect size of the individual SNP in diopters; We
transformed the z-scores of the fixed effect meta-analysis between CREAM (refractive error) and 23andMe (age of diagnosis of myopia) into effect

sizes in diopters with the following formula24: SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2N�MAFð1�MAFÞ

q
.
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missing heritability. SNP arrays do not include rare variants, nor
do they address gene-environment and gene-gene interactions,
or epigenetic effects.

8.1.3 GWAS on Refractive Error Endophenotypes. As
myopia is mostly due to increased axial length, researchers
have used this parameter as a myopia proxy or ‘‘endopheno-
type.’’ The first axial length GWAS examined 4944 individuals
of East and Southeast Asian ancestry, and a locus on 1q41
containing the zinc finger pseudogene ZC3H11B reached
genome-wide significance (P ¼ 4.38 3 10�10).82,97 A much
larger GWAS meta-analysis of axial length comprised 12,531
European individuals and 8216 Asian individuals.93 This study
identified eight novel genome-wide significant loci (RSPO1,
C3orf26, LAMA2, GJD2, ZNRF3, CD55, MIP, ALPPL2), and
also replicated the ZC3H11B gene. Notably, five of these loci
had been associated with refractive error in previous GWAS.

Several relatively small GWAS have been performed for
corneal curvature, and identified associations with FRAP1,
PDGFRA (also associated with eye size), CMPK1, and
RBP3.93,98–101 More recently Miyake et al.101,102 published a
two-stage GWAS for three myopia-related traits: axial length,
corneal curvature, and refractive error. The study was
performed in 9804 Japanese individuals, with trans-ethnic
replication in Chinese and Caucasian individuals. A novel gene,
WNT7B, was identified for axial length (P ¼ 3.9 3 10�13) and
corneal curvature (P ¼ 2.9 3 10�40), and the previously
reported association with GJD2 and refractive error was
replicated.

8.2 Genome-Wide Pathway Analyses

The main goal of GWAS is to improve insight on the molecules
involved in disease, and help identify disease mechanisms. For
myopia, a retina-to-sclera signaling cascade had been proposed
for many years (see accompanying paper IMI – Report on
Experimental Models of Emmetropization and Myopia103), but
knowledge on its molecular drivers was limited. Several
attempts were made to translate the findings from refractive
error GWAS into this cascade.87,89,104 Here we provide an
overview of genes annotated to the risk variants and their
relationship to the underlying biological mechanism.

Deducted from the CREAM GWAS, pathways included
neurotransmission (GRIA4), ion transport (KCNQ5), retinoic
acid metabolism (RDH5), extracellular matrix remodeling
(LAMA2, BMP2), and eye development (SIX6, PRSS56).
Likewise, 23andMe proposed extracellular matrix remodeling
(LAMA2, ANTXR2), the visual cycle (RDH5, RGR, KCNQ5),
neuronal development (KCNMA1, RBFOX1, LRRC4C, NGL-1,
DLG2, TJP2), eye and body growth (PRSS56, BMP4, ZBTB38,
DLX1), and retinal ganglion cells (ZIC2, SFRP1)105 as
functions. Hysi et al.106 performed pathway analyses using
both the CREAM and 23andMe GWAS, and reported that
plasma membrane, cell-cell adhesion, synaptic transmission,
calcium ion binding, and cation channel activity were
significantly overrepresented in refractive error in two British
cohorts. Furthermore, by examining known protein-protein
interactions, the investigators identified that many genes are
related to cell-cycle and growth pathways, such as the MAPK
and TGF-beta/SMAD pathways.

The latest update on pathway analysis in myopia stems from
the meta-GWAS from CREAM and 23andMe.24 TGF-beta
signaling pathway was a key player; the association with the
DRD1 gene provided genetic evidence for a dopamine
pathway. Most genes were known to play a role in the
eye,107 and most significant gene sets were ‘‘abnormal
photoreceptor inner segment morphology’’ (Mammalian Phe-
notype Ontology [MP] 0003730; P ¼ 1.79 3 10�7), ‘‘thin
retinal outer nuclear layer’’ (MP 0008515), ‘‘detection of light

stimulus’’ (Gene Ontology [GO] 0009583), ‘‘nonmotile prima-
ry cilium’’ (GO 0031513), and ‘‘abnormal anterior-eye-segment
morphology’’ (MP 0005193). Notably, RGR, RP1L1, RORB, and
GNB3 were present in all of these meta-gene sets. Taken
together, retinal cell physiology and light processing are clearly
prominent mechanisms for refractive error development, and
all cell types of the neurosensory retina, RPE, vascular
endothelium, and extracellular matrix appear to be involved
(Fig. 3). Novel mechanisms included rod-and-cone bipolar
synaptic neurotransmission, anterior-segment morphology, and
angiogenesis.24

9. WHOLE-EXOME AND WHOLE-GENOME SEQUENCING

Unlike GWAS, whole-exome sequencing (WES) and whole-
genome sequencing (WGS) have the potential to investigate
rare variants. Exomes are interesting, as they directly contrib-
ute to protein translation, but they constitute only approxi-
mately 1% of the entire genome. WGS allows for identification
of variants across the entire genome, but requires a high-
throughput computational infrastructure and remains costly.

WES has been conducted primarily in case-control studies
of early-onset high myopia or in specific families with a
particular phenotype (i.e., myopic anisometropia) or inheri-
tance pattern (i.e., X-linked).108–111 Several novel mutations in
known myopia genes were identified this way: CCDC111,109

NDUFAF7,110
P4HA2,108

SCO2,112
UNC5D,111

BSG,113

ARR3,114
LOXL3,115

SLC39A5,116
LRPAP1,117

CTSH,117

ZNF644.118,119 Although most genetic variants displayed an
autosomal dominant hereditary pattern,108,112,118,119 X-linked
heterozygous mutations were identified in ARR3, only in
female family members.114 The functions of these novel genes
include DNA transcription (CCDC111, ZNF644), mitochondri-
al function (NDUFAF7, SCO2), collagen synthesis (P4HA2),
cell signaling (UNC5D, BSG), retina-specific signal transduction
(ARR3), TGF-beta pathway (LOXL3, SLC39A5, LRPAP1), and
degradation of proteins in lysosomes (CTSH). Jiang et al.119

investigated family members with high myopia and identified
new mutations in LDL receptor related protein associated
protein 1 (LRPAP1), cathepsin H (CTSH ), zinc finger protein
644 isoform 1 (ZNF644), solute carrier family 39 (metal ion
transporter) member 5 (SLC39A5), and SCO2, cytochrome c
oxidase assembly protein (SCO2).119

Many clinicians have noticed that retinal dystrophies and
ocular developmental disorders often coincide with myopia.115

This triggered Sun et al.120 to evaluate variants in a large
number of retinal dystrophy genes in early-onset high myopia
in 298 unrelated myopia probands and their families, and they
thereby identified 29 potentially pathogenic mutations in
COL2A1, COL11A1, PRPH2, FBN1, GNAT1, OPA1, PAX2,
GUCY2D, TSPAN12, CACNA1F, and RPGR, and most had an
autosomal dominant inheritance pattern. Kloss et al.121

performed WES in 14 families with high myopia, and identified
104 new genetic variants located in both known MYP loci
(e.g., AGRN, EME1, and HOXA2) and in new loci (e.g., ATL3

and AKAP12).
To date, WGS has not been conducted for myopia or

refractive error, most likely due to the reasons mentioned
above. When costs for WGS decrease, these studies will
undoubtedly be conceived.

10. GENE-ENVIRONMENT INTERACTION

It has become clear that environmental factors are driving the
recent epidemic rise in the prevalence of myopia.122–126 To
date, the most influential and consistent environmental factor
is education. Studies have estimated that individuals going onto
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higher education have double the myopia prevalence com-
pared with those who leave school after only primary
education.127–129 Education has been a primary focus for
gene-environment (GxE) interaction analyses in myopia. GxE
studies have the potential to show modification of the effect of
risk variants by environmental exposures, but can also reveal
genetic associations that were hidden in unexposed individu-
als.

One of the first GxE studies for myopia investigated variants
in matrix metalloproteinases genes (MMP1–MMP10). Two
SNPs (rs1939008 and rs9928731) that were first found to be
associated with refraction in Amish families were also
associated in a lower but not in the higher education group
of the Age-Related Eye Disease Study (AREDS) study. These
results suggest that variants in these genes may play a role in
refractive variation in individuals not exposed to myopic
triggers.59,130 In contrast, a study combining human GWAS data
and animal models of myopia provided an experimental
example of GxE interaction involving a rare variant in the
APLP2-gene only in children exposed to large amounts of daily
reading.131 In addition, an analysis performed in five Singapore
cohorts found risk variants in DNAH9, GJD2, and ZMAT4 that
were more strongly associated in individuals who achieved
higher secondary or university education.132 Significant
biological interaction between education and other risk
variants was studied using a genetic risk score of all known
risk variants at the time (n¼26) derived from the CREAM meta-
GWAS.133 European subjects with a high genetic load in
combination with university-level education had a far greater
risk of myopia than those with only one of these two factors. A
study investigating GxE interactions in children and the major
environmental risk-factors, nearwork, time outdoors, and 39

SNPs derived from the CREAM meta-GWAS revealed nominal
evidence of interaction with nearwork (top variant in
ZMAT4).133,134

GEWIS, using all variants from the CREAM meta-GWAS,
revealed three novel loci (AREG, GABRR1, and PDE10A) for
GxE in Asian populations, whereas no interaction effects were
observed in Europeans due to many reasons, such as the
quantitative differences in the intensity of nearwork during
childhood.48 Up to now, there is no robust evidence that there
are fundamental differences in the genetic background of
myopia risk between European and Asian individuals.

11. MENDELIAN RANDOMIZATION

Mendelian randomization (MR) is a method that allows one to
test or estimate a causal effect from observational data in the
presence of confounding factors. MR is a specific type of
instrumental variable analysis that uses genetic variants with
well-understood effects on exposures or modifiable biomark-
ers.135,136 Importantly, the SNP must affect the disease status
only indirectly via its effect on the exposure of interest.137 MR
is particularly valuable in situations in which randomized
controlled trials are not feasible, where it is applied to help
elucidate biological pathways.

Currently, three studies have been published on MR in
refractive error and myopia. The first, published in 2016,
explored the effect of education on myopia.138 This study
constructed polygenic risk scores of genetic variants found in
GWAS for educational attainment, and used these as the
instrumental variable. Subsequently, results of three cohorts
(Cooperative Health Research in the Region Augsburg [KORA],

FIGURE 3. Schematic overview of expression in retinal cells of refractive error and syndromic myopia genes according to literature. Bold: genes
identified for both common refractive error and in syndromic myopia.
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AREDS, Blue Mountain Eye Study [BMES]; total N¼ 5649) were
meta-analyzed. Strikingly, approximately 2 years of education
was associated with a myopic shift of�0.92 6 0.29 D (P¼1.04
3 10�3), which was even larger than the observed estimate.
Similar results were observed in data from the UK Biobank
study (N ¼ 67,798); MR was performed and causality of
education was tested for myopic refractive error bi-direction-
ally.139 Genetic variants for years of education from Social
Science Genetic Association Consortium (SSGAC) and
23andMe studies were considered. Analyses of the observa-
tional data suggested that every additional year of education
was associated with a myopic shift of�0.18 D per year (95% CI
�0.19 to �0.17; P < 2.0�16). MR suggested the true causal
effect was stronger:�0.27 D per year (95% CI�0.37 to�0.17; P

¼ 4.0�8). As expected, there was no evidence that myopia was
a cause for education (P ¼ 0.6). The conclusion from these
studies was that education appears truly causally related to
myopia, and effects calculated by the current observational
studies may be underestimated.

Because several studies had proposed that vitamin D has a
protective effect against myopia,140–142 the third MR study
investigated the causality of low vitamin D concentrations on
myopia. Genetic variants of the DHCR7, CYP2R1, GC, and
CYP24A1 genes with known effects on serum levels of vitamin
D were used as instrumental variables in a meta-analysis of
refractive error in CREAM (NEUR ¼ 37,382 and NASN ¼ 8,376).
The estimated effects of vitamin D on refractive error were
small in both ethnicities (Caucasians: �0.02 [95% CI �0.09,
0.04] D per 10 nmol/L increase in vitamin D concentration;
Asian individuals: 0.01 [95% CI �0.17, 0.19] D per 10 nmol/L
increase).These results suggest that the causal effect of vitamin
D on myopia is very small, if any. Therefore, associations with
vitamin D levels in the observational studies are likely to
represent the effect of time spent outdoors.

12. EPIGENETICS

Epigenetic changes refer to functionally relevant changes to
the genome that do not involve the nucleotide sequence of
DNA. They represent other changes of the helix structure, such
as DNA methylation and histone modification,143 and these
changes can regulate gene expression. Noncoding RNAs are
small molecules that can also regulate gene expression, mainly
at the posttranscriptional level; they can be epigenetically
controlled but can also drive modulation of the DNA chromatin
structure themselves.144 Investigations into epigenetic changes
of eye diseases still face some important technological hurdles.
High-throughput next-generation sequencing technologies and
high-resolution genome-wide epigenetic profiling platforms are
still under development, and accessibility of RNA expression in
human ocular tissues145 is limited. Moreover, epigenetic
changes are tissue- and time-specific, so it is essential to study
the right tissue at the correct developmental stage. Animal
models are often used as a first step before moving to humans,
although epigenetic processes are not always conserved across
species. Nevertheless, there have been some attempts to reveal
epigenetic changes involved in myopia development.

A experiment using monocular form deprivation in a mouse
model found that hypermethylation of CpG sites in the
promoter/exon 1 of COL1A1 may underlie reduced collagen
synthesis at the transcriptional level in myopic scleras.146 A
human study analyzing myopic individuals found that methyl-
ation of the CpG sites of the CRYAA promotor leads to lower
expression of CRYAA in human lens epithelial cells.147

Myopia studies evaluating the role of noncoding RNAs are
more common. The latest GWAS meta-analysis found 31 loci
residing in or near regions transcribing small noncoding RNAs,

thus hinting toward the key role of posttranscriptional
processes and epigenetic regulation.24,144 MicroRNAs (miR-
NAs) are the best-characterized family of small noncoding
RNAs. In their mature form, they are approximately 19 to 24
nucleotides in length and regulate hundreds of genes. They are
able to bind to 3 0 untranslated regions (UTRs) on RNA
polymers by sequence-specific posttranscriptional gene silenc-
ing; one miRNA can regulate the translation of many genes.
miRNAs have been a hot topic in past years due to the potential
clinical application of these small RNA sequences: accessibility
of the retina for miRNA-based therapeutic delivery has great
potential for preventing and treating retinal pathology.148 In a
case-control study, Liang et al.149 identified a genetic variant,
rs662702, that was associated with the risk of extreme myopia
in a Taiwanese population. The genetic variant was located at
the 30-UTR of PAX6, which is decreased in myopia. rs662702 is
localized near the seed region of miR-328, and the C > T
substitution leads to a mismatch between miR-328 and PAX6
mRNA. Further functional study indicated that the risk C allele
reduced PAX6 expression relative to the T allele, which could
result from knockdown effect of the C allele by miR-328.
Therefore, reducing miR-328 may be a potential strategy for
preventing or treating myopia.61 Another study focused on
miR-184. This miRNA is the most abundant one in the cornea
and the crystalline lens, and sequence mutations have been
associated with severe keratoconus with early-onset anterior
polar cataract. Lechner et al.149,150 sequenced miR-184 in 96
unrelated Han southern Chinese patients with axial myopia,
but no mutations were detected. Xie et al.151 analyzed
rs157907 A/G in miR-29a and rs10877885 C/T in let-7i in a
severe myopia case-control study (Ncases¼254; Ncontrols¼300).
The G allele of the rs157907 locus was significantly associated
with decreased risk of severe myopia (P¼ 0.04), launching the
hypothesis that rs157907 A/G might regulate miR-29a expres-
sion levels. Functional studies are needed to provide evidence
for this theory.

13. CONCLUDING REMARKS

Research on myopia genetics, genetic epidemiology, and
epigenetics is flourishing and is providing a wealth of new
insights into the molecules involved in myopiagenesis. Despite
this progress, the chain of events forming the myopia-signaling
cascade and the triggers for scleral remodeling are still largely
unknown. Next steps should include all the novel technolog-
ical advances for dissecting complex disorders, such as
expansion of omics (such as genomics, transcriptomics,
proteomics, and metabolomics), using multisource study
populations, environmental genomics, and systems biology to
organically integrate findings and improve our understanding
of myopia development in a quantitative way via big data
analytics (i.e., combining multi-omics and other approaches
with deep learning or artificial intelligence). Expanding our
knowledge of pathologic mechanisms and ability to pinpoint
at-risk individuals will lead to new therapeutic options, better
patient management, and, ultimately, prevention of complica-
tions and visual impairment from myopia.
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Li,50 Shi-Ming Li,40 Leo-Pekka Lyytikäinen,48,49 Stuart MacGre-
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