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SUMMARY

Polycomb repressor complexes (PRCs) are impor-
tant chromatin modifiers fundamentally implicated
in pluripotency and cancer. Polycomb silencing in
embryonic stem cells (ESCs) can be accompanied
by active chromatin and primed RNA polymerase II
(RNAPII), but the relationship between PRCs and
RNAPII remains unclear genome-wide. We mapped
PRC repression markers and four RNAPII states in
ESCs using ChIP-seq, and found that PRC targets
exhibit a range of RNAPII variants. First, develop-
mental PRC targets are bound by unproductive
RNAPII (S5p+S7p�S2p�) genome-wide. Sequential
ChIP, Ring1B depletion, and genome-wide correla-
tions show that PRCs and RNAPII-S5p physically
bind to the same chromatin and functionally syner-
gize. Second, we identify a cohort of genes marked
by PRC and elongating RNAPII (S5p+S7p+S2p+);
they produce mRNA and protein, and their expres-
sion increases upon PRC1 knockdown. We show
that this group of PRC targets switches between
active and PRC-repressed states within the ESC
population, and that many have roles in metabolism.

INTRODUCTION

ESCs are characterized by their abilities to self-renew and differ-

entiate into all somatic cell types (Jaenisch and Young, 2008),

but the molecular mechanisms underlying pluripotency are not

fully understood. Pluripotency depends on the silencing of devel-
Ce
opmental regulator genes by two major PRCs that modify

histones (Richly et al., 2010; Schwartz and Pirrotta, 2008).

PRC1 monoubiquitinylates H2AK119 (H2Aub1) via the ubiquitin

ligase Ring1B. PRC2 catalyzes dimethylation and trimethylation

of H3K27 (H3K27me2/3) via its histone methyltransferase (HMT)

Ezh2. In mammals, PRC2-mediated H3K27me3 at repressed

genes can be accompanied by markers of gene activity: (1)

histone marks characteristic of active genes, such as

H3K4me3, that generate bivalent chromatin domains, (2) the

binding of RNAPII and transcription factors, and (3) transcription

(Azuara et al., 2006; Bernstein et al., 2006; Brookes and Pombo,

2009; Enderle et al., 2011; Schwartz and Pirrotta, 2008). PRC

repression mechanisms in the context of gene activity are not

clear.

RNAPII activity is regulated by complex phosphorylation of the

C-terminal domain (CTD) of its largest subunit, which comprises

52 repeats of the heptapeptide sequence Y1-S2-P3-T4-S5-P6-

S7. CTD modifications during the active transcription cycle

recruit specific histone modifiers and RNA processing factors,

promoting active chromatin and appropriate RNA maturation

(Brookes and Pombo, 2009; Weake and Workman, 2010). S5

phosphorylation (S5p) correlates with initiation, capping, and

H3K4 HMT recruitment. S2 phosphorylation (S2p) correlates

with elongation, splicing, polyadenylation, and H3K36 HMT

recruitment. S7 phosphorylation (S7p) is present at promoter

and coding regions of active genes in mammalian cells

(Chapman et al., 2007), and is thought to occur together with

S5p and S2p (Akhtar et al., 2009; Tietjen et al., 2010). Studies

of RNAPII modification at PRC-target genes in ESCs have been

limited. High levels of RNAPII-S5p were detected at promoter

and coding regions of nine PRC targets in the absence of S2p

(Stock et al., 2007). However, probing with antibody 8WG16

against hypophosphorylated CTD detects little or no RNAPII at

PRC-target genes (Guenther et al., 2007; Stock et al., 2007).
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The presence of PRCs, RNAPII-S5p, and repressive/active

histone marks at PRC targets in ESCs has been seen after pop-

ulation-based ChIP assays (Alder et al., 2010; Bernstein et al.,

2006; Mikkelsen et al., 2007; Stock et al., 2007). However, true

colocalization of opposing histone modifications has been

observed by sequential ChIP for very few genes, raising ques-

tions about the significance of chromatin bivalency genome-

wide (De Gobbi et al., 2011).

Furthermore, it is widely accepted that all ESC cultures exhibit

functional heterogeneity, expressing variable levels of pluripo-

tency transcription factors (Figure 1A), which may influence their

propensity to differentiate into specific lineages upon appro-

priate signals (Carter et al., 2008; Graf and Stadtfeld, 2008).

Under self-renewing conditions, ESCs interconvert between

these states (Canham et al., 2010; Singh et al., 2007), reminis-

cent of the early stages of blastocyst differentiation. Important

transcription factors showing cell-to-cell fluctuations include

Nanog (Chambers et al., 2007; Singh et al., 2007), Rex1 (Toyooka

et al., 2008), and Stella (Hayashi et al., 2008). It is therefore

debated whether chromatin bivalency could be explained by

chromatin state switching due, at least in part, to ESC heteroge-

neity (Figure 1A). It also remains unclear whether true coassoci-

ation of bivalent histone modifications reflects simultaneous

binding of PRCs and RNAPII, known to coordinate deposition

of H3K27me3 and H3K4me3, respectively, due to the greater

longevity of histone modifications. We set out to explore these

phenomena. We identify different classes of PRC-target genes

that exhibit distinct RNAPII variants and expression levels and

explore their regulation.

RESULTS

Chromatin Bivalency Revisited
To further investigate chromatin bivalency in ESCs, we produced

genome-wide data sets for markers of Polycomb repression

and transcriptional activation, and reanalyzed published data

sets (Table S1 available online). Our understanding of bivalency

has relied on mapping of H3K27me3 and H3K4me3 (Azuara

et al., 2006; Bernstein et al., 2006; Mikkelsen et al., 2007), but

H3K27me3 represents only the activity of PRC2, and not that

of PRC1. PRC1 catalyzes H2Aub1 deposition, but there is

currently no genome-wide H2Aub1 data set available in mouse

ESCs. Mapping of PRC1-component Ring1B identified PRC2

binding in the absence of PRC1 (Ku et al., 2008).

We performed ChIP-seq for H2Aub1 and mapped PRC1 cata-

lytic subunit Ring1B to increase signal depth. We also remapped

high-quality, publicly available ChIP-seq data for PRC2 subunits

Ezh2 and Suz12, and PRC2 histone modification H3K27me3.

We performed ChIP-seq for four RNAPII states (S5p, S2p,

S7p, 8WG16) and for H3K36me3, and remapped published

H3K4me3data, using these asmarkers of transcriptional activity.

We reexamined the extent of chromatin bivalency by consid-

ering both H3K27me3 and H2Aub1, and classifying PRC-

positive genes (PRC+) according to their association with

H3K27me3 and/or H2Aub1 (Table S2). Genes were classified

by integrating levels of ChIP enrichment within windows of

interest (Hebenstreit et al., 2011). In contrast with classifications

based on the presence of PRC enzymatic subunits, mapped

PRC-instigated histone modifications constitute a functional
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readout of PRC repression. This takes into account, for example,

that Ring1B is present in complexes other than PRC1 (Sánchez

et al., 2007), and that Ezh1 can compensate for Ezh2 in PRC2

(Shen et al., 2008).

We identified a large cohort of PRC+ genes (n = 5,628) that are

associated with both H2Aub1 and H3K27me3 (n = 2,931), asso-

ciated with only H3K27me3 (n = 2,254), or associated with only

H2Aub1 (n = 443; Figure 1B). We validated this result using

a recent higher-depth H3K27me3 data set (Lienert et al., 2011;

Figure S1A). ChIP-seq signal enrichment at TSSs correlates

well between Mikkelsen and Lienert data sets (Figure S1B).

High numbers of H3K27me3+ genes (n = 5,571) were also

recently identified using independent H3K27me3 ChIP-seq

data and a different classification strategy (Young et al., 2011).

Comparisons between H3K27me3, H2Aub1, and H3K4me3

presence show that H2Aub1+ is more closely associated with

chromatin bivalency than H3K27me3 (Figure 1B). The vast

majority (97%) of H2Aub1+ genes are bivalent (i.e. also occupied

by H3K4me3), irrespective of H3K27me3, whereas only 79% of

H3K27me3+ genes are H3K4me3+. Analysis of the alternative

H3K27me3 data set (Lienert et al., 2011) confirms this result

(Figure S1A).

Our analyses are consistent with previous studies suggesting

that PRC2 can bind independently of PRC1 (Ku et al., 2008). The

newly classified PRC+ genes, based on their association with

H2Aub1 and/or H3K27me3, are also associated with the cata-

lytic subunits responsible for these histone modifications, Ezh2

and Ring1B, as anticipated (Figure S1C).

Mapping average ChIP-seq profiles of H3K27me3, H2Aub1,

H3K4me3, and core H3 at transcription start sites (TSSs) of

PRC+ genes demonstrates broad peaks of PRC-instigated

H3K27me3 and H2Aub1 enrichment, together with a tighter

peak of H3K4me3 (Figure 1C). Core H3 is not enriched at the

TSS (Figure 1C) and so cannot explain the high TSS levels of

H3 modifications observed. Catalytic PRC subunits (Ezh2 and

Ring1B) show similar distributions to the marks they deposit

(Figure S1C).

PRC-Target Genes AreNot Universally Silent, with Some
Exhibiting Intermediate or High Expression Levels
To explore the functional significance of chromatin bivalency, we

determined the expression levels of PRC+ genes after mapping

mRNA by high-throughput sequencing (mRNA-seq). Surpris-

ingly, the PRC+ cohort contains not only silent genes, but also

genes with intermediate and high expression (Figure 1D). This

holds true for genes bound by both H3K27me3 and H2Aub1,

and also for PRC-target genes defined by their association

with PRC subunits (Ezh2, Suz12, Ring1B; Figure 1D). The large

range of expression levels at PRC+ genes is also seen using

published mRNA data sets (Cloonan et al., 2008; Mikkelsen

et al., 2007) determined with different methodologies and ESC

lines (Figure S1D).

The range of expression levels at PRC targets suggests that

PRCs do not act as absolute silencers, but may regulate the

extent of RNAPII transcriptional activity, as described in

Drosophila (Enderle et al., 2011; Schwartz and Pirrotta, 2008).

Although mammalian PRCs are known to exert a repressive

effect, substantial expression has been previously seen at

PRC2-target genes (Nishiyama et al., 2009; Young et al., 2011).
.



Figure 1. Mapping PRCs and RNAPII to Investigate Chromatin Bivalency in ESCs

(A) ESCs are naturally heterogeneous for expression of some transcription factors, including Nanog andOct4 (yellow and blue, respectively; left panel, whole-cell

immunofluorescence; bar: 10 mm). Detection of H3K4me3 and H3K27me3/H2Aub1 at the same chromatin using population-based ChIP (central panel) may

reflect true colocalization of the modifications, or may be due to dynamically or spatially separated marks arising from ESC interconversion (right panel).

Furthermore, chromatin bivalency may occur with or without physical association of responsible enzymatic activities, due to greater longevity of histone

modifications. Dotted arrow, recruitment; solid arrow, enzymatic modification.

(B) Genes associated with both H3K27me3 and H2Aub1, or with H2Aub1 alone, are predominantly occupied by H3K4me3 (98% and 96%, respectively). Only

56% of H3K27me3-only genes are bound by H3K4me3.

(C) Average ChIP-seq profiles of histone modifications at PRC+ genes (H3K27me3+ and/or H2Aub1+).

(D) mRNA-seq expression levels for the 20% most highly and 20% least expressed genes, and for PRC-target genes marked by Ezh2, Suz12, and Ring1B, by

both H3K27me3 and H2Aub1, and by H3K27me3 and/or H2Aub1 (PRC+). PRC targets show a wide range of expression levels.

(E) Average ChIP-seq profiles of RNAPII for the 20% of genes with highest (bright colors) and lowest (pale colors) expression levels.

See also Figures S1 and S2.
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Figure 2. RNAPII-S5p Coassociates with PRC1 and PRC2 through Coding Regions of PRC-Repressed Genes

(A) Average ChIP-seq profiles at PRC-repressed genes (H3K27me3+H2Aub1+) associated with RNAPII-S5p+S2p�8WG16�. S5p, H3K27me3, and H2Aub1 have

similar broad profiles at TSSs and through coding regions.

(B) Occupancy of RNAPII-S5p, Ezh2, Ring1B, and S2p was confirmed by ChIP-qPCR at TSSs (light) and TESs (dark) of Active (b-actin), Inactive (Myf5), and PRC-

repressed genes with or without detectable TES S5p enrichment. Background levels (mean enrichment from control antibodies and beads alone) at TSSs (white

bars) and TESs (gray bars) are shown. Mean and standard deviations (SD) from three to four biological replicates are shown.

(C) Sequential ChIP shows RNAPII-S5p coassociation with Ring1B and Ezh2 at PRC-repressed genes. Background levels (white or gray bars) represent mean

enrichment after first ChIP with Ring1B followed by re-ChIP with no antibody. No DNA was recovered from S5p/mock or Ezh2/mock (control bars are not

shown for S5p/Ring1B or Ezh2/S5p). Mean and SD from four to six biological replicates are shown.

(D) PRC-repressed genes associate with S5p at a similar frequency to that of active gene b-actin, but not with S2p. Localization by immuno-cryoFISH of PRC-

repressed or control loci (red, arrows) relative to S5p and S2p sites (green) in ESCs was scored as ‘‘colocalized’’ (>1 pixel overlap) or ‘‘separate.’’ Bar: 2 mm.

Number of loci analyzed are shown in brackets.
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RNAPII Modification Genome-wide at Active and Silent
Genes in ESCs
To explore the range of expression states at PRC targets, we

mapped RNAPII presence and modification across the ESC

genome. We first validated our RNAPII modification data sets

by aligning ChIP-seq data relative to TSSs and transcription

end sites (TESs) of the 20% of genes with the highest or lowest

expression levels in the genome (3,772 genes/group; Figure 1E).

The 20% least expressed genes show little or no signal for

RNAPII, PRCs, ormapped histonemarks (Figure 1E, Figure S1E),

demonstrating that ESCs harbor a large group of genes silent in

the absence of RNAPII or PRC marks.

Genes with the highest expression are associated with all

RNAPII marks (Figure 1E), H3K4me3, and H3K36me3, but not

Polycomb (H3K27me3, Ezh2, Suz12, H2Aub1, and Ring1B), as

expected (Figure S1E). At these genes, RNAPII-S5p, 8WG16,

S7p, and H3K4me3 peak at promoters, which is consistent

with RNAPII promoter-proximal pausing at active genes (Core

and Lis, 2008). RNAPII-S5p is detected at low levels throughout

coding regions and shows a small increase downstreamof TESs.

S2p and H3K36me3 increase through coding regions; S2p

peaks �700 bp downstream of TESs. RNAPII accumulation

beyond TESs, marked by both S2p and S5p, may reflect termi-

nation and S2p-dependent coordination of mRNA polyadenyla-

tion. Inspection of ChIP-seq profiles across single genes

confirms these average active and silent configurations

(Figure S2A).
Genome-wide RNAPII Modification at PRC Targets
in ESCs
We next explored the RNAPII state at PRC+ genes. First, we

inspected ChIP-seq profiles at single PRC+ genes with different

expression levels and founddistinct RNAPII profiles (Figure S2B).

Silent PRC-target genes were generally associated with S5p

only, whereas actively expressed PRC targets were occupied

by both S5p and S2p. Heatmaps representing RNAPII modifica-

tion at PRC� and PRC+ genes, ordered according to mRNA

expression levels, show that expression is positively associated

with 8WG16, S7p, and S2p within both groups. The heatmaps

also show genome-wide association between PRCs and

RNAPII-S5p (Figure S2C).

To investigate chromatin bivalency and interplay between

PRCs and RNAPII, we first looked genome-wide at the

association of PRCs with the unusual RNAPII variant

(S5p+S2p�8WG16�) previously identified in a panel of PRC-

target developmental genes (Stock et al., 2007).

We find that 1,065 PRC+ genes are associated with RNAPII-

S5p, but not S2p or 8WG16. Average ChIP-seq distributions

within this cohort of repressed PRC targets identify a broad

S5p promoter peak (Figure 2A), accompanied by H3K4me3

(i.e. they are bivalent; Figure S3A). S5p is detected throughout

the gene body of PRC-repressed genes and decreases at the
(E) Positive correlation between S5p and H2Aub1 or H3K27me3 levels in 2kb TSS

are shown.

(F) PRC-repressed genes are associated simultaneously with nonproductive RNA

Absence of S7p and S2p at the PRC-repressed RNAPII variant may prevent cotran

See also Figure S3.

Ce
TES (Figure 2A), unlike the increase seen beyond the TES of

active genes. This group of PRC targets displays no detectable

S2p (Figure 2A) or H3K36me3 (Figure S3A), despite robust

detection of S5p in coding regions and low-level transcripts

(Figure S3B). At active genes, S5p and S7p are targeted by the

same kinase (Akhtar et al., 2009; Tietjen et al., 2010). We show

that the RNAPII variant at PRC-target genes is not marked by

S7p (Figure S3A), raising the possibility of S5 phosphorylation

by a different kinase, S7p dephosphorylation, or inaccessibility

of S7 residues. Lack of S2p and S7p on PRC-repressed

RNAPII may have a mechanistic role in limiting mature mRNA

production by interfering with cotranscriptional recruitment of

chromatin and RNA processing machinery.

The RNAPII configuration identified at PRC-repressed genes

does not simply reflect uniformly lower RNAPII abundance

(with a lower detection threshold for S2p than S5p). ChIP-

qPCR demonstrates that S5p levels can be as high at PRC-

repressed genes as at the active b-actin gene. However, b-actin

is also marked by high S2p, while S2p at PRC-repressed genes

is not detected above background levels (Figure 2B; Stock et al.,

2007).

Strikingly, the occupancy of Ezh2 andRing1B (Figure S3A) and

their enzymatic modifications (H3K27me3 and H2Aub1; Fig-

ure 2A) are remarkably similar to that of RNAPII-S5p, being not

only present at the TSS but also extending through coding

regions. The presence of H3K27me3 along the coding region

of PRC-target genes was recently identified in an independent

study (Young et al., 2011). While single-gene analyses by

ChIP-qPCR (Figure 2B) or ChIP-seq (Figure S2B) identify

different extents of RNAPII elongation through coding regions

of different PRC-repressed genes, they show that PRC occu-

pancy consistently mirrors RNAPII-S5p. The similar distribution

of PRC and RNAPII occupancy at this group of genes led us to

ask whether RNAPII and PRCs simultaneously associate with

the same chromatin at PRC-repressed TSSs and, for some

genes, throughout coding regions.
PRCs and RNAPII Physically Coassociate at Repressed
Chromatin, and Positively Correlate in both Level and
Distribution
To directly test whether RNAPII and PRCs simultaneously coas-

sociate at PRC-repressed chromatin, we used sequential ChIP

(re-ChIP). We first analyzed colocalization between S5p and

Ring1B or Ezh2 at 18 PRC-repressed genes: (1) eight previously

characterized (Stock et al., 2007) PRC+ S5p+S2p� promoters

(Figure S3C); (2) TSSs and TESs of six S5p+S2p� genes, identi-

fied here as associated with S5p, three of which have S5p and

Ring1B occupancy at TSSs and three at both TSSs and TESs

(Figures 2B and 2C); and (3) four additional PRC targets (Fig-

ure S3C). At all 21 regions associated with both RNAPII-S5p

and PRC, re-ChIP detects enrichment for RNAPII-S5p with

Ring1B or Ezh2, independently of immunoprecipitation order.
windows of PRC-repressed genes (Spearman’s rank correlation coefficient; r)

PII-S5p binding, and the PRC activities that catalyze H3K27me3 and H2Aub1.

scriptional recruitment of RNAprocessing factors, leading to RNAdegradation.
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Figure 3. Functional PRC Repression Is Proportional to RNAPII-S5p

Extension

(A) PRC targets become derepressed upon Ring1B removal, with a more

marked effect at genes where S5p extends up to the TES (S5pEnd+), than that

which occurs at genes classified as S5pEnd�. RNA levels were measured in

ES-ERT2 Ring1A-knockout cells after tamoxifen (TMX)-induced Ring1B

knockout. Transcript levels were normalized to housekeeping genes, and to

0 hr. Mean and SD from three biological replicates are shown.

(B) Analyses of microarray data for ES-ERT2 cells ± 48 hr TMX treatment

(Endoh et al., 2008) shows that the percentage of PRC-repressed genes

derepressed by >1.5-fold (bars) is significant irrespective of S5p detection at

the TES (p < 10�16, one-tailed Fisher’s exact test), although the mean fold

expression change (green) is higher for genes with S5p extending to TESs

(S5pEnd+).

(C) S5pEnd+ PRC-repressed genes have a wide range of lengths, although the

majority are shorter than those with S5p only at promoters (S5pEnd�; p < 2.23

10�16, one-tailed Wilcoxon rank-sum test).
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These results lead us to conclude that PRCs and RNAPII-S5p

coassociate with chromatin, although they cannot distinguish

direct from indirect interactions between the complexes.

Thus, chromatin bivalency is characterized by physical coasso-

ciation of repressive (PRCs) and activating (RNAPII) enzymatic

activities with chromatin, which cannot be explained by ESC

heterogeneity.

The preferred association of PRC-repressed genes with

RNAPII-S5p and not S2p was tested independently of ChIP

assays by single-cell microscopy using immuno-cryoFISH (fluo-

rescence in situ hybridization on ultrathin cryosections; Branco

and Pombo, 2006), a high-spatial resolution, high-sensitivity

imaging method (Figure 2D). PRC targets associate with S5p

to extents similar to those of an active gene (b-actin), above

the background levels observed at an inactive, PRC� control

(Myf5). They associate with S2p considerably less than b-actin,

and to an extent similar to that of Myf5. These analyses confirm

the association of PRC targets with RNAPII-S5p+S2p�, and

show its high prevalence at the single-allele level.

To further investigate the extent of coassociation between

PRCs and RNAPII, we tested whether levels of RNAPII-S5p

and PRCs at individual genes are positively correlated across

the ESC genome. Interdependence of RNAPII and PRCs in the

PRC-repressed state is supported by strong positive correla-

tions between S5p and H2Aub1 or H3K27me3 levels (r = 0.69,

0.55, respectively; Spearman’s rank correlation coefficient; Fig-

ure 2E). Similar strong correlations are also seen for S5p with

Ring1B or Ezh2 (r = 0.68, 0.68, respectively, Figure S3D). The

correlations between PRCs and S5p are similar to those

between the two PRC-instigated histone modifications, and

between the PRC1 and PRC2 catalytic components (r = 0.67,

0.84, respectively; Figure S3D), supporting the significance of

this interplay.

Collectively, single-gene and genome-wide analyses of the

RNAPII variant identified at PRC-repressed chromatin demon-

strate an unexpected molecular coassociation and synergy

between the seemingly antagonistic Polycomb and RNAPII

complexes. RNAPII-S5p+S7p�S2p� extends throughout genes

to the same extent as, and in proportion to, PRCs (Figure 2F).

Absence of S2p and S7p from PRC-repressed RNAPII indicates

that PRC repression involves interference with RNA processing

(Figure 2F).

Functional Derepression of PRC Targets after
Ring1B Depletion
To investigate the interdependence of RNAPII and PRC at PRC

targets associated with RNAPII-S5p+S2p�8WG16�, we investi-

gated levels of derepression upon Ring1B knockout. Functional

repression by PRCs at this gene cohort is shown by a marked

increase in transcript levels of PRC targets after inducible

Ring1B knockout in Ring1A null ESCs (Figures 3A and 3B). Inter-

estingly, single-gene studies (Figure 3A) suggested that dere-

pression is greater for genes with S5p and PRCs extending

through gene coding regions (Lhx5, Pitx1, and Zfp503) than for

genes where both activities are more restricted to the TSS

(Fgf5, Kcnc4, and Lrat).

Analysis of genome-wide data (Endoh et al., 2008) supports

this conclusion (Figure 3B), with genes classified as positive for

S5p at the TES (S5pEnd+) being more likely to be derepressed
162 Cell Stem Cell 10, 157–170, February 3, 2012 ª2012 Elsevier Inc
and show higher changes in expression levels than those for

which S5p is not at the TES (S5pEnd�; p = 0.0026, one-tailed

Wilcoxon rank-sum test). Comparison of gene length between

S5pEnd+ and S5pEnd� genes shows that S5p detection at the
.
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TES is not solely due to short gene length and promoter-proximal

S5p occupancy, as 60% of S5pEnd+ genes are more than 5 kb

long, and some are over 100 kb (Figure 3C). These results

suggest that the presence of RNAPII-S5p further into coding

regions of PRC-repressed genes, accompanied by proportional

PRC occupancy, may favor gene activation upon PRC removal,

although a contribution of shorter gene sizes cannot be

excluded.

Genome-wide Interplay between PRCs
and RNAPII Variants
The observation of tight interplay between PRCs and

RNAPII at 1,065 silent PRC targets associated with RNAPII-

S5p+S2p�8WG16� led us to investigate other RNAPII variants

within the whole cohort of PRC targets (5,628 genes), which

includes genes with substantial mRNA expression. We used

hierarchical clustering, an unbiased genome-wide approach, to

identify specific combinations of PRC and RNAPII modification

(Figure 4A). Genes were classified according to the presence/

absence of each ChIP-seq marker in regions of interest

(Table S2), in order to define discrete groups of genes with

similar PRC/RNAPII states. We represent levels of H3K4me3,

Ezh2, Suz12, Ring1B, and H3K27me3 for comparison (Fig-

ure 4A), the latter from a recent ChIP-seq data set (Lienert

et al., 2011).

Comparing mRNA levels across the resultant gene clusters

reveals clear-cut associations with expression and silencing,

despite mRNA-seq data not being included as a variable in the

clustering analysis (Figure 4A). This shows that presence or

absence of RNAPII and PRCs can predict gene expression

states in ESCs.

Within the ‘‘silent’’ branch of the hierarchical tree, we find three

groups of PRC targets. These groups are characterized by the

presence of the following: (1) H3K27me3, but little detectable

H2Aub1, H3K4me3, or RNAPII (n = 798; PRConly or PRCo); (2)

H3K27me3, H2Aub1, H3K4me3, and S5p, without other

RNAPII modifications (n = 1,632; PRCrepressed or PRCr);

and (3) H3K27me3, H2Aub1, H3K4me3, S5p, 8WG16, and

S7p, but little detectable S2p or mRNA expression (n = 742;

PRCintermediate or PRCi). The PRCr group contains all the

PRC+ genes found to be associated with the RNAPII variant

S5p+S2p�8WG16� in our initial analysis (characterized in

Figures 2 and 3).

Surprisingly, hierarchical clustering identifies a fourth

PRC-target cluster within the ‘‘expressed’’ branch (n = 1,227;

PRCactive or PRCa), associated with all RNAPII modifications,

H3K4me3, H3K27me3, H2Aub1, and mRNA. Thus, we identify

four major PRC-target gene groups: PRConly, PRCrepressed,

PRCintermediate, and PRCactive. The remaining genes in the

expressed and silent branches of the hierarchical tree were

classified as Active genes (all expressed genes, excluding

PRCa) and Inactive genes (silent genes minus PRCr, PRCi, and

PRCo), respectively.

Careful inspection of ChIP-seq profiles (examples in Fig-

ure S2B) and independent validation by ChIP-qPCR (Figure S4A)

confirm the different combinations of marker occupancy at

single genes within each group. Single-gene qRT-PCR analyses

show that transcript levels from PRCa genes are comparable to

those of an Active gene, and 100- to 1,000-fold higher than
Ce
PRCr genes (Figure S4B). Expression of PRC2-target genes

has been previously described in ESCs (Nishiyama et al., 2009;

Sharov et al., 2011; Young et al., 2011), and genes classified

as bivalent in Mikkelsen et al. (2007) can be upregulated or

downregulated upon transcription factor induction in ESCs

(Nishiyama et al., 2009; Sharov et al., 2011). Here we expand

on these analyses both by identifying active PRC-target genes

associated with both PRC1 and PRC2, and by exploring the

RNAPII state associated with them.

Gene Ontology and KEGG Pathway Analyses Identify
Roles for PRCs in Metabolic Gene Regulation
Gene Ontology (GO) analyses across the six gene groups identi-

fied by hierarchical clustering reveal enrichment for genes asso-

ciated with developmental processes in PRCr and PRCa, and

enrichment for signaling and response to stimuli within Inactive

and PRCo (Figure 4B, see Table S3 for detailed GO analyses).

This suggests that RNAPII at PRC targets may be important for

gene activation during development, while PRC targets lacking

RNAPII recruitment (PRCo) are required only in terminally differ-

entiated cells.

Unexpectedly, PRCa genes are also enriched for metabolic

GO terms (p < 10�15, hypergeometric test; Figure 4B). KEGG

pathway analysis identifies PRCa genes associated with

TGFb-, Wnt-, and MAPK-signaling pathways, and with cancer,

cell cycle, and energy metabolism (Table 1). Although deregula-

tion of a few of the active PRC targets identified here has been

reported after PRC1 knockout (van der Stoop et al., 2008), to

our knowledge, direct regulation of metabolic genes by PRCs

has not been shown before.

Active PRC Targets Are Expressed at the Protein Level
To investigate the biological significance of active RNAPII modi-

fications (S7p+S2p+) andmRNAexpression at activePRC targets

(PRCa, n = 1,227), we mined ESC proteome data (Graumann

et al., 2008) to determine whether PRCa genes are expressed

at the protein level. We positively identify peptides from 32%

and 15% of Active and PRCa genes, respectively, in comparison

with 2%–5% for other gene cohorts (Figure 4C). Thus, PRCoccu-

pancy is compatible with protein expression atPRCa genes. S2p

is detected above threshold atPRCa andActivegenes,while S5p

is also present at PRCr and PRCi, mirroring CpG content.

Among the PRCa genes expressed at the protein level are

transcriptional regulators (Hdac2 and Hmga2), cancer-linked

genes (Klf4 and Kit), and genes involved in glycolysis and pyru-

vate metabolism (Hk1, Eno2, and Pck2). This suggests that

PRCs modulate expression levels of active genes with important

roles in ESCs, some of which are required for ESC identity [e.g.,

Hmga2 (Hammond and Sharpless, 2008), Klf4 (Takahashi and

Yamanaka, 2006), and Tbx3 (Lu et al., 2011)]. Others are involved

in metabolic processes, such as glycolysis, that are differently

regulated in ESCs and somatic cells (Kondoh et al., 2007).

Importantly, genes that mark early differentiation, such as

Gata4, Gata6, and Brachyury (Singh et al., 2007), do not display

detectable S2p, or other markers of productive transcription,

and are categorized as PRCr (Figure S5A). This supports the

conclusion that the PRCa cohort of genes is related to the plurip-

otent state and is not due to differentiation in our ESC cultures.

Single-cell immunofluorescence analyses showOct4 and Nanog
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Figure 4. PRC Targets Associate with Different RNAPII Modifications and Expression Levels

(A) Hierarchical clustering was performed after binary classification of RNAPII and PRC modifications for 15,404 nonoverlapping RefSeq genes.

Marker enrichment at TSSs or TESs is normalized to the binary classification threshold. Four major PRC groups were identified: PRConly, PRCrepressed,

PRCintermediate, and PRCactive. Remaining genes were classified as Active or Inactive. Levels of mRNA and additional markers are presented for comparison

(lower panel), but were not used as clustering variables.

(B) ‘‘Developmental process’’ is the most significantly enriched Gene Ontology (GO) term for PRCr genes, while PRCa terms include ‘‘developmental process’’

and ‘‘metabolic process’’ (p values in brackets, hypergeometric test). The full GO table with intergroup comparisons is shown in Table S3.

(C) mRNA-seq levels are highest for Active genes, followed by PRCa,PRCi,PRCr, PRCo, and Inactive. Analysis of ESC SILAC data (Graumann et al., 2008) shows

expression at the protein level only for PRCa and Active genes. S2p levels are only above background at Active and PRCa, while S5p levels are also substantial at

PRCi and PRCr. Orange line, threshold. CpG content mirrors S5p enrichment.

See also Figure S4.
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detection across the population of ESCs, albeit at variable levels

(Figure 1A, Figure S5B).

Mechanisms of PRC Control at Active PRC Targets
To investigate the mechanism of PRC function at PRCa genes,

we asked whether coexistence of PRC repression and RNAPII
164 Cell Stem Cell 10, 157–170, February 3, 2012 ª2012 Elsevier Inc
productive transcription could be due to separate chromatin

states in different alleles across the heterogeneous ESC popu-

lation (Figure 5A, Model 1), or whether PRCs directly asso-

ciate with active RNAPII-S2p complexes (Figure 5A, Model 2).

Coassociation between S5p, S2p, and PRCs would be different

in the two models. InModel 1, RNAPII-S5p and PRC are present
.



Table 1. KEGG Pathways Significantly Enriched in Active PRC-Target Genes, or the PRCa Cluster

KEGG Pathway (p value) Gene Symbols (PRCa Gene Members)

Pathways in cancer (2 3 10�6) Stat1, Gli2, Ralb, Rassf5, Hdac2, Bcr, Fgf18, Tcf7, Stat5b, Lamb1, Egln3, Traf3, Akt1,

Fgf17, Myc, Pdgfb, Cdkn1a, Vegfa, Lama1, Epas1, Fzd8, Vegfb, Rxra, Plcg1, Nfkb1,

Tgfbr1, Cdkn2b, Cdk6, Kit, Fzd10, Pdgfa, Smo, Tcf7l1, Tgfb1, Igf1r, Fgf3, Ccnd1, Fgfr1,

Pik3r2, Mmp2, Plcg2, Smad3

TGF-beta signaling pathway (4 3 10�6) Bmpr2, Inhbb, Lefty2, Lefty1, Id2, Id4, Myc, Id1, Bmp7, Tgfbr1, Cdkn2b, Bmp8a, Id3,

Tgfb1, Tfdp1, Smad3, Smad6

MAPK signaling pathway (1 3 10�5) Mapkapk2, Gadd45b, Fgf18, Dusp14, Cacnb1, Dusp3, Map3k14, Map3k9, Akt1,

Gadd45 g, Flnb, Nfatc4, Fgf17, Myc, Pdgfb, Mapk12, Mapk11, Mapk8ip2, Mapk4,

Rasgrp2, Rps6ka4, Dusp5, B230120H23Rik, Cdc25b, Pla2g12a, Nfkb1, Mos, Tgfbr1,

Pdgfa, Tgfb1, Fgf3, Fgfr1, Dusp4, Rasa2, Mras, Cacna2d2, Dusp9

Cell cycle (1 3 10�3) Hdac2, Gadd45b, Gadd45 g, Cdc14b, Myc, Smc1b, Cdkn1a, Cdc25b, Cdkn2b, Sfn,

Cdk6, Tgfb1, Ccnd1, Tfdp1, Smad3

Wnt signaling pathway (1 3 10�3) Vangl2, Camk2b, Tcf7, Ppp2r5c, Sfrp4, Nkd2, Nfatc4, Myc, Fzd8, Lrp5, Fosl1, Frat1,

Sfrp2, Vangl1, Fzd10, Tcf7l1, Ccnd1, Sfrp1, Smad3

p53 signaling pathway (3 3 10�3) Steap3, Gadd45b, Igfbp3, Gadd45 g, Cdkn1a, Pmaip1, Zmat3, Sfn, Cdk6, Ccnd1

Inositol phosphate metabolism (6 3 10�3) Synj2, Pip5k1b, Pip4k2a, Pip5kl1, Plcg1, Pik3c2a, Plcg2

Pyruvate metabolism (0.01) Pck2, Acss1, Akr1b3, Ldhb, Ldha, Dlat

Notch signaling pathway (0.01) Hdac2, Jag1, Hes5, Lfng, Dll3, Aph1c

ErbB signaling pathway (0.02) Camk2b, Stat5b, Akt1, Myc, Cdkn1a, Hbegf, Plcg1, Pik3r2, Gab1, Plcg2

Citrate cycle (TCA cycle) (0.04) Ogdh, Pck2, Dlat

Glycolysis/ gluconeogenesis (0.04) Hk1, Pck2, Acss1, Eno2, Ldhb, Ldha, Dlat

Enrichment of KEGG pathways by group members was assessed by hypergeometric testing. See also Table S3.
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at the PRC-bound allele, but PRCs are not at the active allele; in

this case, PRCswould re-ChIPwith S5p, but not S2p. InModel 2,

RNAPII-S5p, S2p, and PRCs are simultaneously bound to

the same chromatin and PRCs would re-ChIP with both S5p

and S2p.

We performed sequential ChIP of Ring1B with RNAPII-S5p or

S2p to test these models (Figure 5B). Notably, Ring1B coassoci-

ates with S5p-bound chromatin but does not colocalize with S2p

above background levels. This suggests that PRCs coassociate

with RNAPII-S5p at PRCa genes, but antagonize phosphoryla-

tion of S2. Therefore the two states, PRC-repressed and active,

exist separately within a cell (binding to different alleles) or cell

population.

Lack of coassociation between PRCs and S2p thus supports

an ‘‘on-off’’ (digital) switch mechanism of PRC regulation, where

PRC impedes establishment of active RNAPII at PRC-bound

chromatin (Figure 5A, Model 1). Ring1B coassociation with

RNAPII-S5p at PRCa (Figure 5B) and PRCi (Figure S3C) genes

shows that PRCs colocalize with RNAPII-S5p at all RNAPII-asso-

ciated PRC targets. Re-ChIP experiments of S5p with S2p

confirm the presence of S5p with S2p at actively transcribed

genes within both PRCa and Active groups, but not at PRCr

genes (Figure 5B).

Next, we explored whether the independent association of

PRCa genes with PRC and S5p (in the PRC-repressed state),

or with S2p and S5p (in the active state), could be related to

natural fluctuations in transcription factor levels across the

heterogeneous ESC population. We performed single-cell cryo-

FISH colocalization of the PRCa gene Lefty2 with RNAPII-S5p,

RNAPII-S2p, and Ezh2 (PRC2) in ESCs costained with Nanog

antibodies (Figure 5C). Interestingly, these experiments show

similar association of the Lefty2 locus with RNAPII-S5p indepen-
Ce
dent of Nanog levels, but a significant association with RNAPII-

S2p in Nanoghigh cells and with Ezh2 in Nanoglow cells (p = 0.2

[S5p], 0.006 [S2p], and 0.04 [Ezh2]; c2 test). These studies

suggest that pluripotency transcription factors that fluctuate

within the ESC population, such as Nanog, may influence the

switch between PRC-repressed and active states of PRCa

genes.

To complement the analyses of single genes by sequen-

tial ChIP and cryoFISH, we investigated genome-wide correla-

tions between S5p and H2Aub1 or S2p. Consistent with

Model 1, the correlation between S5p and PRCs in the

PRCa cohort is lower than in the PRCr state (Figure 5D),

suggesting that the association between S5p and PRCs is

diluted by the presence of some S5p complexes associated

only with S2p. Furthermore, S2p levels correlate more exten-

sively with S5p at PRCa than at PRCr (Figure 5D), in agreement

with the presence of a population of PRCa genes with S5p

and S2p.

These studies support a switch model of active PRC-target

genes (Model 1, Figure 5A), where PRCa genes are not simulta-

neously repressed by PRCs and expressed. At active PRCa

genes, RNAPII-S5p exists in two independent states: (1) in asso-

ciation with PRC (in the absence of other RNAPII active marks)

and (2) in the presence of S2p (and absence of PRCs). These

data suggest that PRCa genes, which in population-based

ChIP analyses appear to be expressed and bound by PRCs,

are not simultaneously expressed and under PRC repression

at the single-gene level. This may be due to allelic exclusion or

ESC heterogeneity. Further studies will be necessary to under-

stand the means by which pluripotency transcription factors

influence fluctuations between epigenetic states at this impor-

tant cohort of PRC targets.
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Figure 5. PRCs and Elongating RNAPII-S2p Are Mutually Exclusive at Active PRC-Target Genes

(A) Two alternative models of PRC regulation at PRCa genes.

(B) Ring1B, S5p, and S2p occupancy and coassociation at Active (b-actin), Inactive (Myf5), and PRCa genes were analyzed by ChIP or re-ChIP and qPCR, as

described in Figure 2. Mean and SD from two to five biological replicates are shown. ChIP-qPCR confirms binding of Ring1B, S5p, and S2p to PRCa genes, but

re-ChIP shows PRC1 coassociation with S5p, but not with S2p, above background levels (white bars). Re-ChIP demonstrates simultaneous presence of S2p and

S5p at PRCa and Active, but not PRCr, genes.

(C) Colocalization of PRCa gene Lefty2 (red, arrows) with sites containing S5p, S2p, or Ezh2 (green) was measured by immuno-cryoFISH in ESC nuclei with

different levels of Nanog (yellow; classified as high, low, or intermediate). Locus association with each marker was scored as colocalized (R1 pixel overlap) or
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Expression Levels of Active PRC Targets Are Regulated
by PRCs
To investigate whether PRCa genes are functionally repressed

by the presence of PRC, we repeated our meta-analyses of

microarray expression data after conditional Ring1B knockout

(Endoh et al., 2008) for this group of genes (Figure 6, Figure S6).

We compared the changes in expression that occur at active

PRC targets (PRCa) with the changes occurring in the well-char-

acterized cohort of silent developmental PRC-target genes

(identified here as the PRCr group).

Functional PRC-mediated repression of active PRC targets

was confirmed, as the same proportion (�30%) of PRCa and

PRCr genes show substantial derepression after Ring1B

knockout (p < 10�54, one-tailed Fisher’s exact test; Figure 6A).

The mean expression change at PRCa genes after Ring1B

knockout is lower than at PRCr genes (p = 0.022, one-tailed Wil-

coxon rank-sum test), likely due to the fact that PRCa genes are

already expressed in ESCs.

Importantly, derepression of PRCa genes after conditional

Ring1B knockout, together with the detection of PRC marks,

adds further evidence to their classification as bona fide PRC

targets. PRC1 repression of active PRC targets was further vali-

dated by qRT-PCR of single-gene transcripts over a Ring1B

knockout time course (Figure 6B); these include important genes

for ESC biology (Hmga2, Tbx3, and Hdac2), development (Fzd8

and Lefty2), and metabolism (Hk1 and Eno2). In support of our

findings, three genes (Tbx3, Klf4, and Foxd3) here classified as

PRCa were also recently described as PRC2 targets (Walker

et al., 2010).

To probe the role of active PRC-target genes in pluripotency or

during differentiation, we analyzed microarray expression data

during ESC differentiation following LIF withdrawal (Shen et al.,

2009; Figure 6C, Figure S6). Downregulation of many metabolic

PRCa genes during differentiation (Figure 6C), including genes

involved in glycolysis and pyruvate metabolism (Ldha, Gpd1l,

and Pck2; Table 1), suggests that PRC1 controls the expression

of genes specifically associated with pluripotency. Conversely,

othermetabolicPRCagenesbecomeupregulatedduringdifferen-

tiation (Figure 6C), suggesting roles during lineage specification.

Aligning Ring1B knockout expression data to these differenti-

ation analyses demonstrates that metabolic PRCa genes that

become derepressed upon Ring1 depletion can be upregulated

or downregulated upon differentiation (Figure 6C); the pattern is

similar across all PRCa genes (Figure S6). Regulation of PRC-

repressed metabolic genes during ESC differentiation expands

our understanding of Polycomb function in pluripotency to

include themodulation of ESCmetabolism, in addition to repres-

sion of developmental genes.

DISCUSSION

In summary, we present advanced analyses of Polycomb re-

pression and RNAPII states in ESCs, which combine molecular,
separate. Lefty2 associates with S5p at similar frequency regardless of Nanog st

Bar: 2 mm. The number of loci analyzed is indicated in brackets. Note that all cel

(D) Correlation plots for enrichment levels in 2 kbwindows forPRCr,PRCa, andAc

PRCr and between S5p and S2p at PRCa genes (r, Spearman’s rank correlation

See also Figure S5.

Ce
cellular, and genomic techniques on single-gene and genome-

wide scales. We identify cohorts of PRC-associated genes

with distinct RNAPII and expression states.

At silent developmental PRC targets, PRCs are tightly inter-

linked with RNAPII-S5p complexes at promoters and throughout

coding regions, which produce transcripts that do not mature

into mRNA, and from which protein is not produced. We demon-

strate that chromatin bivalency is a phenomenon of this coasso-

ciation and synergy between PRCs and RNAPII.

At active PRC targets, PRCs are also tightly interlinked with

unproductive RNAPII-S5p complexes. We demonstrate that

active PRC targets can switch between PRC-repressed and

active states within the ESC population. Thus, genes character-

ized by PRCs and expression (mRNA, protein, elongating

RNAPII, and H3K36me3) are not simultaneously bound by

PRCs and expressed. This may be due to allelic differences or

cellular heterogeneity. The active cohort of PRC targets is en-

riched for genes with ontologies related to development or

metabolism, and involved in metabolic processes and signaling

pathways that are important for ESC biology.

PRC repression is therefore associated with a single RNAPII

state (S5p+S7p�S2p�) across all CpG-rich genes. Fluctuation

from the PRC-repressed to the canonical active state (S5p+

S7p+S2p+) occurs to variable extents across different PRC

targets, resulting in differing expression levels.

Direct modulation of metabolic and developmental genes by

PRCs is likely crucial in specifying effective programs of gene

expression andmetabolic control that are important for ESC plu-

ripotency and lineage specification.

EXPERIMENTAL PROCEDURES

A detailed description of materials and methods is given in Supplemental

Information.

Cell Culture

Mouse ES-OS25, ES-ERT2, and XEN cells were grown as previously

described (Stock et al., 2007). For Ring1B conditional deletion, ES-ERT2 cells

were cultured in 800 nM 4-hydroxy-tamoxifen.

Chromatin Immunoprecipitation

ChIP assays were performed essentially as described previously (Stock et al.,

2007). Sequential ChIP was performed as standard fixed ChIP, with elutions

after the first immunoprecipitation in small volumes (total 80 ml) to allow dilution

of SDS back to 0.1% prior to the second immunoprecipitation. Enrichment

was calculated relative to the original input using the same amount of DNA

in the PCRs.

RNA Purification and qRT-PCR Analysis

Total RNAwas isolated using TRIzol (Invitrogen) extraction following themanu-

facturer’s instructions and immediately treated with TURBODNase I (Ambion).

Treated RNA was reverse transcribed using random primers.

Illumina High-Throughput Library Preparation and Sequencing

ChIP-seq libraries were prepared according to Illumina protocols (Part

#11257047 Rev A), with modifications: samples were PCR amplified prior to
atus, but association with S2p is highest and Ezh2 is lowest in Nanoghigh cells.

ls were positive for Oct4 despite variable levels of Nanog (lower panel).

tive clusters. Positive correlations are stronger between S5p andH2Aub1within

coefficient).
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Figure 6. PRC1 Functionally Represses Active Developmental

Genes and Metabolic Genes in ESCs

(A) Analysis of microarray data for ES-ERT2 cells ±48 hr TMX treatment (Endoh

et al., 2008) shows that PRCa genes undergo derepression after Ring1B

removal. Percentage of genes showing >1.5-fold increase is statistically

significant for PRCa and PRCr (p < 10�53, one-tailed Fisher’s exact test). Mean

fold change (green) is lower for PRCa than PRCr.

(B) Single-gene qRT-PCR analyses, as described in Figure 3, show functional

derepression of PRCa genes upon Ring1B removal in ES-ERT2 cells. Mean

and SD from three biological replicates are shown.

(C) Analyses of microarray expression data for ESC differentiation after LIF

withdrawal (Shen et al., 2009) and Ring1B knockout in ES-ERT2 cells (Endoh

et al., 2008) show that metabolic PRCa genes can become upregulated or

downregulated upon differentiation. 476 PRCa genes with ‘‘metabolic

process’’ GO are represented (GO:0008152). Red/green colors represent

expression changes relative to the mean across the gene group represented.

PRCa genes are expressed in ESCs (differentiation d0), as illustrated by
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size selection. mRNA-seq library was prepared from total RNA after TRIzol

extraction, according to Illumina’s instructions (#1004898 Rev A) with some

modifications. After polyA selection, ribosomal RNA was depleted using the

Ribominus kit (Invitrogen). Libraries were quantified by Qubit (Invitrogen) and

qPCR, and library size was assessed by Bioanalyzer (Agilent). Libraries were

sequenced using an Illumina Genome Analyzer II.

ChIP-seq and RNA-seq Analysis

Table S1 lists new and publicly available ChIP-seq data sets analyzed.

Sequenced reads were aligned to the UCSC mouse mm9 genome. mRNA-

seq reads were aligned to the mm9 genome and UCSC annotated transcripts

(UCSC Known Gene annotations) using Tophat v.1.0.13 (Trapnell et al., 2009)

and Cufflinks v.0.8.2 (Trapnell et al., 2010), to detect reads crossing exon-exon

junctions and allow calculation of FPKM levels.

To investigate RNAPII modifications or PRC genome-wide, we classified

each gene as positive or negative for each marker at TSSs and/or TESs

(Table S2).

For hierarchical clustering, the input matrix was composed of 15,404

nonoverlapping RefSeq genes and 7 binary variables: S5p (±1 kb TSS),

8WG16 (TSS), S7p (TSS), S5p (2 kb downstream TES), S2p (2 kb upstream

TES), H3K27me3 (TSS), and H2Aub1 (TSS). All pairwise dissimilarities in the

data matrix were computed using the Gower coefficient; hierarchical clus-

tering was calculated using average linkage and the function hclust in R.

Log10 transformation was applied before plotting in R heatmaps, boxplots,

and correlations; a pseudocount of 1 or 0.0001 was added prior to the loga-

rithm transformation for ChIP-seq or mRNA-seq FPKM levels, respectively,

unless otherwise stated.

GO and KEGG Pathway Analyses

Analysis of GO functional enrichment was performed using the Fisher’s exact

test implemented in the topGO Bioconductor package (Alexa et al., 2006). The

annotation of GO terms to Entrez gene IDs was provided from the Bio-

conductor package org.Mm.eg.db (version 2.4.1; Gentleman et al., 2004).

Annotation of KEGG pathways and their associated genes were retrieved

from ftp://ftp.genome.jp/pub/kegg/ (Kanehisa and Goto, 2000). Enrichment

of KEGG pathways was assessed by hypergeometric testing in R Stats

package and false discovery rates were calculated using R Multtest.

Immuno-cryoFISH

CryoFISH was performed as previously described (Branco and Pombo, 2006;

Ferrai et al., 2010).

ACCESSION NUMBERS

ChIP-seq and mRNA-seq data have been submitted to the GEO repository

under accession number GSE34520.
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Supplemental Information for this article includes Figures S1–S6, Tables S1–
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article online at doi:10.1016/j.stem.2011.12.017.
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