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SUMMARY

Polycomb repressor complexes (PRCs) are impor-
tant chromatin modifiers fundamentally implicated
in pluripotency and cancer. Polycomb silencing in
embryonic stem cells (ESCs) can be accompanied
by active chromatin and primed RNA polymerase I
(RNAPII), but the relationship between PRCs and
RNAPII remains unclear genome-wide. We mapped
PRC repression markers and four RNAPII states in
ESCs using ChlIP-seq, and found that PRC targets
exhibit a range of RNAPII variants. First, develop-
mental PRC targets are bound by unproductive
RNAPII (S5p*S7p~S2p~) genome-wide. Sequential
ChiIP, Ring1B depletion, and genome-wide correla-
tions show that PRCs and RNAPII-S5p physically
bind to the same chromatin and functionally syner-
gize. Second, we identify a cohort of genes marked
by PRC and elongating RNAPII (S5p*S7p*S2p*);
they produce mRNA and protein, and their expres-
sion increases upon PRC1 knockdown. We show
that this group of PRC targets switches between
active and PRC-repressed states within the ESC
population, and that many have roles in metabolism.

INTRODUCTION

ESCs are characterized by their abilities to self-renew and differ-
entiate into all somatic cell types (Jaenisch and Young, 2008),
but the molecular mechanisms underlying pluripotency are not
fully understood. Pluripotency depends on the silencing of devel-
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opmental regulator genes by two major PRCs that modify
histones (Richly et al., 2010; Schwartz and Pirrotta, 2008).
PRC1 monoubiquitinylates H2AK119 (H2Aub1) via the ubiquitin
ligase Ring1B. PRC2 catalyzes dimethylation and trimethylation
of H3K27 (H3K27me2/3) via its histone methyltransferase (HMT)
Ezh2. In mammals, PRC2-mediated H3K27me3 at repressed
genes can be accompanied by markers of gene activity: (1)
histone marks characteristic of active genes, such as
H3K4me3, that generate bivalent chromatin domains, (2) the
binding of RNAPII and transcription factors, and (3) transcription
(Azuara et al., 2006; Bernstein et al., 2006; Brookes and Pombo,
2009; Enderle et al., 2011; Schwartz and Pirrotta, 2008). PRC
repression mechanisms in the context of gene activity are not
Clear.

RNAPII activity is regulated by complex phosphorylation of the
C-terminal domain (CTD) of its largest subunit, which comprises
52 repeats of the heptapeptide sequence Y1-S2-P3-T4-S5-P6-
S7. CTD modifications during the active transcription cycle
recruit specific histone modifiers and RNA processing factors,
promoting active chromatin and appropriate RNA maturation
(Brookes and Pombo, 2009; Weake and Workman, 2010). S5
phosphorylation (S5p) correlates with initiation, capping, and
H3K4 HMT recruitment. S2 phosphorylation (S2p) correlates
with elongation, splicing, polyadenylation, and H3K36 HMT
recruitment. S7 phosphorylation (S7p) is present at promoter
and coding regions of active genes in mammalian cells
(Chapman et al., 2007), and is thought to occur together with
S5p and S2p (Akhtar et al., 2009; Tietjen et al., 2010). Studies
of RNAPII modification at PRC-target genes in ESCs have been
limited. High levels of RNAPII-S5p were detected at promoter
and coding regions of nine PRC targets in the absence of S2p
(Stock et al., 2007). However, probing with antibody 8WG16
against hypophosphorylated CTD detects little or no RNAPII at
PRC-target genes (Guenther et al., 2007; Stock et al., 2007).
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The presence of PRCs, RNAPII-S5p, and repressive/active
histone marks at PRC targets in ESCs has been seen after pop-
ulation-based ChIP assays (Alder et al., 2010; Bernstein et al.,
2006; Mikkelsen et al., 2007; Stock et al., 2007). However, true
colocalization of opposing histone modifications has been
observed by sequential ChlIP for very few genes, raising ques-
tions about the significance of chromatin bivalency genome-
wide (De Gobbi et al., 2011).

Furthermore, it is widely accepted that all ESC cultures exhibit
functional heterogeneity, expressing variable levels of pluripo-
tency transcription factors (Figure 1A), which may influence their
propensity to differentiate into specific lineages upon appro-
priate signals (Carter et al., 2008; Graf and Stadtfeld, 2008).
Under self-renewing conditions, ESCs interconvert between
these states (Canham et al., 2010; Singh et al., 2007), reminis-
cent of the early stages of blastocyst differentiation. Important
transcription factors showing cell-to-cell fluctuations include
Nanog (Chambers et al., 2007; Singh et al., 2007), Rex1 (Toyooka
et al., 2008), and Stella (Hayashi et al., 2008). It is therefore
debated whether chromatin bivalency could be explained by
chromatin state switching due, at least in part, to ESC heteroge-
neity (Figure 1A). It also remains unclear whether true coassoci-
ation of bivalent histone modifications reflects simultaneous
binding of PRCs and RNAPII, known to coordinate deposition
of H3K27me3 and H3K4me3, respectively, due to the greater
longevity of histone modifications. We set out to explore these
phenomena. We identify different classes of PRC-target genes
that exhibit distinct RNAPII variants and expression levels and
explore their regulation.

RESULTS

Chromatin Bivalency Revisited

To further investigate chromatin bivalency in ESCs, we produced
genome-wide data sets for markers of Polycomb repression
and transcriptional activation, and reanalyzed published data
sets (Table S1 available online). Our understanding of bivalency
has relied on mapping of H3K27me3 and H3K4me3 (Azuara
et al., 2006; Bernstein et al., 2006; Mikkelsen et al., 2007), but
H3K27me3 represents only the activity of PRC2, and not that
of PRC1. PRC1 catalyzes H2Aub1 deposition, but there is
currently no genome-wide H2Aub1 data set available in mouse
ESCs. Mapping of PRC1-component Ring1B identified PRC2
binding in the absence of PRC1 (Ku et al., 2008).

We performed ChiIP-seq for H2Aub1 and mapped PRC1 cata-
lytic subunit Ring1B to increase signal depth. We also remapped
high-quality, publicly available ChlP-seq data for PRC2 subunits
Ezh2 and Suz12, and PRC2 histone modification H3K27me3.
We performed ChlIP-seq for four RNAPII states (S5p, S2p,
S7p, 8WG16) and for H3K36me3, and remapped published
H3K4me3 data, using these as markers of transcriptional activity.

We reexamined the extent of chromatin bivalency by consid-
ering both H3K27me3 and H2Aub1, and classifying PRC-
positive genes (PRC*) according to their association with
H3K27me3 and/or H2Aub1 (Table S2). Genes were classified
by integrating levels of ChIP enrichment within windows of
interest (Hebenstreit et al., 2011). In contrast with classifications
based on the presence of PRC enzymatic subunits, mapped
PRC-instigated histone modifications constitute a functional
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readout of PRC repression. This takes into account, for example,
that Ring1B is present in complexes other than PRC1 (Sanchez
et al., 2007), and that Ezh1 can compensate for Ezh2 in PRC2
(Shen et al., 2008).

We identified a large cohort of PRC* genes (n = 5,628) that are
associated with both H2Aub1 and H3K27me3 (n = 2,931), asso-
ciated with only H3K27me3 (n = 2,254), or associated with only
H2Aub1 (n = 443; Figure 1B). We validated this result using
a recent higher-depth H3K27me3 data set (Lienert et al., 2011;
Figure S1A). ChiP-seq signal enrichment at TSSs correlates
well between Mikkelsen and Lienert data sets (Figure S1B).
High numbers of H3K27me3* genes (n = 5,571) were also
recently identified using independent H3K27me3 ChIP-seq
data and a different classification strategy (Young et al., 2011).

Comparisons between H3K27me3, H2Aub1, and H3K4me3
presence show that H2Aub1* is more closely associated with
chromatin bivalency than H3K27me3 (Figure 1B). The vast
majority (97 %) of H2Aub1" genes are bivalent (i.e. also occupied
by H3K4me3), irrespective of H3K27me3, whereas only 79% of
H3K27me3" genes are H3K4me3*. Analysis of the alternative
H3K27me3 data set (Lienert et al., 2011) confirms this result
(Figure S1A).

Our analyses are consistent with previous studies suggesting
that PRC2 can bind independently of PRC1 (Ku et al., 2008). The
newly classified PRC* genes, based on their association with
H2Aub1 and/or H3K27me3, are also associated with the cata-
lytic subunits responsible for these histone modifications, Ezh2
and Ring1B, as anticipated (Figure S1C).

Mapping average ChlIP-seq profiles of H3K27me3, H2Aub1,
H3K4me3, and core H3 at transcription start sites (TSSs) of
PRC* genes demonstrates broad peaks of PRC-instigated
H3K27me3 and H2Aub1 enrichment, together with a tighter
peak of H3K4me3 (Figure 1C). Core H3 is not enriched at the
TSS (Figure 1C) and so cannot explain the high TSS levels of
H3 modifications observed. Catalytic PRC subunits (Ezh2 and
Ring1B) show similar distributions to the marks they deposit
(Figure S1C).

PRC-Target Genes Are Not Universally Silent, with Some
Exhibiting Intermediate or High Expression Levels

To explore the functional significance of chromatin bivalency, we
determined the expression levels of PRC" genes after mapping
mRNA by high-throughput sequencing (mRNA-seq). Surpris-
ingly, the PRC* cohort contains not only silent genes, but also
genes with intermediate and high expression (Figure 1D). This
holds true for genes bound by both H3K27me3 and H2Aub1,
and also for PRC-target genes defined by their association
with PRC subunits (Ezh2, Suz12, Ring1B; Figure 1D). The large
range of expression levels at PRC* genes is also seen using
published mRNA data sets (Cloonan et al., 2008; Mikkelsen
et al., 2007) determined with different methodologies and ESC
lines (Figure S1D).

The range of expression levels at PRC targets suggests that
PRCs do not act as absolute silencers, but may regulate the
extent of RNAPII transcriptional activity, as described in
Drosophila (Enderle et al., 2011; Schwartz and Pirrotta, 2008).
Although mammalian PRCs are known to exert a repressive
effect, substantial expression has been previously seen at
PRC2-target genes (Nishiyama et al., 2009; Young et al., 2011).
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Figure 1. Mapping PRCs and RNAPII to Investigate Chromatin Bivalency in ESCs

(A) ESCs are naturally heterogeneous for expression of some transcription factors, including Nanog and Oct4 (yellow and blue, respectively; left panel, whole-cell
immunofluorescence; bar: 10 um). Detection of H3K4me3 and H3K27me3/H2Aub1 at the same chromatin using population-based ChlIP (central panel) may
reflect true colocalization of the modifications, or may be due to dynamically or spatially separated marks arising from ESC interconversion (right panel).
Furthermore, chromatin bivalency may occur with or without physical association of responsible enzymatic activities, due to greater longevity of histone
modifications. Dotted arrow, recruitment; solid arrow, enzymatic modification.

(B) Genes associated with both H3K27me3 and H2Aub1, or with H2Aub1 alone, are predominantly occupied by H3K4me3 (98% and 96%, respectively). Only
56% of H3K27me3-only genes are bound by H3K4me3.

(C) Average ChlIP-seq profiles of histone modifications at PRC* genes (H3K27me3* and/or H2Aub1%).

(D) mRNA-seq expression levels for the 20% most highly and 20% least expressed genes, and for PRC-target genes marked by Ezh2, Suz12, and Ring1B, by
both H3K27me3 and H2Aub1, and by H3K27me3 and/or H2Aub1 (PRC™). PRC targets show a wide range of expression levels.

(E) Average ChlIP-seq profiles of RNAPII for the 20% of genes with highest (bright colors) and lowest (pale colors) expression levels.

See also Figures S1 and S2.
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Figure 2. RNAPII-S5p Coassociates with PRC1 and PRC2 through Coding Regions of PRC-Repressed Genes

(A) Average ChlIP-seq profiles at PRC-repressed genes (H3K27me3*"H2Aub1*) associated with RNAPII-S5p*S2p 8WG16 ™. S5p, H3K27me3, and H2Aub1 have
similar broad profiles at TSSs and through coding regions.

(B) Occupancy of RNAPII-S5p, Ezh2, Ring1B, and S2p was confirmed by ChIP-qPCR at TSSs (light) and TESs (dark) of Active (8-actin), Inactive (Myf5), and PRC-
repressed genes with or without detectable TES S5p enrichment. Background levels (mean enrichment from control antibodies and beads alone) at TSSs (white
bars) and TESs (gray bars) are shown. Mean and standard deviations (SD) from three to four biological replicates are shown.

(C) Sequential ChIP shows RNAPII-S5p coassociation with Ring1B and Ezh2 at PRC-repressed genes. Background levels (white or gray bars) represent mean
enrichment after first ChIP with Ring1B followed by re-ChIP with no antibody. No DNA was recovered from S5p —mock or Ezh2 —mock (control bars are not
shown for S5p — Ring1B or Ezh2 — S5p). Mean and SD from four to six biological replicates are shown.

(D) PRC-repressed genes associate with S5p at a similar frequency to that of active gene g-actin, but not with S2p. Localization by immuno-cryoFISH of PRC-
repressed or control loci (red, arrows) relative to S5p and S2p sites (green) in ESCs was scored as “colocalized” (>1 pixel overlap) or “separate.” Bar: 2 pm.
Number of loci analyzed are shown in brackets.
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RNAPII Modification Genome-wide at Active and Silent
Genes in ESCs

To explore the range of expression states at PRC targets, we
mapped RNAPII presence and modification across the ESC
genome. We first validated our RNAPII modification data sets
by aligning ChlP-seq data relative to TSSs and transcription
end sites (TESs) of the 20% of genes with the highest or lowest
expression levels in the genome (3,772 genes/group; Figure 1E).
The 20% least expressed genes show little or no signal for
RNAPII, PRCs, or mapped histone marks (Figure 1E, Figure S1E),
demonstrating that ESCs harbor a large group of genes silent in
the absence of RNAPII or PRC marks.

Genes with the highest expression are associated with all
RNAPII marks (Figure 1E), H3K4me3, and H3K36me3, but not
Polycomb (H3K27me3, Ezh2, Suz12, H2Aub1, and Ring1B), as
expected (Figure S1E). At these genes, RNAPII-S5p, 8WG16,
S7p, and H3K4me3 peak at promoters, which is consistent
with RNAPII promoter-proximal pausing at active genes (Core
and Lis, 2008). RNAPII-S5p is detected at low levels throughout
coding regions and shows a small increase downstream of TESs.
S2p and H3K36me3 increase through coding regions; S2p
peaks ~700 bp downstream of TESs. RNAPII accumulation
beyond TESs, marked by both S2p and S5p, may reflect termi-
nation and S2p-dependent coordination of mMRNA polyadenyla-
tion. Inspection of ChIP-seq profiles across single genes
confirms these average active and silent configurations
(Figure S2A).

Genome-wide RNAPII Modification at PRC Targets

in ESCs

We next explored the RNAPII state at PRC* genes. First, we
inspected ChlIP-seq profiles at single PRC* genes with different
expression levels and found distinct RNAPII profiles (Figure S2B).
Silent PRC-target genes were generally associated with S5p
only, whereas actively expressed PRC targets were occupied
by both S5p and S2p. Heatmaps representing RNAPII modifica-
tion at PRC™ and PRC" genes, ordered according to mRNA
expression levels, show that expression is positively associated
with 8WG16, S7p, and S2p within both groups. The heatmaps
also show genome-wide association between PRCs and
RNAPII-S5p (Figure S2C).

To investigate chromatin bivalency and interplay between
PRCs and RNAPII, we first looked genome-wide at the
association of PRCs with the unusual RNAPIl variant
(S5p*S2p 8WG167) previously identified in a panel of PRC-
target developmental genes (Stock et al., 2007).

We find that 1,065 PRC" genes are associated with RNAPII-
S5p, but not S2p or 8WG16. Average ChlP-seq distributions
within this cohort of repressed PRC targets identify a broad
S5p promoter peak (Figure 2A), accompanied by H3K4me3
(i.e. they are bivalent; Figure S3A). S5p is detected throughout
the gene body of PRC-repressed genes and decreases at the

TES (Figure 2A), unlike the increase seen beyond the TES of
active genes. This group of PRC targets displays no detectable
S2p (Figure 2A) or H3K36me3 (Figure S3A), despite robust
detection of S5p in coding regions and low-level transcripts
(Figure S3B). At active genes, S5p and S7p are targeted by the
same kinase (Akhtar et al., 2009; Tietjen et al., 2010). We show
that the RNAPII variant at PRC-target genes is not marked by
S7p (Figure S3A), raising the possibility of S5 phosphorylation
by a different kinase, S7p dephosphorylation, or inaccessibility
of S7 residues. Lack of S2p and S7p on PRC-repressed
RNAPII may have a mechanistic role in limiting mature mRNA
production by interfering with cotranscriptional recruitment of
chromatin and RNA processing machinery.

The RNAPII configuration identified at PRC-repressed genes
does not simply reflect uniformly lower RNAPII abundance
(with a lower detection threshold for S2p than S5p). ChIP-
gPCR demonstrates that S5p levels can be as high at PRC-
repressed genes as at the active g-actin gene. However, §-actin
is also marked by high S2p, while S2p at PRC-repressed genes
is not detected above background levels (Figure 2B; Stock et al.,
2007).

Strikingly, the occupancy of Ezh2 and Ring1B (Figure S3A) and
their enzymatic modifications (H3K27me3 and H2Aub1; Fig-
ure 2A) are remarkably similar to that of RNAPII-S5p, being not
only present at the TSS but also extending through coding
regions. The presence of H3K27me3 along the coding region
of PRC-target genes was recently identified in an independent
study (Young et al.,, 2011). While single-gene analyses by
ChIP-gPCR (Figure 2B) or ChIP-seq (Figure S2B) identify
different extents of RNAPII elongation through coding regions
of different PRC-repressed genes, they show that PRC occu-
pancy consistently mirrors RNAPII-S5p. The similar distribution
of PRC and RNAPII occupancy at this group of genes led us to
ask whether RNAPII and PRCs simultaneously associate with
the same chromatin at PRC-repressed TSSs and, for some
genes, throughout coding regions.

PRCs and RNAPII Physically Coassociate at Repressed
Chromatin, and Positively Correlate in both Level and
Distribution

To directly test whether RNAPII and PRCs simultaneously coas-
sociate at PRC-repressed chromatin, we used sequential ChIP
(re-ChIP). We first analyzed colocalization between S5p and
Ring1B or Ezh2 at 18 PRC-repressed genes: (1) eight previously
characterized (Stock et al., 2007) PRC* S5p*S2p~ promoters
(Figure S3C); (2) TSSs and TESs of six S5p*S2p~ genes, identi-
fied here as associated with S5p, three of which have S5p and
Ring1B occupancy at TSSs and three at both TSSs and TESs
(Figures 2B and 2C); and (3) four additional PRC targets (Fig-
ure S3C). At all 21 regions associated with both RNAPII-S5p
and PRC, re-ChIP detects enrichment for RNAPII-S5p with
Ring1B or Ezh2, independently of immunoprecipitation order.

(E) Positive correlation between S5p and H2Aub1 or H3K27me3 levels in 2kb TSS windows of PRC-repressed genes (Spearman’s rank correlation coefficient; p)

are shown.

(F) PRC-repressed genes are associated simultaneously with nonproductive RNAPII-S5p binding, and the PRC activities that catalyze H3K27me3 and H2Aub1.
Absence of S7p and S2p at the PRC-repressed RNAPI| variant may prevent cotranscriptional recruitment of RNA processing factors, leading to RNA degradation.

See also Figure S3.
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These results lead us to conclude that PRCs and RNAPII-S5p
coassociate with chromatin, although they cannot distinguish
direct from indirect interactions between the complexes.
Thus, chromatin bivalency is characterized by physical coasso-
ciation of repressive (PRCs) and activating (RNAPII) enzymatic
activities with chromatin, which cannot be explained by ESC
heterogeneity.

The preferred association of PRC-repressed genes with
RNAPII-S5p and not S2p was tested independently of ChIP
assays by single-cell microscopy using immuno-cryoFISH (fluo-
rescence in situ hybridization on ultrathin cryosections; Branco
and Pombo, 2006), a high-spatial resolution, high-sensitivity
imaging method (Figure 2D). PRC targets associate with S5p
to extents similar to those of an active gene (8-actin), above
the background levels observed at an inactive, PRC™ control
(Myf5). They associate with S2p considerably less than g-actin,
and to an extent similar to that of Myf5. These analyses confirm
the association of PRC targets with RNAPII-S5p*S2p~, and
show its high prevalence at the single-allele level.

To further investigate the extent of coassociation between
PRCs and RNAPII, we tested whether levels of RNAPII-S5p
and PRCs at individual genes are positively correlated across
the ESC genome. Interdependence of RNAPII and PRCs in the
PRC-repressed state is supported by strong positive correla-
tions between S5p and H2Aub1 or H3K27me3 levels (p = 0.69,
0.55, respectively; Spearman’s rank correlation coefficient; Fig-
ure 2E). Similar strong correlations are also seen for S5p with
Ring1B or Ezh2 (p = 0.68, 0.68, respectively, Figure S3D). The
correlations between PRCs and S5p are similar to those
between the two PRC-instigated histone modifications, and
between the PRC1 and PRC2 catalytic components (p = 0.67,
0.84, respectively; Figure S3D), supporting the significance of
this interplay.

Collectively, single-gene and genome-wide analyses of the
RNAPII variant identified at PRC-repressed chromatin demon-
strate an unexpected molecular coassociation and synergy
between the seemingly antagonistic Polycomb and RNAPII
complexes. RNAPII-S5p*S7p~S2p~ extends throughout genes
to the same extent as, and in proportion to, PRCs (Figure 2F).
Absence of S2p and S7p from PRC-repressed RNAPII indicates
that PRC repression involves interference with RNA processing
(Figure 2F).

Functional Derepression of PRC Targets after
Ring1B Depletion
To investigate the interdependence of RNAPII and PRC at PRC
targets associated with RNAPII-S5p*S2p 8WG16~, we investi-
gated levels of derepression upon Ring1B knockout. Functional
repression by PRCs at this gene cohort is shown by a marked
increase in transcript levels of PRC targets after inducible
Ring1B knockout in Ring1A null ESCs (Figures 3A and 3B). Inter-
estingly, single-gene studies (Figure 3A) suggested that dere-
pression is greater for genes with S5p and PRCs extending
through gene coding regions (Lhx5, Pitx1, and Zfp503) than for
genes where both activities are more restricted to the TSS
(Fgf5, Kenc4, and Lrat).

Analysis of genome-wide data (Endoh et al., 2008) supports
this conclusion (Figure 3B), with genes classified as positive for
S5p at the TES (S5pEnd*) being more likely to be derepressed
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Figure 3. Functional PRC Repression Is Proportional to RNAPII-S5p
Extension

(A) PRC targets become derepressed upon Ring1B removal, with a more
marked effect at genes where S5p extends up to the TES (S5pEnd™), than that
which occurs at genes classified as S5pEnd . RNA levels were measured in
ES-ERT2 Ring1A-knockout cells after tamoxifen (TMX)-induced Ring1B
knockout. Transcript levels were normalized to housekeeping genes, and to
0 hr. Mean and SD from three biological replicates are shown.

(B) Analyses of microarray data for ES-ERT2 cells + 48 hr TMX treatment
(Endoh et al., 2008) shows that the percentage of PRC-repressed genes
derepressed by >1.5-fold (bars) is significant irrespective of S5p detection at
the TES (p < 107, one-tailed Fisher’s exact test), although the mean fold
expression change (green) is higher for genes with S5p extending to TESs
(S5pEnd™).

(C) S5pEnd* PRC-repressed genes have a wide range of lengths, although the
majority are shorter than those with S5p only at promoters (S5pEnd ; p<2.2 X
10~'®, one-tailed Wilcoxon rank-sum test).

and show higher changes in expression levels than those for
which S5p is not at the TES (S5pEnd™; p = 0.0026, one-tailed
Wilcoxon rank-sum test). Comparison of gene length between
S5pEnd* and S5pEnd™ genes shows that S5p detection at the
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TES is not solely due to short gene length and promoter-proximal
S5p occupancy, as 60% of S5pEnd™ genes are more than 5 kb
long, and some are over 100 kb (Figure 3C). These results
suggest that the presence of RNAPII-S5p further into coding
regions of PRC-repressed genes, accompanied by proportional
PRC occupancy, may favor gene activation upon PRC removal,
although a contribution of shorter gene sizes cannot be
excluded.

Genome-wide Interplay between PRCs

and RNAPII Variants

The observation of tight interplay between PRCs and
RNAPII at 1,065 silent PRC targets associated with RNAPII-
S5p*S2p 8WG16~ led us to investigate other RNAPII variants
within the whole cohort of PRC targets (5,628 genes), which
includes genes with substantial mMRNA expression. We used
hierarchical clustering, an unbiased genome-wide approach, to
identify specific combinations of PRC and RNAPII modification
(Figure 4A). Genes were classified according to the presence/
absence of each ChIP-seq marker in regions of interest
(Table S2), in order to define discrete groups of genes with
similar PRC/RNAPI| states. We represent levels of H3K4me3,
Ezh2, Suz12, Ring1B, and H3K27me3 for comparison (Fig-
ure 4A), the latter from a recent ChIP-seq data set (Lienert
et al., 2011).

Comparing mRNA levels across the resultant gene clusters
reveals clear-cut associations with expression and silencing,
despite mMRNA-seq data not being included as a variable in the
clustering analysis (Figure 4A). This shows that presence or
absence of RNAPII and PRCs can predict gene expression
states in ESCs.

Within the “silent” branch of the hierarchical tree, we find three
groups of PRC targets. These groups are characterized by the
presence of the following: (1) H3K27me3, but little detectable
H2Aub1, H3K4me3, or RNAPII (n = 798; PRConly or PRCo); (2)
H3K27me3, H2Aubi1, H3K4me3, and S5p, without other
RNAPII modifications (n = 1,632; PRCrepressed or PRCr);
and (3) H3K27me3, H2Aub1, H3K4me3, S5p, 8WG16, and
S7p, but little detectable S2p or mRNA expression (n = 742;
PRCintermediate or PRCi). The PRCr group contains all the
PRC* genes found to be associated with the RNAPII variant
S5p*S2p 8WG16~ in our initial analysis (characterized in
Figures 2 and 3).

Surprisingly, hierarchical clustering identifies a fourth
PRC-target cluster within the “expressed” branch (n = 1,227;
PRCactive or PRCa), associated with all RNAPII modifications,
H3K4me3, H3K27me3, H2Aub1, and mRNA. Thus, we identify
four major PRC-target gene groups: PRConly, PRCrepressed,
PRCintermediate, and PRCactive. The remaining genes in the
expressed and silent branches of the hierarchical tree were
classified as Active genes (all expressed genes, excluding
PRCa) and Inactive genes (silent genes minus PRCr, PRCi, and
PRCo), respectively.

Careful inspection of ChIP-seq profiles (examples in Fig-
ure S2B) and independent validation by ChIP-gPCR (Figure S4A)
confirm the different combinations of marker occupancy at
single genes within each group. Single-gene gRT-PCR analyses
show that transcript levels from PRCa genes are comparable to
those of an Active gene, and 100- to 1,000-fold higher than

Cell Stem Cell 10, 157-170, February 3, 2012 ©2012 Elsevier Inc.

PRCr genes (Figure S4B). Expression of PRC2-target genes
has been previously described in ESCs (Nishiyama et al., 2009;
Sharov et al., 2011; Young et al., 2011), and genes classified
as bivalent in Mikkelsen et al. (2007) can be upregulated or
downregulated upon transcription factor induction in ESCs
(Nishiyama et al., 2009; Sharov et al., 2011). Here we expand
on these analyses both by identifying active PRC-target genes
associated with both PRC1 and PRC2, and by exploring the
RNAPII state associated with them.

Gene Ontology and KEGG Pathway Analyses Identify
Roles for PRCs in Metabolic Gene Regulation

Gene Ontology (GO) analyses across the six gene groups identi-
fied by hierarchical clustering reveal enrichment for genes asso-
ciated with developmental processes in PRCr and PRCa, and
enrichment for signaling and response to stimuli within Inactive
and PRCo (Figure 4B, see Table S3 for detailed GO analyses).
This suggests that RNAPII at PRC targets may be important for
gene activation during development, while PRC targets lacking
RNAPII recruitment (PRCo) are required only in terminally differ-
entiated cells.

Unexpectedly, PRCa genes are also enriched for metabolic
GO terms (p < 1075, hypergeometric test; Figure 4B). KEGG
pathway analysis identifies PRCa genes associated with
TGFB-, Wnt-, and MAPK-signaling pathways, and with cancer,
cell cycle, and energy metabolism (Table 1). Although deregula-
tion of a few of the active PRC targets identified here has been
reported after PRC1 knockout (van der Stoop et al., 2008), to
our knowledge, direct regulation of metabolic genes by PRCs
has not been shown before.

Active PRC Targets Are Expressed at the Protein Level
To investigate the biological significance of active RNAPII modi-
fications (S7p*S2p*) and mRNA expression at active PRC targets
(PRCa, n = 1,227), we mined ESC proteome data (Graumann
et al., 2008) to determine whether PRCa genes are expressed
at the protein level. We positively identify peptides from 32%
and 15% of Active and PRCa genes, respectively, in comparison
with 2%-5% for other gene cohorts (Figure 4C). Thus, PRC occu-
pancy is compatible with protein expression at PRCa genes. S2p
is detected above threshold at PRCa and Active genes, while S5p
is also present at PRCr and PRCi, mirroring CpG content.
Among the PRCa genes expressed at the protein level are
transcriptional regulators (Hdac2 and Hmga2), cancer-linked
genes (KIf4 and Kit), and genes involved in glycolysis and pyru-
vate metabolism (Hk7, Eno2, and Pck2). This suggests that
PRCs modulate expression levels of active genes with important
roles in ESCs, some of which are required for ESC identity [e.g.,
Hmga2 (Hammond and Sharpless, 2008), Kif4 (Takahashi and
Yamanaka, 2006), and Tbx3 (Lu et al., 2011)]. Others are involved
in metabolic processes, such as glycolysis, that are differently
regulated in ESCs and somatic cells (Kondoh et al., 2007).
Importantly, genes that mark early differentiation, such as
Gata4, Gata6, and Brachyury (Singh et al., 2007), do not display
detectable S2p, or other markers of productive transcription,
and are categorized as PRCr (Figure S5A). This supports the
conclusion that the PRCa cohort of genes is related to the plurip-
otent state and is not due to differentiation in our ESC cultures.
Single-cell immunofluorescence analyses show Oct4 and Nanog
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Figure 4. PRC Targets Associate with Different RNAPII Modifications and Expression Levels

(A) Hierarchical clustering was performed after binary classification of RNAPIl and PRC modifications for 15,404 nonoverlapping RefSeq genes.
Marker enrichment at TSSs or TESs is normalized to the binary classification threshold. Four major PRC groups were identified: PRConly, PRCrepressed,
PRCintermediate, and PRCactive. Remaining genes were classified as Active or Inactive. Levels of MRNA and additional markers are presented for comparison
(lower panel), but were not used as clustering variables.

(B) “Developmental process” is the most significantly enriched Gene Ontology (GO) term for PRCr genes, while PRCa terms include “developmental process”
and “metabolic process” (p values in brackets, hypergeometric test). The full GO table with intergroup comparisons is shown in Table S3.

(C) mRNA-seq levels are highest for Active genes, followed by PRCa, PRCi, PRCr, PRCo, and Inactive. Analysis of ESC SILAC data (Graumann et al., 2008) shows
expression at the protein level only for PRCa and Active genes. S2p levels are only above background at Active and PRCa, while S5p levels are also substantial at
PRCi and PRCr. Orange line, threshold. CpG content mirrors S5p enrichment.

See also Figure S4.

productive transcription could be due to separate chromatin
states in different alleles across the heterogeneous ESC popu-
lation (Figure 5A, Model 1), or whether PRCs directly asso-
ciate with active RNAPII-S2p complexes (Figure 5A, Model 2).
Coassociation between S5p, S2p, and PRCs would be different
in the two models. In Model 1, RNAPII-S5p and PRC are present

detection across the population of ESCs, albeit at variable levels
(Figure 1A, Figure S5B).

Mechanisms of PRC Control at Active PRC Targets
To investigate the mechanism of PRC function at PRCa genes,
we asked whether coexistence of PRC repression and RNAPII
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Table 1. KEGG Pathways Significantly Enriched in Active PRC-Target Genes, or the PRCa Cluster

KEGG Pathway (p value)

Gene Symbols (PRCa Gene Members)

Pathways in cancer (2 x 107%)

Stat1, Gli2, Ralb, Rassf5, Hdac2, Bcr, Fgf18, Tcf7, Stat5b, Lamb1, Egin3, Traf3, Akt1,

Fgf17, Myc, Pdgfb, Cdkn1la, Vegfa, Lamal, Epas1, Fzd8, Vegfb, Rxra, Plcg1, Nfkb1,
Tgfbr1, Cdkn2b, Cdk6, Kit, Fzd10, Pdgfa, Smo, Tcf7I1, Tgfb1, Igfir, Fgf3, Ccnd1, Fgfri,
Pik3r2, Mmp2, Plcg2, Smad3

TGF-beta signaling pathway (4 x 10~°)

Bmpr2, Inhbb, Lefty2, Lefty1, Id2, Id4, Myc, Id1, Bmp7, Tgfbr1, Cdkn2b, Bmp8a, Id3,

Tgfb1, Tfdp1, Smad3, Smad6

MAPK signaling pathway (1 x 10~5)

Mapkapk2, Gadd45b, Fgf18, Dusp14, Cacnb1, Dusp3, Map3k14, Map3k9, Akt1,

Gadd45 g, Finb, Nfatc4, Fgf17, Myc, Pdgfb, Mapk12, Mapk11, Mapk8ip2, Mapk4,
Rasgrp2, Rps6ka4, Dusp5, B230120H23Rik, Cdc25b, Pla2g12a, Nfkb1, Mos, Tgfbri,
Pdgfa, Tgfb1, Fgf3, Fgfr1, Dusp4, Rasa2, Mras, Cacna2d2, Dusp9

Cell cycle (1 x 1079)

Hdac2, Gadd45b, Gadd45 g, Cdc14b, Myc, Smc1b, Cdknia, Cdc25b, Cdkn2b, Sfn,

Cdk6, Tgfb1, Ccnd1, Tfdp1, Smad3

Whnt signaling pathway (1 x 10~5)

Vangl2, Camk2b, Tcf7, Ppp2r5c, Sfrp4, Nkd2, Nfatc4, Myc, Fzd8, Lrp5, Fosl1, Frat1,

Sfrp2, Vangl1, Fzd10, Tcf7I1, Ccnd1, Sfrp1, Smad3

p53 signaling pathway (3 x 1073)

Inositol phosphate metabolism (6 x 10~
Pyruvate metabolism (0.01)

Notch signaling pathway (0.01)

ErbB signaling pathway (0.02)

Citrate cycle (TCA cycle) (0.04)
Glycolysis/ gluconeogenesis (0.04)

Steap3, Gadd45b, Igfbp3, Gadd45 g, Cdknla, Pmaip1, Zmat3, Sfn, Cdk6, Ccnd1
Synj2, Pip5k1b, Pip4k2a, Pip5kl1, Plcg1, Pik3c2a, Plcg2

Pck2, Acss1, Akr1b3, Ldhb, Ldha, Diat

Hdac2, Jag1, Hes5, Lfng, DII3, Aph1c

Camk2b, Stat5b, Akt1, Myc, Cdkn1la, Hbegf, Plcg1, Pik3r2, Gab1, Plcg2

Ogdh, Pck2, Diat

Hk1, Pck2, Acss1, Eno2, Ldhb, Ldha, Dlat

Enrichment of KEGG pathways by group members was assessed by hypergeometric testing. See also Table S3.

at the PRC-bound allele, but PRCs are not at the active allele; in
this case, PRCs would re-ChlP with S5p, but not S2p. In Model 2,
RNAPII-S5p, S2p, and PRCs are simultaneously bound to
the same chromatin and PRCs would re-ChIP with both S5p
and S2p.

We performed sequential ChIP of Ring1B with RNAPII-S5p or
S2p to test these models (Figure 5B). Notably, Ring1B coassoci-
ates with S5p-bound chromatin but does not colocalize with S2p
above background levels. This suggests that PRCs coassociate
with RNAPII-S5p at PRCa genes, but antagonize phosphoryla-
tion of S2. Therefore the two states, PRC-repressed and active,
exist separately within a cell (binding to different alleles) or cell
population.

Lack of coassociation between PRCs and S2p thus supports
an “on-off” (digital) switch mechanism of PRC regulation, where
PRC impedes establishment of active RNAPII at PRC-bound
chromatin (Figure 5A, Model 1). Ring1B coassociation with
RNAPII-S5p at PRCa (Figure 5B) and PRCi (Figure S3C) genes
shows that PRCs colocalize with RNAPII-S5p at all RNAPII-asso-
ciated PRC targets. Re-ChIP experiments of S5p with S2p
confirm the presence of S5p with S2p at actively transcribed
genes within both PRCa and Active groups, but not at PRCr
genes (Figure 5B).

Next, we explored whether the independent association of
PRCa genes with PRC and S5p (in the PRC-repressed state),
or with S2p and S5p (in the active state), could be related to
natural fluctuations in transcription factor levels across the
heterogeneous ESC population. We performed single-cell cryo-
FISH colocalization of the PRCa gene Lefty2 with RNAPII-S5p,
RNAPII-S2p, and Ezh2 (PRC2) in ESCs costained with Nanog
antibodies (Figure 5C). Interestingly, these experiments show
similar association of the Lefty2 locus with RNAPII-S5p indepen-

Cell Stem Cell 10, 157-170, February 3, 2012 ©2012 Elsevier Inc.

dent of Nanog levels, but a significant association with RNAPII-
S2p in Nanog"®" cells and with Ezh2 in Nanog'" cells (p = 0.2
[S5p], 0.006 [S2p], and 0.04 [Ezh2]; %2 test). These studies
suggest that pluripotency transcription factors that fluctuate
within the ESC population, such as Nanog, may influence the
switch between PRC-repressed and active states of PRCa
genes.

To complement the analyses of single genes by sequen-
tial ChIP and cryoFISH, we investigated genome-wide correla-
tions between S5p and H2Aub1 or S2p. Consistent with
Model 1, the correlation between S5p and PRCs in the
PRCa cohort is lower than in the PRCr state (Figure 5D),
suggesting that the association between S5p and PRCs is
diluted by the presence of some S5p complexes associated
only with S2p. Furthermore, S2p levels correlate more exten-
sively with S5p at PRCa than at PRCr (Figure 5D), in agreement
with the presence of a population of PRCa genes with S5p
and S2p.

These studies support a switch model of active PRC-target
genes (Model 1, Figure 5A), where PRCa genes are not simulta-
neously repressed by PRCs and expressed. At active PRCa
genes, RNAPII-S5p exists in two independent states: (1) in asso-
ciation with PRC (in the absence of other RNAPII active marks)
and (2) in the presence of S2p (and absence of PRCs). These
data suggest that PRCa genes, which in population-based
ChIP analyses appear to be expressed and bound by PRCs,
are not simultaneously expressed and under PRC repression
at the single-gene level. This may be due to allelic exclusion or
ESC heterogeneity. Further studies will be necessary to under-
stand the means by which pluripotency transcription factors
influence fluctuations between epigenetic states at this impor-
tant cohort of PRC targets.
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(A) Two alternative models of PRC regulation at PRCa genes.

(B) Ring1B, S5p, and S2p occupancy and coassociation at Active (3-actin), Inactive (Myf5), and PRCa genes were analyzed by ChlIP or re-ChIP and qPCR, as
described in Figure 2. Mean and SD from two to five biological replicates are shown. ChIP-gPCR confirms binding of Ring1B, S5p, and S2p to PRCa genes, but
re-ChlIP shows PRC1 coassociation with S5p, but not with S2p, above background levels (white bars). Re-ChlP demonstrates simultaneous presence of S2p and
S5p at PRCa and Active, but not PRCr, genes.

(C) Colocalization of PRCa gene Lefty2 (red, arrows) with sites containing S5p, S2p, or Ezh2 (green) was measured by immuno-cryoFISH in ESC nuclei with
different levels of Nanog (yellow; classified as high, low, or intermediate). Locus association with each marker was scored as colocalized (>1 pixel overlap) or
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Expression Levels of Active PRC Targets Are Regulated
by PRCs

To investigate whether PRCa genes are functionally repressed
by the presence of PRC, we repeated our meta-analyses of
microarray expression data after conditional Ring7B knockout
(Endoh et al., 2008) for this group of genes (Figure 6, Figure S6).
We compared the changes in expression that occur at active
PRC targets (PRCa) with the changes occurring in the well-char-
acterized cohort of silent developmental PRC-target genes
(identified here as the PRCr group).

Functional PRC-mediated repression of active PRC targets
was confirmed, as the same proportion (~30%) of PRCa and
PRCr genes show substantial derepression after Ring1B
knockout (p < 107%*, one-tailed Fisher’s exact test; Figure 6A).
The mean expression change at PRCa genes after Ring1B
knockout is lower than at PRCr genes (p = 0.022, one-tailed Wil-
coxon rank-sum test), likely due to the fact that PRCa genes are
already expressed in ESCs.

Importantly, derepression of PRCa genes after conditional
Ring1B knockout, together with the detection of PRC marks,
adds further evidence to their classification as bona fide PRC
targets. PRC1 repression of active PRC targets was further vali-
dated by gRT-PCR of single-gene transcripts over a Ring1B
knockout time course (Figure 6B); these include important genes
for ESC biology (Hmga2, Tbx3, and Hdac?2), development (Fzd8
and Lefty2), and metabolism (Hk7 and Eno2). In support of our
findings, three genes (Tbx3, Klf4, and Foxd3) here classified as
PRCa were also recently described as PRC2 targets (Walker
et al., 2010).

To probe the role of active PRC-target genes in pluripotency or
during differentiation, we analyzed microarray expression data
during ESC differentiation following LIF withdrawal (Shen et al.,
2009; Figure 6C, Figure S6). Downregulation of many metabolic
PRCa genes during differentiation (Figure 6C), including genes
involved in glycolysis and pyruvate metabolism (Ldha, Gpd1l,
and Pck2; Table 1), suggests that PRC1 controls the expression
of genes specifically associated with pluripotency. Conversely,
other metabolic PRCa genes become upregulated during differen-
tiation (Figure 6C), suggesting roles during lineage specification.

Aligning Ring1B knockout expression data to these differenti-
ation analyses demonstrates that metabolic PRCa genes that
become derepressed upon Ring1 depletion can be upregulated
or downregulated upon differentiation (Figure 6C); the pattern is
similar across all PRCa genes (Figure S6). Regulation of PRC-
repressed metabolic genes during ESC differentiation expands
our understanding of Polycomb function in pluripotency to
include the modulation of ESC metabolism, in addition to repres-
sion of developmental genes.

DISCUSSION

In summary, we present advanced analyses of Polycomb re-
pression and RNAPII states in ESCs, which combine molecular,

cellular, and genomic techniques on single-gene and genome-
wide scales. We identify cohorts of PRC-associated genes
with distinct RNAPII and expression states.

At silent developmental PRC targets, PRCs are tightly inter-
linked with RNAPII-S5p complexes at promoters and throughout
coding regions, which produce transcripts that do not mature
into mRNA, and from which protein is not produced. We demon-
strate that chromatin bivalency is a phenomenon of this coasso-
ciation and synergy between PRCs and RNAPII.

At active PRC targets, PRCs are also tightly interlinked with
unproductive RNAPII-S5p complexes. We demonstrate that
active PRC targets can switch between PRC-repressed and
active states within the ESC population. Thus, genes character-
ized by PRCs and expression (mRNA, protein, elongating
RNAPII, and H3K36me3) are not simultaneously bound by
PRCs and expressed. This may be due to allelic differences or
cellular heterogeneity. The active cohort of PRC targets is en-
riched for genes with ontologies related to development or
metabolism, and involved in metabolic processes and signaling
pathways that are important for ESC biology.

PRC repression is therefore associated with a single RNAPII
state (S5p*S7p~S2p~) across all CpG-rich genes. Fluctuation
from the PRC-repressed to the canonical active state (S5p*
S7p*S2p™) occurs to variable extents across different PRC
targets, resulting in differing expression levels.

Direct modulation of metabolic and developmental genes by
PRCs is likely crucial in specifying effective programs of gene
expression and metabolic control that are important for ESC plu-
ripotency and lineage specification.

EXPERIMENTAL PROCEDURES

A detailed description of materials and methods is given in Supplemental
Information.

Cell Culture

Mouse ES-0S25, ES-ERT2, and XEN cells were grown as previously
described (Stock et al., 2007). For Ring1B conditional deletion, ES-ERT2 cells
were cultured in 800 nM 4-hydroxy-tamoxifen.

Chromatin Immunoprecipitation

ChlP assays were performed essentially as described previously (Stock et al.,
2007). Sequential ChIP was performed as standard fixed ChIP, with elutions
after the firstimmunoprecipitation in small volumes (total 80 pl) to allow dilution
of SDS back to 0.1% prior to the second immunoprecipitation. Enrichment
was calculated relative to the original input using the same amount of DNA
in the PCRs.

RNA Purification and qRT-PCR Analysis

Total RNA was isolated using TRIzol (Invitrogen) extraction following the manu-
facturer’s instructions and immediately treated with TURBO DNase | (Ambion).
Treated RNA was reverse transcribed using random primers.

Illumina High-Throughput Library Preparation and Sequencing
ChlP-seq libraries were prepared according to lllumina protocols (Part
#11257047 Rev A), with modifications: samples were PCR amplified prior to

separate. Lefty2 associates with S5p at similar frequency regardless of Nanog status, but association with S2p is highest and Ezh2 is lowest in Nanog

hish cells.

Bar: 2 pm. The number of loci analyzed is indicated in brackets. Note that all cells were positive for Oct4 despite variable levels of Nanog (lower panel).
(D) Correlation plots for enrichment levels in 2 kb windows for PRCr, PRCa, and Active clusters. Positive correlations are stronger between S5p and H2Aub1 within
PRCr and between S5p and S2p at PRCa genes (p, Spearman’s rank correlation coefficient).

See also Figure S5.
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Figure 6. PRC1 Functionally Represses Active Developmental
Genes and Metabolic Genes in ESCs

(A) Analysis of microarray data for ES-ERT2 cells +48 hr TMX treatment (Endoh
et al., 2008) shows that PRCa genes undergo derepression after Ring1B
removal. Percentage of genes showing >1.5-fold increase is statistically
significant for PRCa and PRCr (p < 103, one-tailed Fisher’s exact test). Mean
fold change (green) is lower for PRCa than PRCr.

(B) Single-gene gRT-PCR analyses, as described in Figure 3, show functional
derepression of PRCa genes upon Ring1B removal in ES-ERT2 cells. Mean
and SD from three biological replicates are shown.

(C) Analyses of microarray expression data for ESC differentiation after LIF
withdrawal (Shen et al., 2009) and Ring1B knockout in ES-ERT2 cells (Endoh
et al., 2008) show that metabolic PRCa genes can become upregulated or
downregulated upon differentiation. 476 PRCa genes with “metabolic
process” GO are represented (GO:0008152). Red/green colors represent
expression changes relative to the mean across the gene group represented.
PRCa genes are expressed in ESCs (differentiation d0), as illustrated by
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size selection. mRNA-seq library was prepared from total RNA after TRIzol
extraction, according to lllumina’s instructions (#1004898 Rev A) with some
modifications. After polyA selection, ribosomal RNA was depleted using the
Ribominus kit (Invitrogen). Libraries were quantified by Qubit (Invitrogen) and
qPCR, and library size was assessed by Bioanalyzer (Agilent). Libraries were
sequenced using an lllumina Genome Analyzer II.

ChiIP-seq and RNA-seq Analysis

Table S1 lists new and publicly available ChiP-seq data sets analyzed.
Sequenced reads were aligned to the UCSC mouse mm9 genome. mRNA-
seq reads were aligned to the mm9 genome and UCSC annotated transcripts
(UCSC Known Gene annotations) using Tophat v.1.0.13 (Trapnell et al., 2009)
and Cufflinks v.0.8.2 (Trapnell et al., 2010), to detect reads crossing exon-exon
junctions and allow calculation of FPKM levels.

To investigate RNAPII modifications or PRC genome-wide, we classified
each gene as positive or negative for each marker at TSSs and/or TESs
(Table S2).

For hierarchical clustering, the input matrix was composed of 15,404
nonoverlapping RefSeq genes and 7 binary variables: S5p (+1 kb TSS),
8WG16 (TSS), S7p (TSS), S5p (2 kb downstream TES), S2p (2 kb upstream
TES), H3K27me3 (TSS), and H2Aub1 (TSS). All pairwise dissimilarities in the
data matrix were computed using the Gower coefficient; hierarchical clus-
tering was calculated using average linkage and the function hclust in R.

Log1o transformation was applied before plotting in R heatmaps, boxplots,
and correlations; a pseudocount of 1 or 0.0001 was added prior to the loga-
rithm transformation for ChlP-seq or mRNA-seq FPKM levels, respectively,
unless otherwise stated.

GO and KEGG Pathway Analyses
Analysis of GO functional enrichment was performed using the Fisher’s exact
test implemented in the topGO Bioconductor package (Alexa et al., 2006). The
annotation of GO terms to Entrez gene IDs was provided from the Bio-
conductor package org.Mm.eg.db (version 2.4.1; Gentleman et al., 2004).
Annotation of KEGG pathways and their associated genes were retrieved
from ftp://ftp.genome.jp/pub/kegg/ (Kanehisa and Goto, 2000). Enrichment
of KEGG pathways was assessed by hypergeometric testing in R Stats
package and false discovery rates were calculated using R Multtest.

Immuno-cryoFISH
CryoFISH was performed as previously described (Branco and Pombo, 2006;
Ferrai et al., 2010).

ACCESSION NUMBERS

ChIP-seq and mRNA-seq data have been submitted to the GEO repository
under accession number GSE34520.
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Supplemental Information for this article includes Figures S1-S6, Tables S1-
S8, and Supplemental Experimental Procedures and can be found with this
article online at doi:10.1016/j.stem.2011.12.017.
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